/* * Copyright 2016-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: MIT-0 */ package test.scala import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.schema.{Schema, TypeCode} import com.amazonaws.services.glue.schema.builders.SchemaBuilder import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.{SparkConf, SparkContext} import org.scalatest.{BeforeAndAfterEach, FunSuite} class ColumnPartitioningTest extends FunSuite with BeforeAndAfterEach { val conf = new SparkConf().setAppName("LocalTest").setMaster("local") var spark: SparkContext = _ var glueContext: GlueContext = _ override def beforeEach(): Unit = { spark = new SparkContext(conf) glueContext = new GlueContext(spark) } override def afterEach(): Unit = { super.afterEach() spark.stop() } test("test partner jdbc partition column") { // set partitionColumn Information val partitionColumn = "RecordId__c" val lowerBound = "0" val upperBound = "13" val numPartitions = "2" // set up connection options val optionsMap = Map( "query" -> "SELECT NumberOfEmployees, CreatedDate FROM Account WHERE", "className" -> "partner.jdbc.salesforce.SalesforceDriver", "url" -> "jdbc:salesforce:user=${user};Password=${Password};SecurityToken=${SecurityToken};", "secretId"-> "secret", "partitionColumn" -> partitionColumn, "lowerBound" -> lowerBound, "upperBound" -> upperBound, "numPartitions" -> numPartitions ) // create DataSource and read data val customSource = glueContext.getSource( connectionType = "custom.jdbc", connectionOptions = JsonOptions(optionsMap), transformationContext = "customSource") val dyf = customSource.getDynamicFrame() // verify data var expectedSchema = new Schema(new SchemaBuilder() .beginStruct() .atomicField("NumberOfEmployees", TypeCode.INT) .atomicField("CreatedDate", TypeCode.TIMESTAMP) .endStruct().build()) assert(dyf.schema === expectedSchema) val expectedRowCount = 13 assert(dyf.count === expectedRowCount) } }