
Creating connectors for AWS
Marketplace

You can develop your own custom connector software, and then upload it to AWS
Marketplace to sell to AWS Glue customers.

Overview of creating connectors for AWS Marketplace

With AWS Glue custom connectors, you can discover and subscribe to a variety of
connectors in AWS Marketplace. You can also use AWS Glue Spark runtime interfaces
to plug in connectors that are built for Apache Spark Datasource, Athena federated
query, and JDBC APIs.

This chapter helps you to build and test custom connectors, and deploy them for
connectivity with AWS Glue Spark applications.

1. Create a custom connector, as described in Step 1: Developing Marketplace
connectors.

2. Create a new product in AWS Marketplace as described in Step 2: Create your
connector product in AWS Marketplace.

3. Package and upload your connector, as described in Step 3: Packaging and
uploading Marketplace connectors.

4. Create a deployment link for your AWS Glue connector product, as described in
Step 4: Creating a deployment link for Marketplace connectors.

5. Test your connector, as described in Step 5: Testing Marketplace connectors.
6. Validate your connector, as described in Step 6: Validating Marketplace

connectors.
7. After you've completed the above steps, contact your assigned Technical

Account Manager (TAM) to push your product to the public using the steps
described in Step 7: Publish the product to the public.

Step 1: Developing Marketplace
connectors

You can create connectors for JDBC, Spark, or Athena data sources. Each connector
type has different requirements. Review the following sections in the AWS Glue User
Guide:

• To create a connector for Open Spark data stores, see Developing Spark
connectors.

• To create a connector for Amazon Athena data stores, see Developing Athena
connectors.

• To create a connector for JDBC data stores, see Developing JDBC connectors.

Step 2: Create your connector product in
AWS Marketplace
Creating a product in AWS Marketplace involves the following steps:

1. Create the product ID.
2. Create the pricing details.
3. For paid products, integrate metering into your product.
4. Add a new version of your product, including:

a. Add repositories for your containers.
b. Upload the final containers into the repositories.
c. Create the first version of the product with your first container images.

5. Update the product information.
6. Publish the product for buyers.

Detailed instructions for the above steps are available in Creating a container product
in the AWS Marketplace Seller Guide. Follow the instructions up to step 4.a. By the end
of step 4.a. you will get an Amazon Elastic Container Registry (ECR) URL similar to
111122223333.dkr.ecr.us-east-2.amazonaws.com/my-company/salesforce

Make note of this URL, and then proceed to the next section.

Step 3: Packaging and uploading
Marketplace connectors
This section describes how to create and publish a container product with the
required connector JAR files to AWS Marketplace.

http://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#code-spark-connector
http://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#code-spark-connector
http://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#code-athena-connector
http://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#code-athena-connector
http://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#code-jdbc-connector
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#create-container-product

1. Set up AWS Command Line Interface (AWS CLI). For instructions, see Installing,
updating, and uninstalling the AWS CLI in the AWS Command Line Interface
User Guide for the instructions.

You can install either of the following versions:

• AWS CLI version 2
• AWS CLI version 1 v1.17.10 or later

2. Install Docker Engine, as described in "Install Docker Engine" in the Docker

Engine online documentation.

3. Create and start a Docker image, as described in "Orientation and setup" in the
Docker online documentation.

4. Prepare the config file to provide metadata about the connector that you’re
publishing. The following is a sample file. All the keys in the following example
are required.

 {
 "releasetimestamp": "2020-12-21 12:00:00",
 "connectiontype": "MARKETPLACE",
 "classname": "partner.jdbc.salesforce.salesforcedriver",
 "publishername": "partner",
 "connectortype": "JDBC",
 "version": "19.0.7362.0",
 "description": "Partner JDBC Driver for Salesforce",
 "supportinformation": "Please check for this driver's online help."
}

5. Download the container-setup.sh shell script. You use this script for creating
and publishing a container with the required connector JAR files and a config
file for the connector JAR files.

Tip

Save and run the script in a new folder to avoid conflicts, and for the script to
run efficiently.

This script creates a new container with the necessary JAR files and then
pushes the container to the newly created Amazon ECR repository.

In the script, the value of --image-tag should be the version of your
connector JAR files. You can use other values, but we recommend that you use
the version to be consistent with the version you’re going to create later for the
product.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.docker.com/engine/install/
https://docs.docker.com/get-started/

Important!

The value of --ecr-repo-name should be the suffix after .com/ of the ECR URL
you obtained in the last section. For example, if your ECR URL is
111122223333.dkr.ecr.us-east-2.amazonaws.com/my-
company/salesforce, then provide the value my-company/salesforce for the
--ecr-repo-name.

6. You can run the following command to see the usage examples for the script
and how to run the script to publish the Docker image to Amazon ECR:

bash container-setup.sh --help

7. After you’ve run this script and uploaded the connector to your Amazon ECR
repository, note the final URL of the ECR repository in the script output.

Step 4: Creating a deployment link for
Marketplace connectors
When customers purchase your connector, at the end of the subscription workflow in
the AWS Marketplace, they need a way to activate the connector that they just
purchased in AWS Glue Studio. This section describes how to prepare a deep link URL,
which redirects the user back to the AWS Glue Studio console to activate the
connector.

Make sure to follow these steps carefully, and reach out to your AWS contact if you
have any questions.

1. Gather the information required for the deep link URL. The deep link URL is an
absolute URL that points to an endpoint provided by AWS Glue Studio. The
base URL is:

https://console.aws.amazon.com/gluestudio/home#/connector/add-
connection?PARAMETERS

There are several parameters you need to append to the base URL so that your
connector can be integrated with AWS Glue Studio correctly.

Connector-related parameters:

• connectorName (required): The name of your connector. You can also include
your company name, if you want. The value should be an alphanumeric string
that uses a space character as a delimiter. This field is editable by the end user.

connectorName="Virtual Company Simple DB"

• connectorType (required): The interface type that your connector is built upon.
The accepted values are Spark, Athena, or Jdbc. This field is not editable by
the end user.

connectorType="Jdbc"

• connectorDescription (optional): A brief summary about this connector that
contains only alphanumeric letters, spaces, periods (.), commas (,), or semi-
colons (;). We recommend limiting this field to 50 words or less. This field is
editable by the end user.

connectorDescription="A simple description"

• connectorUrl (required): The URL for the corresponding Amazon Elastic
Container Registry (Amazon ECR) image that contains your connector. This is
the ECR repository URL that you uploaded the JAR files to in Step 3: Packaging
and uploading Marketplace connectors.

connectorUrl=https://mp-account-#.dkr.ecr.region.
amazonaws.com/product_id/container_group_id/
myconnectorimage:version_title-latest

Important!

Use the Amazon ECR that AWS Marketplace provides you with after your initial image
is copied into their account. DO NOT use the URL for the image in your own account.

• connectorVersion (required): The version of your connector. The value should
contain only numeric letters delimited by periods (.). The length limit for this
field is 36 characters. This field is not editable by the end user.

connectorVersion="7.5.5"

• connectorClassName (required): For JDBC connectors, this field should be the
class name of your JDBC driver. For Spark connectors, this field should be the
value used for the format when loading the Spark data source with the format
operator.

connectorClassName="some.class.name"

For Spark connectors, an example using an alias is:

connectorClassName="es"

The following is a Spark example using the real marker class name:

connectorClassName="net.snowflake.spark.snowflake"

For Athena, you would use a class name similar to:

connectorClassName="com.amazonaws.athena.connectors.Cloudwatch"

Connection-related parameters:

• connectionAccessJdbcURLFormat (required for JDBC connectors): The JDBC
URL templates that are supported by your connector. If you support more than
one template, you can reuse this keyword to specify each of them. Also, each
template should start with a name followed by an equal sign. For example, if
your connector supports a template that uses a user name and password for
authentication, then you can use:

username_password=jdbc:virtualcomp:simpleDB:user=${Username};
password=${Password}

The first token, username_password, can be any non-empty string. This
represents the title presented to the user from a drop-down component in the
AWS Glue Studio console. You should make this title easy to read and
identifiable. If there is more than one template, make sure that this title is
unique. For example:

username_password_template1= ...
username_password_template2= ...

For the JDBC URL template, you can insert placeholders for parameter values
that the user has to fill in at runtime for their specific data store. You should
also include a usage guide on your product page to call out these mandatory
fields and what values are expected for them. Each placeholder variable should
be enclosed in curly braces and prefixed with a dollar sign. For example:
${RuntimeKey}.

If your JDBC URL template contains user name and password parameters, the
placeholder variables for them should always be exactly Username and
Password. This is required for AWS Glue Studio to extract them correctly and
apply the proper encryption.

A full example looks like this:

connectionAccessJdbcURLFormat="username_password=jdbc:virtualcomp
:simpleDB:user=${Username};password=${Password}"

connectionAccessJdbcURLFormat="oauth=jdbc:virtualcomp:simpleDB:
OAuthSettingsLocation=${OAuthSettingsLocation};InitiateOAuth=
REFRESH;"

• connectionAccessJdbcURLParamsDelimiter (required for JDBC connectors):
For JDBC connectors, this field specifies the delimiter used to separate
parameters in the JDBC URL template. This enables users to add additional
JDBC parameter key-value pairs in the AWS Glue Studio console.

connectionAccessJdbcURLParamsDelimiter=";"

2. After you have all the parameters ready, you can join them together with an
ampersand (&) and append the result to the base URL. The outcome should
look like this (with no spaces or line returns between each parameter query):

https://console.aws.amazon.com/gluestudio/home#/connector/add-
connection?connectorName="Virtual Company Simple DB"
&connectorType="Jdbc"
&connectorDescription="A virtual company connector that connects
to Simple DB"
&connectorUrl="https://mp-account-#.dkr.ecr.us-east-
1.amazonaws.com/product_id/container_group_id/myconnectorimage:ve
rsion_title-latest"
&connectorVersion="7.5.5"
&connectorClassName="virtualcomp.db.simpledb.driver"
&connectionAccessJdbcURLFormat="username_password=jdbc:virtualcom
p:simpleDB:user=${Username};password=${Password}"
&connectionAccessJdbcURLFormat="oauth=jdbc:virtualcomp:simpleDB:O
AuthSettingsLocation=${OAuthSettingsLocation};InitiateOAuth=REFRE
SH;"
&connectionAccessJdbcURLParamsDelimiter=";"

3. Use a URI encoder such as the one at
https://toolbox.googleapps.com/apps/encode_decode/ to encode the
parameter values. This helps to avoid any character escaping issues. Using the
example in the previous step, the encoded URL string should look like this (but
as a one-line string):

https://console.aws.amazon.com/gluestudio/home#/connector/add-
connection?connectorName=%22Virtual%20Company%20Simple%20DB%22&co
nnectorType=%22Jdbc%22&connectorDescription=%22A%20virtual%20comp
any%20connector%20that%20connects%20to%20Simple%20DB%22&connector
Url=%22https://mp-account-#.dkr.ecr.us-east-

https://toolbox.googleapps.com/apps/encode_decode/

1.amazonaws.com/product_id/container_group_id/myconnectorimage:ve
rsion_title-
latest%22&connectorVersion=%227.5.5%22&connectorClassName=%22virt
ualcomp.db.simpledb.driver%22&connectionAccessJdbcURLFormat=%22us
ername_password=jdbc:virtualcomp:simpleDB:user=$%7BUsername%7D;pa
ssword=$%7BPassword%7D%22&connectionAccessJdbcURLFormat=%22oauth=
jdbc:virtualcomp:simpleDB:OAuthSettingsLocation=$%7BOAuthSettings
Location%7D;InitiateOAuth=REFRESH;%22&connectionAccessJdbcURLPara
msDelimiter=%22%3B%22

Note

Only the values of the parameters are encoded. You should only encode the
values of the parameter (the value to the right of each assignment operator
(=)).

4. Now that you have the deployment URL, you can resume the product creation. In Step
2: Create your connector product in AWS Marketplace, you stopped at step 4.a.
to create a connector product. Now you continue that task, starting with step
4.b.

If you’re creating a new version for the first time, at step 4.c. you can choose
“Add new delivery option”. In the form prompts, you should see the following
fields:

• Container images: Paste in the ECR URL you obtained from the output
of the container-setup.sh script.

• Title of delivery option: Enter Activate in AWS Glue Studio.
• Description: Enter Import jars in AWS Glue jobs.
• Usage instructions: Paste in the sentence below with the deployment

URL you prepared inserted into the parentheses.

Please subscribe to the product from AWS Marketplace
and [Activate the Glue connector from AWS Glue
Studio](<paste your deployment URL here>)

5. When you are finished, you can submit the version and it will be created.

Step 5: Testing Marketplace connectors
Perform the integration tests to test a connector against most AWS Glue features
locally before releasing your connector to the AWS Glue ETL connector marketplace.

Refer to the Local Validation Tests Guide on GitHub, which shows you how to:

• Set up the tool
• Configure each test
• Run each test

You use the results of these tests to provide the validation information for your
connector.

Step 6: Validating Marketplace
connectors
You must validate your connector against AWS Glue supported features in the AWS
Glue job system before you publish it to AWS Marketplace.

Refer to the Job Validation Guide on GitHub.

1. Complete the steps in the previous section, Step 5: Testing Marketplace
connectors, to perform the validation tests.

2. After you finish the validation testing, complete the steps in the Reporting
section of the Job Validation Guide.

Step 7: Publish the product to the public
After completing all the previous steps, you can finally publish your product so that it
is visible to all AWS customers. Follow the instructions in Publishing container
products in the AWS Marketplace Seller Guide.

https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/localValidation/README.md
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/glueJobValidation/README.md
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/glueJobValidation/README.md
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#container-product-publishing
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#container-product-publishing

	Creating connectors for AWS Marketplace
	Overview of creating connectors for AWS Marketplace

	Step 1: Developing Marketplace connectors
	Step 2: Create your connector product in AWS Marketplace
	Creating a product in AWS Marketplace involves the following steps:
	1. Create the product ID.
	2. Create the pricing details.
	3. For paid products, integrate metering into your product.
	4. Add a new version of your product, including:
	a. Add repositories for your containers.
	b. Upload the final containers into the repositories.
	c. Create the first version of the product with your first container images.
	5. Update the product information.
	6. Publish the product for buyers.
	Detailed instructions for the above steps are available in Creating a container product in the AWS Marketplace Seller Guide. Follow the instructions up to step 4.a. By the end of step 4.a. you will get an Amazon Elastic Container Registry (ECR) URL si...
	Step 3: Packaging and uploading Marketplace connectors
	Step 4: Creating a deployment link for Marketplace connectors
	Step 5: Testing Marketplace connectors
	Step 6: Validating Marketplace connectors
	Step 7: Publish the product to the public

