import networkx as nx from networkx import tensor_product, cartesian_product, lexicographic_product, strong_product from nose.tools import assert_raises, assert_true, assert_equal, raises from networkx.testing import assert_edges_equal @raises(nx.NetworkXError) def test_tensor_product_raises(): P = tensor_product(nx.DiGraph(), nx.Graph()) def test_tensor_product_null(): null = nx.null_graph() empty10 = nx.empty_graph(10) K3 = nx.complete_graph(3) K10 = nx.complete_graph(10) P3 = nx.path_graph(3) P10 = nx.path_graph(10) # null graph G = tensor_product(null, null) assert_true(nx.is_isomorphic(G, null)) # null_graph X anything = null_graph and v.v. G = tensor_product(null, empty10) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(null, K3) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(null, K10) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(null, P3) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(null, P10) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(empty10, null) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(K3, null) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(K10, null) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(P3, null) assert_true(nx.is_isomorphic(G, null)) G = tensor_product(P10, null) assert_true(nx.is_isomorphic(G, null)) def test_tensor_product_size(): P5 = nx.path_graph(5) K3 = nx.complete_graph(3) K5 = nx.complete_graph(5) G = tensor_product(P5, K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = tensor_product(K3, K5) assert_equal(nx.number_of_nodes(G), 3 * 5) def test_tensor_product_combinations(): # basic smoke test, more realistic tests would be usefule P5 = nx.path_graph(5) K3 = nx.complete_graph(3) G = tensor_product(P5, K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = tensor_product(P5, nx.MultiGraph(K3)) assert_equal(nx.number_of_nodes(G), 5 * 3) G = tensor_product(nx.MultiGraph(P5), K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = tensor_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) assert_equal(nx.number_of_nodes(G), 5 * 3) G = tensor_product(nx.DiGraph(P5), nx.DiGraph(K3)) assert_equal(nx.number_of_nodes(G), 5 * 3) def test_tensor_product_classic_result(): K2 = nx.complete_graph(2) G = nx.petersen_graph() G = tensor_product(G, K2) assert_true(nx.is_isomorphic(G, nx.desargues_graph())) G = nx.cycle_graph(5) G = tensor_product(G, K2) assert_true(nx.is_isomorphic(G, nx.cycle_graph(10))) G = nx.tetrahedral_graph() G = tensor_product(G, K2) assert_true(nx.is_isomorphic(G, nx.cubical_graph())) def test_tensor_product_random(): G = nx.erdos_renyi_graph(10, 2 / 10.) H = nx.erdos_renyi_graph(10, 2 / 10.) GH = tensor_product(G, H) for (u_G, u_H) in GH.nodes(): for (v_G, v_H) in GH.nodes(): if H.has_edge(u_H, v_H) and G.has_edge(u_G, v_G): assert_true(GH.has_edge((u_G, u_H), (v_G, v_H))) else: assert_true(not GH.has_edge((u_G, u_H), (v_G, v_H))) def test_cartesian_product_multigraph(): G = nx.MultiGraph() G.add_edge(1, 2, key=0) G.add_edge(1, 2, key=1) H = nx.MultiGraph() H.add_edge(3, 4, key=0) H.add_edge(3, 4, key=1) GH = cartesian_product(G, H) assert_equal(set(GH), {(1, 3), (2, 3), (2, 4), (1, 4)}) assert_equal({(frozenset([u, v]), k) for u, v, k in GH.edges(keys=True)}, {(frozenset([u, v]), k) for u, v, k in [((1, 3), (2, 3), 0), ((1, 3), (2, 3), 1), ((1, 3), (1, 4), 0), ((1, 3), (1, 4), 1), ((2, 3), (2, 4), 0), ((2, 3), (2, 4), 1), ((2, 4), (1, 4), 0), ((2, 4), (1, 4), 1)]}) @raises(nx.NetworkXError) def test_cartesian_product_raises(): P = cartesian_product(nx.DiGraph(), nx.Graph()) def test_cartesian_product_null(): null = nx.null_graph() empty10 = nx.empty_graph(10) K3 = nx.complete_graph(3) K10 = nx.complete_graph(10) P3 = nx.path_graph(3) P10 = nx.path_graph(10) # null graph G = cartesian_product(null, null) assert_true(nx.is_isomorphic(G, null)) # null_graph X anything = null_graph and v.v. G = cartesian_product(null, empty10) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(null, K3) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(null, K10) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(null, P3) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(null, P10) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(empty10, null) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(K3, null) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(K10, null) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(P3, null) assert_true(nx.is_isomorphic(G, null)) G = cartesian_product(P10, null) assert_true(nx.is_isomorphic(G, null)) def test_cartesian_product_size(): # order(GXH)=order(G)*order(H) K5 = nx.complete_graph(5) P5 = nx.path_graph(5) K3 = nx.complete_graph(3) G = cartesian_product(P5, K3) assert_equal(nx.number_of_nodes(G), 5 * 3) assert_equal(nx.number_of_edges(G), nx.number_of_edges(P5) * nx.number_of_nodes(K3) + nx.number_of_edges(K3) * nx.number_of_nodes(P5)) G = cartesian_product(K3, K5) assert_equal(nx.number_of_nodes(G), 3 * 5) assert_equal(nx.number_of_edges(G), nx.number_of_edges(K5) * nx.number_of_nodes(K3) + nx.number_of_edges(K3) * nx.number_of_nodes(K5)) def test_cartesian_product_classic(): # test some classic product graphs P2 = nx.path_graph(2) P3 = nx.path_graph(3) # cube = 2-path X 2-path G = cartesian_product(P2, P2) G = cartesian_product(P2, G) assert_true(nx.is_isomorphic(G, nx.cubical_graph())) # 3x3 grid G = cartesian_product(P3, P3) assert_true(nx.is_isomorphic(G, nx.grid_2d_graph(3, 3))) def test_cartesian_product_random(): G = nx.erdos_renyi_graph(10, 2 / 10.) H = nx.erdos_renyi_graph(10, 2 / 10.) GH = cartesian_product(G, H) for (u_G, u_H) in GH.nodes(): for (v_G, v_H) in GH.nodes(): if (u_G == v_G and H.has_edge(u_H, v_H)) or \ (u_H == v_H and G.has_edge(u_G, v_G)): assert_true(GH.has_edge((u_G, u_H), (v_G, v_H))) else: assert_true(not GH.has_edge((u_G, u_H), (v_G, v_H))) @raises(nx.NetworkXError) def test_lexicographic_product_raises(): P = lexicographic_product(nx.DiGraph(), nx.Graph()) def test_lexicographic_product_null(): null = nx.null_graph() empty10 = nx.empty_graph(10) K3 = nx.complete_graph(3) K10 = nx.complete_graph(10) P3 = nx.path_graph(3) P10 = nx.path_graph(10) # null graph G = lexicographic_product(null, null) assert_true(nx.is_isomorphic(G, null)) # null_graph X anything = null_graph and v.v. G = lexicographic_product(null, empty10) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(null, K3) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(null, K10) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(null, P3) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(null, P10) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(empty10, null) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(K3, null) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(K10, null) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(P3, null) assert_true(nx.is_isomorphic(G, null)) G = lexicographic_product(P10, null) assert_true(nx.is_isomorphic(G, null)) def test_lexicographic_product_size(): K5 = nx.complete_graph(5) P5 = nx.path_graph(5) K3 = nx.complete_graph(3) G = lexicographic_product(P5, K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = lexicographic_product(K3, K5) assert_equal(nx.number_of_nodes(G), 3 * 5) def test_lexicographic_product_combinations(): P5 = nx.path_graph(5) K3 = nx.complete_graph(3) G = lexicographic_product(P5, K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = lexicographic_product(nx.MultiGraph(P5), K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = lexicographic_product(P5, nx.MultiGraph(K3)) assert_equal(nx.number_of_nodes(G), 5 * 3) G = lexicographic_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) assert_equal(nx.number_of_nodes(G), 5 * 3) # No classic easily found classic results for lexicographic product def test_lexicographic_product_random(): G = nx.erdos_renyi_graph(10, 2 / 10.) H = nx.erdos_renyi_graph(10, 2 / 10.) GH = lexicographic_product(G, H) for (u_G, u_H) in GH.nodes(): for (v_G, v_H) in GH.nodes(): if G.has_edge(u_G, v_G) or (u_G == v_G and H.has_edge(u_H, v_H)): assert_true(GH.has_edge((u_G, u_H), (v_G, v_H))) else: assert_true(not GH.has_edge((u_G, u_H), (v_G, v_H))) @raises(nx.NetworkXError) def test_strong_product_raises(): P = strong_product(nx.DiGraph(), nx.Graph()) def test_strong_product_null(): null = nx.null_graph() empty10 = nx.empty_graph(10) K3 = nx.complete_graph(3) K10 = nx.complete_graph(10) P3 = nx.path_graph(3) P10 = nx.path_graph(10) # null graph G = strong_product(null, null) assert_true(nx.is_isomorphic(G, null)) # null_graph X anything = null_graph and v.v. G = strong_product(null, empty10) assert_true(nx.is_isomorphic(G, null)) G = strong_product(null, K3) assert_true(nx.is_isomorphic(G, null)) G = strong_product(null, K10) assert_true(nx.is_isomorphic(G, null)) G = strong_product(null, P3) assert_true(nx.is_isomorphic(G, null)) G = strong_product(null, P10) assert_true(nx.is_isomorphic(G, null)) G = strong_product(empty10, null) assert_true(nx.is_isomorphic(G, null)) G = strong_product(K3, null) assert_true(nx.is_isomorphic(G, null)) G = strong_product(K10, null) assert_true(nx.is_isomorphic(G, null)) G = strong_product(P3, null) assert_true(nx.is_isomorphic(G, null)) G = strong_product(P10, null) assert_true(nx.is_isomorphic(G, null)) def test_strong_product_size(): K5 = nx.complete_graph(5) P5 = nx.path_graph(5) K3 = nx.complete_graph(3) G = strong_product(P5, K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = strong_product(K3, K5) assert_equal(nx.number_of_nodes(G), 3 * 5) def test_strong_product_combinations(): P5 = nx.path_graph(5) K3 = nx.complete_graph(3) G = strong_product(P5, K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = strong_product(nx.MultiGraph(P5), K3) assert_equal(nx.number_of_nodes(G), 5 * 3) G = strong_product(P5, nx.MultiGraph(K3)) assert_equal(nx.number_of_nodes(G), 5 * 3) G = strong_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) assert_equal(nx.number_of_nodes(G), 5 * 3) # No classic easily found classic results for strong product def test_strong_product_random(): G = nx.erdos_renyi_graph(10, 2 / 10.) H = nx.erdos_renyi_graph(10, 2 / 10.) GH = strong_product(G, H) for (u_G, u_H) in GH.nodes(): for (v_G, v_H) in GH.nodes(): if (u_G == v_G and H.has_edge(u_H, v_H)) or \ (u_H == v_H and G.has_edge(u_G, v_G)) or \ (G.has_edge(u_G, v_G) and H.has_edge(u_H, v_H)): assert_true(GH.has_edge((u_G, u_H), (v_G, v_H))) else: assert_true(not GH.has_edge((u_G, u_H), (v_G, v_H))) @raises(nx.NetworkXNotImplemented) def test_graph_power_raises(): nx.power(nx.MultiDiGraph(), 2) def test_graph_power(): # wikipedia example for graph power G = nx.cycle_graph(7) G.add_edge(6, 7) G.add_edge(7, 8) G.add_edge(8, 9) G.add_edge(9, 2) H = nx.power(G, 2) assert_edges_equal(list(H.edges()), [(0, 1), (0, 2), (0, 5), (0, 6), (0, 7), (1, 9), (1, 2), (1, 3), (1, 6), (2, 3), (2, 4), (2, 8), (2, 9), (3, 4), (3, 5), (3, 9), (4, 5), (4, 6), (5, 6), (5, 7), (6, 7), (6, 8), (7, 8), (7, 9), (8, 9)]) @raises(ValueError) def test_graph_power_negative(): nx.power(nx.Graph(),-1)