#Make a .py class that each client will download import tensorflow as tf class MLMODEL: def __init__(self): self.model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10)]) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) self.model.compile(optimizer='adam',loss=loss_fn,metrics=['accuracy']) def getModel(self): return self.model