import os import time import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing import image from tensorflow.keras.applications import resnet50 tf.keras.backend.set_image_data_format('channels_last') #Create input from image img_sgl = image.load_img('kitten_small.jpg', target_size=(224, 224)) img_arr = image.img_to_array(img_sgl) img_arr2 = np.expand_dims(img_arr, axis=0) img_arr3 = resnet50.preprocess_input(img_arr2) #Load model MODEL_DIR = './ws_resnet50/resnet50/' predictor_inferentia = tf.contrib.predictor.from_saved_model(MODEL_DIR) #Run Inference and Display results model_feed_dict={'input': img_arr3} infa_rslts = predictor_inferentia(model_feed_dict) print(resnet50.decode_predictions(infa_rslts["output"], top=5)[0])