import torch #model = torch.hub.load('pytorch/vision:v0.5.0', 'resnet18', pretrained=True) # or any of these variants # model = torch.hub.load('pytorch/vision:v0.5.0', 'resnet34', pretrained=True) model = torch.hub.load('pytorch/vision:v0.5.0', 'resnet50', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.5.0', 'resnet101', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.5.0', 'resnet152', pretrained=True) model.eval() # Download an example image from the pytorch website import urllib url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg", "dog.jpg") try: urllib.URLopener().retrieve(url, filename) except: urllib.request.urlretrieve(url, filename) # sample execution (requires torchvision) from PIL import Image from torchvision import transforms input_image = Image.open(filename) preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes print(output[0].sort()[1][-5:]) #print(torch.nn.functional.softmax(output[0].sort()[1][-5:])) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. #print(torch.nn.functional.softmax(output[0].sort()[1][-5:], dim=0))