ó žĂŇYc@s[dZddlZdZdddgZddd„Zdd „Zdd „Zd „Z dS( s-Floyd-Warshall algorithm for shortest paths. i˙˙˙˙Ns%Aric Hagberg tfloyd_warshallt'floyd_warshall_predecessor_and_distancetfloyd_warshall_numpytweightc CsŮyddl}Wntk r/tdƒ‚nXtj|d|dtd|d|jƒ}|j\}}|j|ƒ}d||d kas(((R(s~/private/var/folders/w6/vb91730s7bb1k90y_rnhql1dhvdd44/T/pip-build-w4MwvS/networkx/networkx/algorithms/shortest_paths/dense.pyRasitdatagđ?(t collectionsRtdictt is_directedtedgestTruetgetR ( RRtdisttutpredt undirectedtvtdte_weighttw((Rs~/private/var/folders/w6/vb91730s7bb1k90y_rnhql1dhvdd44/T/pip-build-w4MwvS/networkx/networkx/algorithms/shortest_paths/dense.pyR?s(   "   ("%cCst|d|ƒdS(s?Find all-pairs shortest path lengths using Floyd's algorithm. Parameters ---------- G : NetworkX graph weight: string, optional (default= 'weight') Edge data key corresponding to the edge weight. Returns ------- distance : dict A dictionary, keyed by source and target, of shortest paths distances between nodes. Notes ------ Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. See Also -------- floyd_warshall_predecessor_and_distance floyd_warshall_numpy all_pairs_shortest_path all_pairs_shortest_path_length Ri(R(RR((s~/private/var/folders/w6/vb91730s7bb1k90y_rnhql1dhvdd44/T/pip-build-w4MwvS/networkx/networkx/algorithms/shortest_paths/dense.pyRxs cCs:ddlm}yddl}Wn|dƒ‚nXdS(Ni˙˙˙˙(tSkipTestsNumPy not available(tnoseR*R(tmoduleR*R((s~/private/var/folders/w6/vb91730s7bb1k90y_rnhql1dhvdd44/T/pip-build-w4MwvS/networkx/networkx/algorithms/shortest_paths/dense.pyt setup_modules ( t__doc__tnetworkxR t __author__t__all__tNoneRRRR-(((s~/private/var/folders/w6/vb91730s7bb1k90y_rnhql1dhvdd44/T/pip-build-w4MwvS/networkx/networkx/algorithms/shortest_paths/dense.pyts  . 9 %