/* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "secrets.h" #include #include #include #include "WiFi.h" #include // Requires Adafruit Unified Sensor library and Adafruit BMP280 library #include "DHT12.h" #include #include "Adafruit_Sensor.h" #include #include "bmm150.h" #include "bmm150_defs.h" DHT12 dht12; BMM150 bmm = BMM150(); bmm150_mag_data value_offset; Adafruit_BMP280 bme; #define TFT_GREY 0x5AEB // New colour unsigned long startMillis; unsigned long currentMillis; // Publish messages every 10 seconds const unsigned long publish_interval = 10000; // The MQTT topics that this device should publish/subscribe #define AWS_IOT_PUBLISH_TOPIC "esp32/pub" #define AWS_IOT_SUBSCRIBE_TOPIC "esp32/sub" WiFiClientSecure net = WiFiClientSecure(); MQTTClient client = MQTTClient(256); void connectAWS() { WiFi.mode(WIFI_STA); WiFi.begin(WIFI_SSID, WIFI_PASSWORD); Serial.println("Connecting to Wi-Fi"); while (WiFi.status() != WL_CONNECTED){ delay(500); Serial.print("."); } // Configure WiFiClientSecure to use the AWS IoT device credentials net.setCACert(AWS_CERT_CA); net.setCertificate(AWS_CERT_CRT); net.setPrivateKey(AWS_CERT_PRIVATE); // Connect to the MQTT broker on the AWS endpoint we defined earlier client.begin(AWS_IOT_ENDPOINT, 8883, net); // Create a message handler client.onMessage(messageHandler); Serial.print("Connecting to AWS IOT"); while (!client.connect(THINGNAME)) { Serial.print("."); delay(100); } if(!client.connected()){ Serial.println("AWS IoT Timeout!"); return; } // Subscribe to a topic client.subscribe(AWS_IOT_SUBSCRIBE_TOPIC); Serial.println("AWS IoT Connected!"); M5.Lcd.println("AWS IoT Connected!"); } void publishMessage() { float tmp = dht12.readTemperature(); float hum = dht12.readHumidity(); bmm150_mag_data value; bmm.read_mag_data(); value.x = bmm.raw_mag_data.raw_datax - value_offset.x; value.y = bmm.raw_mag_data.raw_datay - value_offset.y; value.z = bmm.raw_mag_data.raw_dataz - value_offset.z; float xyHeading = atan2(value.x, value.y); float zxHeading = atan2(value.z, value.x); float heading = xyHeading; if(heading < 0) heading += 2*PI; if(heading > 2*PI) heading -= 2*PI; float headingDegrees = heading * 180/M_PI; float xyHeadingDegrees = xyHeading * 180 / M_PI; float zxHeadingDegrees = zxHeading * 180 / M_PI; float pressure = bme.readPressure(); StaticJsonDocument<200> doc; doc["pressure"] = pressure; doc["heading"] = heading; doc["heading_degrees"] = headingDegrees; doc["tmp"] = tmp; doc["hum"] = hum; char jsonBuffer[512]; serializeJson(doc, jsonBuffer); // print to client client.publish(AWS_IOT_PUBLISH_TOPIC, jsonBuffer); } void messageHandler(String &topic, String &payload) { Serial.println("incoming: " + topic + " - " + payload); StaticJsonDocument<200> doc; deserializeJson(doc, payload); const char* message = doc["message"]; M5.Lcd.fillScreen(TFT_GREY); M5.Lcd.setCursor(0, 0, 2); M5.Lcd.setTextColor(TFT_BLUE); M5.Lcd.setTextFont(2); M5.Lcd.println(payload); } void calibrate(uint32_t timeout) { int16_t value_x_min = 0; int16_t value_x_max = 0; int16_t value_y_min = 0; int16_t value_y_max = 0; int16_t value_z_min = 0; int16_t value_z_max = 0; uint32_t timeStart = 0; bmm.read_mag_data(); value_x_min = bmm.raw_mag_data.raw_datax; value_x_max = bmm.raw_mag_data.raw_datax; value_y_min = bmm.raw_mag_data.raw_datay; value_y_max = bmm.raw_mag_data.raw_datay; value_z_min = bmm.raw_mag_data.raw_dataz; value_z_max = bmm.raw_mag_data.raw_dataz; delay(100); timeStart = millis(); while((millis() - timeStart) < timeout) { bmm.read_mag_data(); /* Update x-Axis max/min value */ if(value_x_min > bmm.raw_mag_data.raw_datax) { value_x_min = bmm.raw_mag_data.raw_datax; } else if(value_x_max < bmm.raw_mag_data.raw_datax) { value_x_max = bmm.raw_mag_data.raw_datax; } /* Update y-Axis max/min value */ if(value_y_min > bmm.raw_mag_data.raw_datay) { value_y_min = bmm.raw_mag_data.raw_datay; } else if(value_y_max < bmm.raw_mag_data.raw_datay) { value_y_max = bmm.raw_mag_data.raw_datay; } /* Update z-Axis max/min value */ if(value_z_min > bmm.raw_mag_data.raw_dataz) { value_z_min = bmm.raw_mag_data.raw_dataz; } else if(value_z_max < bmm.raw_mag_data.raw_dataz) { value_z_max = bmm.raw_mag_data.raw_dataz; } Serial.print("."); delay(1); } value_offset.x = value_x_min + (value_x_max - value_x_min)/2; value_offset.y = value_y_min + (value_y_max - value_y_min)/2; value_offset.z = value_z_min + (value_z_max - value_z_min)/2; } void setup() { //initial start time startMillis = millis(); M5.begin(); Wire.begin(0,26); M5.Lcd.setRotation(3); M5.Lcd.fillScreen(TFT_GREY); M5.Lcd.setCursor(0, 0, 2); M5.Lcd.setTextColor(TFT_WHITE,TFT_BLACK); M5.Lcd.setTextSize(2); Serial.begin(9600); if(bmm.initialize() == BMM150_E_ID_NOT_CONFORM) { Serial.println("Chip ID can not read!"); while(1); } else { Serial.println("Initialize done!"); } if (!bme.begin(0x76)){ Serial.println("Could not find a valid BMP280 sensor, check wiring!"); while (1); } calibrate(10); Serial.print("\n\rCalibrate done.."); connectAWS(); } void loop() { currentMillis = millis(); if (currentMillis - startMillis >= publish_interval) { publishMessage(); startMillis = currentMillis; } client.loop(); }