
Workshop Steps

Prerequisites
• AWS	Account	
• Have	a	Default	VPC	configured	
• git	installed	on	your	development	machine	(for	cloning	the	workshop	repository)	
• Create	an	EC2	SSH	Keypair	
• Clone	workshop	repo	from	Github	

	 git clone https://github.com/aws-samples/aws-iot-device-defender-
workshop.git	

Create your Workshop Cloudformation Stack
We	will	create	an	online	development	environment	using	AWS	Cloud9.	This	environment	
will	let	us	simulate	an	IoT	thing,	and	a	malicious	process	running	on	that	thing.	Because	
Cloud9	automatically	sets	up	your	AWS	credentials,	it	will	let	us	quickly	test	out	different	
features	of	Device	Defender	and	run	our	simulated	attack.	

This	CloudFormation	Stack	will	create:	

• A	Cloud9	IDE	and	associated	EC2	instance	(this	will	stand	in	for	an	IoT	Thing)	
• An	EC2	instance	to	serve	as	a	target	for	our	simulated	attack	’		

	

Steps
1. From	the	AWS	Console,	navigate	to	CloudFormation	
2. Click	the	“Create	Stack”	button,	
3. Choose	“Upload	a	template	file”,	and	select	the	workshop.yaml	from	the	

cloudformation	directory	of	the	workshop	GitHub	repository	you	cloned	earlier	
4. Click	“Next”	
5. Give	your	stack	a	name:	“DeviceDefenderWorkshop”	
6. You	can	leave	the	AutoHibernateTimeout	and	InstanceType	fields	as	they	are	
7. In	SubnetIdentifier,	choose	the	subnet	you’d	like	to	use	

– if	you	are	unsure,	choose	the	first	one	in	the	list	
8. In	KeyName,	Select	the	key	pair	you’d	like	to	use	for	ssh	access	to	your	instances	
9. Click	“Next”	on	the	following	screen	
10. Check	the	“I	acknowledge	that	AWS	CloudFormation	might	create	IAM	resources.”	box	

to	continue	
11. Click	the	“Create	Stack”	button	at	the	bottom	of	the	screen	
12. Wait	for	stack	to	finish,	you	should	see	“CREATE	COMPLETE”	in	the	status	column	

after	a	few	minutes	

– Tip:	you	may	need	to	refresh	your	screen	to	see	the	updated	status	of	your	stack	

Login into your Cloud9 Environment
1. Go	to	the	Cloud9	Console	
2. Enter	the	environment	“DeviceDefenderWorkshop”,	by	clicking	the	“Open	IDE”	button	

Install prerequisites

In	this	step,	we	will	run	a	small	shell	script	that	will	setup	the	environment	so	we	can	
quickly	get	started	learning	about	Device	Defender	

• Download	Amazon	CA	certificates	
• Install	Boto3	python	library	for	AWS	
• Install	AWS	IoT	Device	SDK	python	package	
• Install	AWS	IoT	Device	Defender	Agent	SDK	Python	Package	

Steps

From	a	console	tab	towards	the	bottom	of	your	Cloud9	IDE,	run	“bootstrap.sh”	script	‘	

cd workshop/scripts

./bootstrap.sh		

Create your AWS IoT Thing

In	this	step,	we	will	run	a	Python	script	that	will	automate	creating	an	AWS	IoT	Thing,	this	
will	be	the	thing	that	we	simulate	in	our	Cloud9	instance:	-	An	IoT	Thing	Group	-	An	IoT	
Thing,	registered	in	IoT	Device	management,	placed	in	the	group	we	created	-	An	IoT	
Certificate,	attached	to	your	Thing	-	An	IoT	Policy	attached	to	the	Certificate	-	An	
agent_args.txt	file	to	make	running	the	Device	Defender	Agent	easier	

Running the Thing Provisioning script

While	in	the	scripts	directory,	run	the	following:	

 ./provision_thing.py	

Setup an SNS Topic for Device Defender Violation Notifications (SNS
Console)
Device	Defender	has	the	ability	to	send	notification	of	a	Behavior	Profile	violation	via	an	
SNS	Topic.	For	this	workshop,	we	will	configure	an	SNS	topic	and	enable	email	delivery	of	
the	notifications.	

Setting up the SNS Topic
1. Navigate	to	the	SNS	Console	
2. Click	“Create	Topic”	

3. For	Topic	Name:	“DeviceDefenderNotifications”	
4. For	Display	Name:	“DvcDefendr”	
5. In	the	Topic	Details	screen	for	your	newly	created	topic,	click	“Create	Subscription”	
6. For	Protocol,	select	“Email”	
7. For	Endpoint	enter	your	email	address	
8. Check	your	email,	after	a	few	moments,	you	should	receive	a	confirmation	email	
9. Click	“Confirm	Subscription”	link	in	the	email	
• Note:	the	sender	of	the	email	will	be	the	same	as	the	Display	Name	you	entered	for	the	

topic.	

Create a Target Role for Device Defender SNS Notifications

For	this	step,	we	will	re-use	a	policy	from	AWS	IoT	Rules	Engine,	as	it	has	the	proper	SNS	
policy	in	place.	

1. Navigate	to	the	IAM	Console	
2. Select	Roles	from	the	left	hand	menu	
3. Click	“Create	Role”	
4. In	the	Select	type	of	trusted	entity	section,	choose	“AWS	Service”	
5. Select	“IoT”	as	the	service	that	will	use	this	role	
6. When	you	select	“IoT”,	a	section	will	appear	entitled	“Select	your	use	case”	
7. Select	“IoT”	
8. Click	“Next:Permissions”	
9. Next	you	will	shown	a	summary	of	attached	policies,	you	don’t	need	to	do	anything	on	

this	screen	
10. Click	“Next:	Tags”	
11. Click	“Next:	Review”	
12. On	the	Create	Role	screen	enter	“DeviceDefenderWorkshopNotification”	for	the	Role	

Name	
13. Click	“Create	Role”	

Configure a behavior profile (IoT Device Defender Console)
Now	that	we	have	our	simulated	thing	created	and	we	have	a	development	environment,	
we	are	ready	to	configure	a	behavior	profile	in	device	defender	

1. Navigate	to	the	Security	Profiles	Section	of	the	Device	Defender	Console	AWS	IoT	->	
Defend	->	Detect	->	Security	Profiles	

2. Click	the	“Create”	button	
– Note:	If	you	have	no	Security	Profiles	in	your	account,	you	will	see	a	“Create	

your	first	security	profile”	button	instead	
3. Configure	parameters	
4. Name:	“NormalNetworkTraffic”	
5. Under	Behaviors:	

	Name:	“PacketsOut”		
Metric:	“Packets	Out”		
Operator:	“Less	Than”	
Value:	“10000”		
Duration:	“5	minutes”	

6. On	the	Alert	Targets	Page:	
SNS	Topic:	“DefenderWorkshopNotifications”	
	Role:	“DeviceDefenderWorkshopNotification”	

7. Click	Next	
8. Attach	profile	to	group	“DefenderWorkshopGroup”	
9. Click	Next	
10. Click	Save	

Start the Agent (Cloud9)
The	next	component	of	Device	Defender	we	are	going	to	look	at	is	the	Device	Agent.	The	
detect	function	of	DD,	can	utilize	both	cloud-side	metrics	and	device-side	metrics.	For	
device-side	metrics,	we	need	something	that	runs	on	the	device	and	collects	metrics	and	
sends	them	to	Device	Defender.	For	this	we	provide	reference	implementations	of	agents	
that	you	can	use	as	the	basis	for	your	own	device-defender	integration.	

The	reference	agent	we	will	be	using	today	is	the	Python	agent.	It’s	operation	is	fairly	
simple:	periodically	it	wakes	up,	takes	a	sample	of	some	basic	system	metrics,	compiles	
them	into	a	metrics	report	and	publishes	them	to	a	reserved	Device	Defender	MQTT	Topic.	
From	there,	all	processing	is	done	automatically	in	the	cloud	by	Device	Defender.	

Run	the	agent	from	a	console	tab:		

cd scripts

python
/usr/local/lib/python2.7/sitepackages/AWSIoTDeviceDefenderAgentSDK/agent.py
@agent_args.txt		

After	a	few	minutes,	you	should	see	a	message	similar	to	the	following:	

Received a new message: 	
{"thingName":"DefenderWorkshopThing","reportId":1542697506,"status":"ACCEPTED
","timestamp":1542697506269}	

This	is	an	MQTT	message	sent	from	Device	Defender	to	the	agent,	acknowledging	
acceptance	of	a	metrics	report.	

Start the attacker
1. Get	your	Target	server	URL	from	the	CloudFormation	outputs	from	the	stack	you	

created	earlier	

2. In	a	second	console	tab	(leave	the	agent	running),	run	“ab”	tool,	which	will	generate	
HTTP	traffic	from	your	“device”	to	the	target	server.		Note: the trailing space is
necessary here:	
 ab -n 20000 http://YOUR_TARGET_INSTANCE_URL/	

View Violations

AWS IoT Console
1. IoT	->	Defend	->	Detect	->	Violations	
2. View	the	“Now”	tab	to	see	current	state	
3. View	the	“History”	tab	to	see	how	the	device	has	changed	over	time	

Check violation email
You	should	see	an	email	from	SNS	indicating	the	violation	the	contents	will	look	something	
like	this:	

{"violationEventTime":1542682416515,"thingName":"DefenderWorkshopThing","beha
vior":{"criteria":{"value":{"count":100},"durationSeconds":300,"comparisonOpe
rator":"less-than"},"name":"PacketsOut","metric":"aws:all-packets-
out"},"violationEventType":"alarm-
cleared","metricValue":{"count":29},"violationId":"76ef8d1dc35ed4eb802ff44568
f91097","securityProfileName":"NormalHTTPTraffic"}	
	
--	
If you wish to stop receiving notifications from this topic, please click or
visit the link below to unsubscribe:	
https://sns.us-east-
1.amazonaws.com/unsubscribe.html?SubscriptionArn=arn:aws:sns:#########:Defend
erNotifications:######	
	
Please do not reply directly to this email. If you have any questions or
comments regarding this email, please contact us at
https://aws.amazon.com/support	

Confirm Violation has cleared
After	approximately	10	minutes	after	you	stop	running	AB,	your	device	should	no	longer	be	
in	violation.	Note	You	can	always	check	your	violations	history	tab	to	see	how	the	security	
posture	of	your	devices	changed	over	time.	

Cleanup
1. Delete	your	IoT	Resources	created	with	the	provision_thing	script	

	 cd scripts	
 ./provision_thing.py --cleanup	

2. Delete	your	CloudFormation	stack	
3. Delete	all	other	AWS	resources	associated	with	DefenderWorkshop	

– SNS	Topic	
– SNS	Subscription	
– IAM	Role	
– Device	Defender	Behavior	Profile	

Troubleshooting

Problem: Getting an error in botocore when trying to use the aws cli
ImportError: cannot import name AliasedEventEmitter	

Solution
sudo yum downgrade aws-cli.noarch python27-botocore	

Problem: Cannot access URL for my target server

Solution

Make	sure	you	append	a	trailing	slash	on	the	url:	http://my.ec2.ip.aeces/	

Extended Activities
If	you	have	finished	the	main	workshop	materials,	here	are	a	few	ideas	for	exploring	device	
defender	further.	

Automated Response to Violations

Using	SNS	to	Trigger	a	Lambda	Function	you	can:	

- Deactivate	a	devices’s	certificate	

- Apply	a	more	restrictive	policy	to	the	device’s	certificate	

- Move	the	device	to	a	special	“Quarantine”	thing	group	for	further	investigation	

Try creating new behavior profiles acting on different metrics, and the devise ways to trigger
violations.

Here	are	few	ideas	

- Bytes	In:	use	“curl”	or	“wget”	to	download	a	large	file	placed	on	the	target	instance		

- TCP	Connection	Count:	make	a	large	number	connection	to	the	target	instance	using	the	
“ab”	tool	

- Messages	Sent:	Send	a	large	number	of	MQTT	messages	to	a	topic	

