import networkx as nx from nose.tools import * from networkx.algorithms.bipartite.cluster import cc_dot,cc_min,cc_max import networkx.algorithms.bipartite as bipartite def test_pairwise_bipartite_cc_functions(): # Test functions for different kinds of bipartite clustering coefficients # between pairs of nodes using 3 example graphs from figure 5 p. 40 # Latapy et al (2008) G1 = nx.Graph([(0,2),(0,3),(0,4),(0,5),(0,6),(1,5),(1,6),(1,7)]) G2 = nx.Graph([(0,2),(0,3),(0,4),(1,3),(1,4),(1,5)]) G3 = nx.Graph([(0,2),(0,3),(0,4),(0,5),(0,6),(1,5),(1,6),(1,7),(1,8),(1,9)]) result = {0:[1/3.0, 2/3.0, 2/5.0], 1:[1/2.0, 2/3.0, 2/3.0], 2:[2/8.0, 2/5.0, 2/5.0]} for i, G in enumerate([G1, G2, G3]): assert(bipartite.is_bipartite(G)) assert(cc_dot(set(G[0]), set(G[1])) == result[i][0]) assert(cc_min(set(G[0]), set(G[1])) == result[i][1]) assert(cc_max(set(G[0]), set(G[1])) == result[i][2]) def test_star_graph(): G=nx.star_graph(3) # all modes are the same answer={0:0,1:1,2:1,3:1} assert_equal(bipartite.clustering(G,mode='dot'),answer) assert_equal(bipartite.clustering(G,mode='min'),answer) assert_equal(bipartite.clustering(G,mode='max'),answer) @raises(nx.NetworkXError) def test_not_bipartite(): bipartite.clustering(nx.complete_graph(4)) @raises(nx.NetworkXError) def test_bad_mode(): bipartite.clustering(nx.path_graph(4),mode='foo') def test_path_graph(): G=nx.path_graph(4) answer={0:0.5,1:0.5,2:0.5,3:0.5} assert_equal(bipartite.clustering(G,mode='dot'),answer) assert_equal(bipartite.clustering(G,mode='max'),answer) answer={0:1,1:1,2:1,3:1} assert_equal(bipartite.clustering(G,mode='min'),answer) def test_average_path_graph(): G=nx.path_graph(4) assert_equal(bipartite.average_clustering(G,mode='dot'),0.5) assert_equal(bipartite.average_clustering(G,mode='max'),0.5) assert_equal(bipartite.average_clustering(G,mode='min'),1) def test_ra_clustering_davis(): G = nx.davis_southern_women_graph() cc4 = round(bipartite.robins_alexander_clustering(G), 3) assert_equal(cc4, 0.468) def test_ra_clustering_square(): G = nx.path_graph(4) G.add_edge(0, 3) assert_equal(bipartite.robins_alexander_clustering(G), 1.0) def test_ra_clustering_zero(): G = nx.Graph() assert_equal(bipartite.robins_alexander_clustering(G), 0) G.add_nodes_from(range(4)) assert_equal(bipartite.robins_alexander_clustering(G), 0) G.add_edges_from([(0,1),(2,3),(3,4)]) assert_equal(bipartite.robins_alexander_clustering(G), 0) G.add_edge(1,2) assert_equal(bipartite.robins_alexander_clustering(G), 0)