{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.0" }, "orig_nbformat": 4, "kernelspec": { "name": "python3", "display_name": "Python 3.9.0 64-bit ('.venv')" }, "interpreter": { "hash": "d78da394afdad4210aa22efe35c08b5867548b059557eec2b19bd77cf05351f8" } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "source": [ "# 0 - Intro\n", "This is a notebook sample to download dataset, arrange folders, train a simple model and export it to model's folder" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "## Caltech-256 dataset \n", "\n", "Could be downloaded from [oficial website](http://www.vision.caltech.edu/Image_Datasets/Caltech256/)\n", "\n", "or\n", "\n", "It can be downloaded from a public S3 from AWS with some dataset [samples](https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-transfer-learning-highlevel.html)" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "## 1 - Download and arrange Data" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [], "source": [ "import boto3\n", "import tarfile\n", "import os\n", "import shutil\n", "\n", "import numpy as np\n", "\n", "session = boto3.Session(profile_name='test')\n", "s3 = session.client('s3')\n", "\n", "data_bucket = \"sagemaker-sample-files\"\n", "data_prefix = \"datasets/image/caltech-256/256_ObjectCategories.tar\"\n", "root = \"./dataset/\"\n", "local_prefix = \"256_ObjectCategories.tar\"" ] }, { "cell_type": "code", "execution_count": 117, "metadata": {}, "outputs": [], "source": [ "# download\n", "s3.download_file(\n", " data_bucket, data_prefix , root + local_prefix\n", ")" ] }, { "cell_type": "code", "execution_count": 118, "metadata": {}, "outputs": [], "source": [ "# extract file\n", "cwd = os.getcwd()\n", "tar = tarfile.open(os.path.join(root, local_prefix), \"r\")\n", "os.chdir(root)\n", "tar.extractall()\n", "tar.close()\n", "os.remove(local_prefix)\n", "os.chdir(cwd)" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [], "source": [ "# clean objects that was not on list\n", "classes = ['010.beer-mug','041.coffee-mug','212.teapot','246.wine-bottle']\n", "new_dir = root + \"256_ObjectCategories\"\n", "for i in os.listdir(new_dir):\n", " if not i in classes:\n", " shutil.rmtree(os.path.join(new_dir, i))" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [], "source": [ "# create destination folders\n", "new_destination = root + \"Caltech-256\" \n", "if not os.path.isdir(new_destination): os.mkdir(new_destination)\n", "if not os.path.isdir(new_destination + \"/train\"): os.mkdir(new_destination + \"/train\")\n", "if not os.path.isdir(new_destination + \"/test\"): os.mkdir(new_destination + \"/test\")\n", "for i in classes:\n", " if not os.path.isdir(new_destination + \"/train/\" + i): os.mkdir(new_destination + \"/train/\" + i)\n", " if not os.path.isdir(new_destination + \"/test/\" + i): os.mkdir(new_destination + \"/test/\" + i)" ] }, { "cell_type": "code", "execution_count": 123, "metadata": { "tags": [] }, "outputs": [], "source": [ "# arrange into new folder structure\n", "for i in os.listdir(new_dir):\n", " for j in os.listdir(os.path.join(new_dir, i)):\n", " #print(os.path.join(new_dir, i, j))\n", " if np.random.rand(1) < 0.2:\n", " os.rename(os.path.join(new_dir, i, j),\n", " os.path.join(new_destination,'test',i,j))\n", " #print(\"test\",os.path.join(new_dir,'test',i,j))\n", " else:\n", " os.rename(os.path.join(new_dir, i, j),\n", " os.path.join(new_destination,'train',i,j))\n", " #print(\"train\",os.path.join(new_dir,'train',i,j))" ] }, { "cell_type": "code", "execution_count": 126, "metadata": {}, "outputs": [], "source": [ "# Delete Old folder\n", "if os.path.isdir(new_dir): shutil.rmtree(new_dir)" ] }, { "cell_type": "code", "execution_count": 141, "metadata": {}, "outputs": [], "source": [ "# Rename dirs (one time only)\n", "os.rename(os.path.join(new_destination,'train','010.beer-mug'),\n", " os.path.join(new_destination,'train','01.beer-mug'))\n", "os.rename(os.path.join(new_destination,'test','010.beer-mug'),\n", " os.path.join(new_destination,'test','01.beer-mug'))\n", "os.rename(os.path.join(new_destination,'train','041.coffee-mug'),\n", " os.path.join(new_destination,'train','02.coffee-mug'))\n", "os.rename(os.path.join(new_destination,'test','041.coffee-mug'),\n", " os.path.join(new_destination,'test','02.coffee-mug'))\n", "os.rename(os.path.join(new_destination,'train','212.teapot'),\n", " os.path.join(new_destination,'train','03.teapot'))\n", "os.rename(os.path.join(new_destination,'test','212.teapot'),\n", " os.path.join(new_destination,'test','03.teapot'))\n", "os.rename(os.path.join(new_destination,'train','246.wine-bottle'),\n", " os.path.join(new_destination,'train','04.wine-bottle'))\n", "os.rename(os.path.join(new_destination,'test','246.wine-bottle'),\n", " os.path.join(new_destination,'test','04.wine-bottle'))" ] }, { "source": [ "## 2 - Training" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 158, "metadata": {}, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "import torch.optim as optim\n", "from torch.optim import lr_scheduler\n", "from torchvision import datasets, models, transforms\n", "import matplotlib.pyplot as plt\n", "import time\n", "import copy" ] }, { "cell_type": "code", "execution_count": 143, "metadata": {}, "outputs": [], "source": [ "# load images into tensors\n", "data_transforms = {\n", " 'train': transforms.Compose([\n", " transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),\n", " transforms.RandomRotation(degrees=15),\n", " transforms.RandomHorizontalFlip(),\n", " transforms.CenterCrop(size=224),\n", " transforms.ToTensor(),\n", " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n", " ]),\n", " 'test': transforms.Compose([\n", " transforms.Resize(256),\n", " transforms.CenterCrop(224),\n", " transforms.ToTensor(),\n", " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n", " ]),\n", "}\n", "\n", "data_dir = 'dataset/Caltech-256'\n", "image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),\n", " data_transforms[x])\n", " for x in ['train', 'test']}\n", "dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,\n", " shuffle=True, num_workers=4)\n", " for x in ['train', 'test']}\n", "dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}\n", "class_names = image_datasets['train'].classes\n", "\n", "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")" ] }, { "cell_type": "code", "execution_count": 147, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-22T12:32:21.630535\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAACDCAYAAACjik1NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADwPUlEQVR4nOz9ebxuV3rXB36ftdbe+x3OfGfdK+lKJalKVTblqWywIS5jsA2GQNIQpoSYhCYNnwykO2kcGhLaIQnQTT6QT2hmxwzdOA5gg4kxjofyXC6Xa5aqSsOVrnSnM5/zjntYaz39x1rve869GqusKgm4jz5H9x32u4c1PdPv+S1RVe7Lfbkv9+W+3JcvVMzbfQP35b7cl/tyX/7llPsK5L7cl/tyX+7LFyX3Fch9uS/35b7cly9K7iuQ+3Jf7st9uS9flNxXIPflvtyX+3Jfvii5r0Duy325L/flvnxR8qYUiIioiExF5L/7Ut/QFysi8kdFZFtEJiJyRkS+SUSeze9/59t9f/86iIg8JSIf/BKc92oeg+6tPvepa3xIRP7wl+r8b7Xk9njs7b6Pfx3kX8e2FpHvE5G5iNx4veO+EA/k/ar6/8gnvyoiL5662JaI/GBWMtdF5Pef+u47ReTnRORIRO6IyN8SkdUv9IFeT0SkAP5H4NtUdUVV94HvAf7n/P6H3srrfTkld+R3vcljP3R6AReR/zy3+UhEvldEqlf5zTfnCfJnf7X3qqrvU9UP/WrP81aKiHzw3kkgIn9GRP7+r+Kcb6p46gucJ5dE5J+KyK3cH1e/2Pv7V0nut/WXT063tap+F/Bb3ug3b1UI668ALXAB+APAXxWR9+Xv1oE/CzwAPAlcBv5fb9F1F3IB6AFPnfrs4Xve/2slIvLtwHcD30pqi0eB/+c9xxTAXwZ+6ct+g/96yuvNkwj8KPB/epvu7VVFROzbfQ9fpNxv6y+HqOob/gEKPHbq/VXgxfx6SOqoJ059//eAP/ca5/q3gU+/zrXeB/wfwAGwDfzJ/HkF/CXgVv77S/mzJ4BpvscJ8JPA86RBMs+fVSRF9reB28BNklKzp677HwCfBQ6BfwE8/Dr3+H3A/wf45/n8Pw9czPd0CHwO+OrXab/vA/7sqff/93xft4A/fPr4fOx3vcl++hDwwfz6/wf896e++1bgzj3HfzfwF+69n3uO+ZbT/ZX75pdPvf9Z4Hfm1y8Cvym//jPADwB/FxiTlPnXnfrdA8A/AnaBF4D/9HWe62pukz+S2+g28F+c+v61xsYwj4GY+2kC/H7SeO3y+0+ears//GbGA6Bvsj+u8gXOE8DlZ736JubkfwpcA/ZIRpl5k/f/Hk7m2OeBf+eesflXgR8hzavf9BrX/mPAs7lv/1vgXcAvAKPc72U+9ruAn3ut9QQ4A/xw/t0vk+blz50+9n5bvz1tDXwQuPG6bfMmO+euBfCe774amN3z2X8B/PBrHP+XgO9/je9WSYvD/43kUawC35C/+x7gw8B54FxuwP/21OBRwJ0614unOwT4QeCv58F1HvgI8B/l734H8BzJQ3LAnwJ+4XXa4/vyQPrafJ8/SVoE/yBgc8f81Gu1H6cWbOA7gDskxTkA/v7rtfeb/QM+CfyeU+/P5vOeye8fBp4BVnh9BdIH6vz7gqTUb+a+6ZMW6MU5l21OUiA18Ftzm/wPwIfzdwb4FeC/BkqSd3QN+PbXWRwU+Ae5/76SpHgW13q9sfFB7pkE+d7+/j2ffYisQL7Q8fAm++NNzRO+sEXtp4At4KHcl294/7n9Xgb+UP7uq0lj+b2nxuYx8E25n3qvce1/AqzlcdsAP5H7cR14Gvj387Hfxesvat+f/wbAe/O9/dzrPfv9tv7ytDVfJgXyG3ilZft/Bj70Ksf+ZpKWfuI1zvX7gI+/xnfPA7/11Ptv58TiuMrrKBCSG9sA/Xuu9VP59T8H/sNT3xlgxmt4Ibnj/+ap9/8J8NlT778SOHqt9uNuBfK9wP9w6rvHXq+9v4BJ9DzwHafeF5yaLHlQ/p577+c1zvWzJM/x1wI/RrJ6voPknXzqNdr8zwA/fuq79wLz/PobgJfuucZ/Bfwvr3H9Rf++59RnfwH4229ibLxiEvDGCuQLGg9vsj/e1DzhC1vUTvfvHwN+4o3uH/g9wM/ec66/Dvw3p8bC330T1/6mU+9/BfgTp97/ReAv5dffxWssaiTDogPefeq7P3vv8ffb+u1p61ebO/f+vRU5kAlJO56WNZK7tRQR+bWksMrvUtVnXuNcD5IWg1eTB4Drp95fz5+9GXmYtIDezsn8I1JHnj/1/V8+9d0BIMBlEfmTGck1EZG/duqc26dez1/l/cqbvLcHSJbAQl5+rQO/QLm3XxavxyLy24FVVf1f3+S5fpo0mP6N/PpDwDfnv59+nd/dOfV6BvQykuph4IFFe+c2/5MkRc+p9p6IyEOnznG6bU73/69mbLyavOZ4+FWc803Nky9QXqs9Xu/+Hwa+4Z62/wOkEOwrzpuRdYu++A2njnkrxv850iL+Vo//+239SvmStPVbAYt8BnAi8riqPps/ez+nEtgi8tXAPwX+A1X9idc518vA732N725xd2L8ofzZm5GXSR7IWVX1r/H9f6eq/99X+e4XgP/+TV7ntWRGchsXchFYIINuA1dOfffgr/JaC3mK1A8/kN+/H9hW1X0R+Vbg60RkscCvA0FEvlJVf8ernOunSZbOS8CfI3mRf5PUpn/li7i3l4EXVPXxV/tSVe+aEKdQMg+S8ktwd/+/3tjQV7vEm7i/1xoPX6y84Tz5IuRBXv2ZX/P+ReRh4KdV9Te/znmX7aOq73ud496MTDk19kXk9OK5C3jS+F8YlW/F+L/f1nx52vpX7YGo6hT4x8D3iMhQRL6JFBf8ewAi8hUkxMN/oqo//Aan+2fAJRH54yJSiciqiHxD/u4fAH9KRM6JyFlS/PxNQTFV9TYp9PIXRWRNRIyIvEtEvjkf8teA/2qB0hCRdRH53W+2Dd6EfAL4/SJiReQ7SJb7Qn4A+EMi8qSIDIA//VonkZN6iKtv4pp/F/gPReS9IrJBis1+X/7uT5PAB1+V//4pSSH8odc41y8A7wa+HviIqj5Ftq6An3kT93KvfITkCf0JEenndvkKEfnAG/zuT4vIIPfTHwIWHtTrjY1t4IyIrJ86zzZwVURea/y/6fEgCRL8oTe47zecJ/lcPVLyH6DK719P/ksR2RSRB4H/jJP2eL37/2fAEyLy74lIkf8+ICJPvtEzfJHySeB9IvJV+Xn+zOILVQ2kNvkzuV/fQ8ojvqrcb+s3lLesrd+svFUw3j9GSqjukCbzH82LDKSE+Dngb59yz057J39NcmhIVcekPMlvJ4U/niXF2SHF6z4KfAr4NPCx/NmblT9IStg+TbKg/yFwKV/3B4E/D3y/iIyAz/AmMNBfgPxnpGc6IrmwP7T4QlX/OfA/kZJ0z5GSwZCs+3vlQZL7fPONLqiqP0rKE/wUyXO4Dvw3+buxqt5Z/JHc4KmqHgCIyB843Ud5Qn4MeEpV2/zxLwLXVXXnTTz/vfcWgN9GUl4vkBKLf4vkCb2e/DSpjX4C+H+r6o/lz19zbKjq50hj8loOIzwA/G/5d/si8rFXub8vZDw8SELhvRl5vXkCJ6hBSJ7WfPHF6XlySv4JKSb+CeB/J6EMX/f+8xz7NpKnf4s0z/48J4vpWyo5XP09wI+T5vPP3XPIf0zq9zukBf4f8OpjH+639evKW9zWb0okJ0te/yCROl/of1LV17SQ78uvXrJ18hmgujfcJiJ/CthV1b/+ttzcfXmFiMgngG/VVLx6X36VIiJ/Hrioqv/+q3z3Ce639Vsmb9DWfxv43cCOqr5mFf6bUiD35UsrIvJvkbDgA+DvAFFVf+fbelP35b58GSSHUkqS5/gB0jz4w/ovMXvEO1W+FG39JSFTFJHvEJHPi8hzIvLdX4pr/Csm/xHJ1X4eCMAffXtv577cly+brJJi81NSXuEvksJF9+Wtl7e8rd9yD0RSOf4zpFzGDVLF4+9T1aff0gvdl/tyX+7LfXlb5UvhgXw98JyqXssJ1+8nISDuy325L/flvvwrJF8KBXKZuwtUbvCrK8C6L/flvtyX+/IOlC/Z/gpvJCLyR0jkeJRl+bWPPfZm6fZfI+Smmr7TiEZFVNF8rCD5EEVjSJ9Yh1gLYkBAo77i3Kogkk/9mtc9+U7zj+Teo1VPvT/17TJ8qPdcQ/K54t0X0rvenfo9mXpA6UJgZ++ApmnZ2lqncA5dtoCky5+8AxFE5OTEsjiWez6Tez46/ZuTM54+qu06ptNpujcDhSvofAtR07FGMLkUoyxLqqrirtIMBeVUeyogunzsk75Jx716F5206eI3cfGbGIkx0nUd3nvatsV7Twhh+evN9TUOj0d3nbEoCsqyZGVlhbIsGAwGlEWZ2uRU+77TZNHfbxi2lnt7krt+c1ffv8r3i2MWn+3s7HDnzh2qquTK1gP0TD915Ruc49Vv89V+ee/3r/ddXgtOjYsvpsv0ruvcO+NledQr5RWrw113d++tnP7srisoTHTMjTu391T13Ju977davhQK5CZ3Vzhe4VXqFlT1bwB/A+ChBy/rD/zA95/6cvm/e3+DaERQoiQlEaNAM2N+7Vl0PKVwBb3egKIoMf0CZypUO0IzwU9bQt0y2d4m9ErEOVgfYi9cxGxsglgEh6ghSEBPLeAL7pfF5FHVtBLFCApRIyoRomIiRJQY8+81EmNAxRIhnTcqhJiUhAZC6LLyMUTjiFGJoSWVTGSFmJWixvyXFaJqWghjjOwe7vOX/tbf5+DwmN/7u7+TqixBDUVREFUQa1ERjHUYMThnEWMRY7DWYow5uW8DRizGOFSToilsiVhBJLeHASsGaxITtVGwxtC1LR//9Kd45rlnsaXjzLkzBCL7B7s08wbfRQrrKEtL6RzOGL7qq7+Wyw9cwYhFxBL9yXMZYzBG8MET8/OqpjYWB5EAUdCQjIEYI9ZaRATv/cmiJ5L6ShcLoeQ2Toqka1t2dnY5Pjrixo0bvO/xq/zUz/8KX/+BD/A1X/M1PPHE4zzyyKNsbm5QFAXGmFddUE+WgddbTO75xV2nSfeGSlotTs+DV73eqV+e2CV3n1skv1CiLoyrCIS7FyexCKk/X11xvPYiePrYxZz51Kc+xXd+53fy0JVL/Lnf/1/znuGvueu4xXhTVXzwyXAIkv7Nc25x3Mn7e1SJnOL1EwVNz2glGyD5eJVT182vrYIx5q7nFXNPcEZjeiYh3Ud+rdnKjBpTj0ky/vTVDMlTbbiYyyfGZFJK2bRCxCzPs7BkT/9WovKR+Yf4z//891znbZQvhQL5ZeBxEXmEpDh+L4lC+3XlroU5fbB8bfLrNBCSTRoVwvSIyYvP0b28z5nVc2xevEz/zBrWWIzpoStriHN0RwcYnTK7/jLdtGXtwUfRjT71wTHj3QPGL3wMXxqGVx/CPXiFWA4xObqnp+z3V9704n/5GJU0CAwQT00iMWAsQmI0iwtFYPLAU9Lip4ARMDYNWAxKPJn8qulYiekPwBjQ1EaILAd+VZUUZZEUhgoxD0oRA0YQo9jCINYgpHMsLO+kGCQtjhhUlaIoc38IBoOgGCtARIzBGIPGeDJ5RFhbHYIGuqZjOhkRUbzvUEkeYKeBwlr6KyVd3fDZz32Gs2fP0usP07OadK3FwhBj+ky93mXhBo2nvM00+QUIhETknrsvPZciaF6sTzw/EcE5h3OOBx96kMtXHuArv/J9DEvDH/8v/xSbm5tLZfFKhfHFWsSvIYvVEU76eXE2WSxLr33NpHP05LklGTQiglFBNFLkBU9ROpPbThZ+pHJacbzyaiffv7ry5MQIAa5cucJDDz0EJEWeRs2J10xelBcLZQgeIy6/z3NFIRIxVpLBtFhUOTVHJRlyC8Wjmhb6u+ZvjgYs+nGhAJbt/lpiZLnc63Kuyam2kHuU8HLQ3RvXyM904sWcjOWFSy13RQJecd7lPb/9nu5brkBU1YvIf0zixbfA995TAfrGcspKWL5XUAxRPTrZZ/zCNbrbdxjOLRevPMCZKxdQ5zDtnDBtmHcwP/o80bf0hwMGgwrpDOUDlwiTY3Rnxtr6JuuXL+MLy2jngOMbL6OjY3RrE9k8Q1xdTwNQT+7ntBdy7z0LpzpVTuy0k9ABLEJcC0swmUSaLA5RohjE5METwejCosntK6A2hd2SB3PqFuSkzR6+eoUuRsSCsSaPS8GIy/dkEXF4HzCSwkuQlIi1Fmfd8gHEGEIIyTKySbGoBkIIuMIsFbwCYgQfFaywNhiw4ixNjMjCw+oC6pPnKEYJ0WOKiFOLjx0hBoxJyljEECUuva80vyLOueV9AmhQrHXJs5PkAUULPkR8CIgxKIq1JnmDGpbz1PuQPBy525MQEUKMWFuwtrp6lwf6RkGUu+UVNuipa7z2d6d/q3LvZ69+3OnTRCEZH2nWYFUxUZCYFqcoloCQVG+Xunr5fEqMASNCwBCMpUcDFK+pDl8rLKaqrK+vs7GxwehoD+dcNgICUZMit7IwYCLEmMe8X0yN/ISL/1Jfkg2AuGCFPeUJ3u0pvboKTwouzTXk1OKfnz9Pl1eGlUQwktrNGEFJ4+TVeuIu5bT4bLmYcM/clWR0Li6c14ZkQAlmqSqzEaXyTtAfX5ociKr+CKlI5QuW066vyELDJ+tD2ynTF6+x/4lPoDf32bB9eoM1qvMeP5rj1gc4hPnxGCsOf3RAGQ3NZI65cIbB+S0ms2PqeYMJMBvfxO3tsfnuRzn3/sfYfOwKu595mukLNzh+6nNU7/8q3MVLgF26yPn50r+wjDKQLbvTlvHCwlARYrYcNOqJFYEgYkENQkQkKZJ0zmSpiBgW+Z3F0pGumywoMYYY9WSwClhrOHd2CytCzJMrRjCiRBaLp6XrAsYaUhgnHWetxVqXNZUsw1pJAaaQlzHJl4r5WdLkNSd9ZpXYeQaF8OTFMzR1zd54hPSHiDim6uk04ozFWWHWTvB14PzmA1gxycFa5hPSpLHOEmNSYovrhBByGG9hhYI1QgxdCmkpOCsnx4bs7SnEGLInBiapxhQ2jIt+OLEgF+G9k88AkxaSNzEXTjzpZVjkVWJMJ1bTXW/frMTsqRhJyBhRkBiy8WMBIYoh2OQvoy2hmxG7GZN5oGlaRkcHFEWJIBQG+i5SrKxTnnsIbxSnHtTd7Z3c46mclkVIxxjDBz/4Qf7pD/3DZIioUFpH27YpbKXh5DzZWtJXLt2vUPCL698bRjy5p8VY0bv17qmQ0MIguPvGX6l4Fl6LdTZ9HuPyHNYYDEoIkZi9+NMezr3DJHLicagIVgwmCsTkFWKUTgOCQdTeM8409bW8Wot/+eVtS6K/GVmErSIK40MOP/sxRh97hu6lfdYGG7jCUJ4Z0N9aJzY1TAJHO3vMxzXDtXX6wz7T7T0Qh+45XK+k2dmn2xvhBfy8YXNzi9FTz1IdHdK7eoWL3/DVHD1zlvajn2TnR3+c89/6QcoHH35FQm+5BGRdkGyjU2OUuyKceUHMFlIefMDS9caY9Lk5bQ0l5ZEmx4mVY1TTO8mLwWJhihFUcNZx7kwOuZi0sBvriEFxNluY2iDGgVisKZftba0lBI9gcc4t8w/pISOqgRgNxoC1lhgCGsEYxTm3zEsYiej0mLXYsbY24L2XztMYx0u7e9w5PmJ3OqJcqQgmhSVW1td59xNP0CsqJApqQrYGA86l5xeUkCfZIkSS7i8piNJZvO/StbMiMMYRo0+KN6YwGKfi2zElTVB1gMteXApz3aWoT4cM7loQXnulP/E8X81rPRWaesOw1CuXZtEcigNEI1EWoY8EDAkKoilXEEOD7+bU4z2Ox8fs3LnBS89+hvnkmN3bNzmYRWov9IcDHn/8Mc5uDqgPtpntvMTKhYf4ln/3/wrDDYgnyvDewMyr3fvp537Pe97Dj7i03Njc/ov8lKqmUK5kr/NVFsbT3sW9eRlrLap6F/hhqbjvXntzdCgZXmLM3d+/Wr+e2BHJs1sYanmemgwEiRqJPqTos5LGb85feJtytimcLXibDDsxhlCBhoD1gZiNSOOVsrNYY9GgSDTLdUIlEkzyyt8J8o5RICepj5MlePGvn+xz/JEPs/upp6hf2ufC1sNcfvIxbFtT9UrCaIzOW47vTJnf2aNY3SSYBqkE6wwShdIWhLohtIoPypzAam9Isb5GUM/82i2avRGDJx5h892PEFDG/+hFdj/0c1z8tzYxK2tpPCxcUL1nWusJOkgXrgnkeDKYjDyKEcjWespvmJR8Nywiucl6VINK2u9mYV3DSRLRLLwayO5sym0gwubmGlVVJmuanEvRgLUFIaaQlrWKscliN5ITg3oS318kLCGFtdLktvmzCNh07wSszZfWFPpAleAj9bzGGVhxwkZpaGKgLQXft6gdUFvBDXusrq6w3t/i3PqZlF8Ri0pAY0gpHo0EH5AoSEyx7dMafWHZ+6j4wKlcBUmRIDiTvo+kSR9DRGNKoDtrCT5dJ8aQPb+7PYZlZAFOKZS75RVrkWZvwJjXtxVfJdSxdG8lkkZGUpxGI6IWWca1JBsTjijQNhOCbzjefZH9Ozc42t/lxgtPc7h/h+3t29R1YHI8xoe0TDtXsHJmg9WtVbYGDd32h7n13A6haXFiOdy7yej2i1RXv3oZEHqlz/HaSnQxhr7ma76GwWCA957ZfE6IJ15HCtlaliAReNX2XZxvMQcWxs3is9Ov78rncOINLUJWCw93YeSlfMaJ3K13shcRE4gHo1gLOCUQCSoEEeo18JLaVTb7KTwYI6xUxMoSfBrP/aFLijMo0gNtOrpZAsxo59HjFjlSmrahZ3s4cQmQKRAlA4juMk/fPnnHKJAYF27+SQgLQEND89znOXj684xf3sPNYW1zBdO3uP6AMKmpj8Zo2zEZH2PVoCESU7aatmnRNtA/dxaco1pfIwSlHU2wztDs7hOtIaCYScP82Vs0hyM2Lp/joQ9+E7d+8hfZ/dGf4Py3/0ZkZT11WwoYLwJUy/CRpswgi5GZ7EpZWr9J69ytaJauOHcvTAvXP+YFcJH4jTGf45QFe69rv7IyoKpKkMWyIxhjUQJoQKRAJLnGp0NPQkJcxRCxVrI1bpa5hhRyOwkdgGYkUn60GDCqqBpCC814QmUEUxVQOprxmBA6jBpsNDTzmslsTKhbLjx6HoPiCiFoQHBYV9D5hhCSlUqEwjrarkXiCTpnoeDusvSzx6earD2NAR/SLAxdd7KIEAlRiWrTpJSIakTEErwHSk6nYRfXXCxP94osjV69Z319NQv9lXojITCSZ5q8jIjgl3k4XcTojeC7GSE2HOy8yOH+Dru3r7N36xr7d65ztPMy9bxhPqtpmhYfHeOuIBpHaSPra3221oZc2uoDnhBuwvE8W80lMQjjtqHauMj6ygZWA8GkMObiad5w+crtpKoMh0MeeOCBJUJu0T+LplmM8dSHJo+neM/p5K5+XngeC8Tdq+dhZKFi74oCLPpKc0e4HGpK5lFEDagRgii1SzmyigK/6VAXQAJhrSAOS2I0SFVRXdqijFlhDQta3xF8IEpCaNqYEJczneG9RaLSdR1xHhCn2FYIMeClxTctofZUq0VCTYqkhUcggXXkVQbPl1/eMQoEWA4GJLnfAYhH+0xfeBmdzmlmNaX06NoGN6gI4wm+ralmBrs+xOCxnVCurhJmc6xAqYbJfMZsMqLfKzBRaaNnsLlB1StgHjASMU3NdDxGbYnue2zp2Hz0QUYvvsT0889x8NnPsvGBD2A0J26zdXtXbEsWA/Lk3+VXp3I7UbOrvQjISwQii0gRKMaQBmbOl4hYNOZ4GSeu+mkJIRBC5MqVc4TYYUyRwlCarGshYpzLk9USfFqIjJEc4zf4LrnhKVEXMdYsczPJA4n59SKkE9AoyZMxBt8lGOb8+AjTNTgLVhISzKtHBCwGE0toPGIVaR39YpWiKAmk/l/Ad1NYIodiBFQDYg0hphyHNQYfwl2oH+tSGO6uLhBBJSnj5Bkkb1CjRUmeh2Rr35i7oaXcu/Cc+v+rjOLlRU/CKKd+L6e1yiKmAiYbF0ZDXvD0ZE6g+NDSdXMO916mrafceuFpDu88TzM95ODOC0ynx/jO03WBpvZ0XYH30HYpn7XS73HhwoDeoMeZKoCfY3VEnO7Rdh1ihS4YmmDpck6prZXJqKWb16xgspLNz7UY06eee+F1LT851Wbr6+s88cQTydsQ4SQHfNq7O1EQyeq/u40XHqHJoI6yLAm5718BN160u2qGrxvUCCoWq2ADiDVEJwQCIg1doQSUUFqatYJoQAuLvbBG2SvpSijO99ACQvR4E4mFI6oBLK0o+JRnC36cDDYLJkbEB4hp7rcS8BqIMRDnHVp7dNbCzBNGNd10jtZTdO5Z7a8wpIeNBcQE6BFJiu2dEMV6xygQRe8aBBEB9ejOHUzTMhtNCHVHubaSEq0IVCX9ixcpyoJitc9odEyYeeLKELfSIx7PAJAQcWWJ9Aq6aUt/ZYX++jrd8SGxnkCvB1WfslcRreKcZby9S+nOMLx8nuHz1zl89hqb738/WvYXN8wSXL6YNUayJ6Wnow8nFv7Sek2Lx0k4KB248MJOJwHvFrlroqXJlhLC3vu86CkrK4OEXhWIwWNMgc1xW5Nx8cn9d9niTbHoVBOigLknfJNccWsjJ8CGyCK+n9ZAkxf7ZO13zZToa1xZsLIyxFhDCJGuaSBGum6O0GIFnJRUxZDoDZSOEBUjqR1MjlcHn+LDSzntnWUvBMiW6Mnif9JO2auCZW6o6zqsMYQAIhElIAZitAlh5txy4V+EDV+9X06GRHr+e4I8SiqQyWEHyX1gFnmMxfFiUBGCRkL0jI93aJopN659goM71zjYfpHJwS1CPUGnDcF76q6l9pFOI/O5xXuDakVvULCyVbKxsUkpnpIZ4mfAnDBr6ELAuCKNPuOW4T2vHUY6yqJkUBVMugk7N69x9tJjYC2IEk/lIRax+IVnZNCMologvBbdZfi2b/s2xj+3c9JSd+WVlkHaZXDG3dPOp8EIolAVBdXqKm3Xpbao66WCuzsCkBBnIcVZU42WhboKNH0hVAa/WhKHqbjY9kvM5gBxaZyEQuh6FhlGvLREDcSoeB9h3hFVMDikA0NSDCYufP9kaMaQ8hbRe3zn03iOyeuINfhpJEw7mklNN20gdJRiiD4k5GOUDPWXFMJ6B3gf8E5SIMvIj4IKQcHORvjDQwpnmY9GrK5tcubcJlIIOMFtrFEEQzevMRKQrsOK0IwP0FaRNqTFrd8HMUx3D2hnU0pXQFHC8QRRaH1guLGCLQ0HN26zMjyPKRzTnQP6/T7rDz1Ad2ebOD6ErQqTi6zk1P2eNr0WMdfsSi3d5NMKJIVVIm2TBot1DrBMRyNi11IMKmxRYp1LcXtNaQ5ZhM7U4INP4Z2YFvYEkbQp5JQVnJBgtkEjGgKVE4wJoAbRBPJEs9WtHmMsRU52LsJo6fbvhksas5jwkpJ91i7zKKGrmY/26DkonSWEjqq/gnMlist5E4d1HZiAdUqUQIgRE0jhuXwNxSzzKouQ3mnLfhG+WsS/EQgalmGRVOCVQi+ni+OC98TocxnNImSlKfFsDM4trOt708WvP3FPwT5yAkQQiSl3QUZ8aeofFZ8UIUrTzKjnE/buPMfkaIfb159mtPMivpkxOXgZ37b41tO2SltHwkzofKCOkegsrt9n7ewaa+tDzpy7xPr6OQYrGxRS8/Jnf4l6f0Zo56gxhKJgZX2doiiYz2dMxmMExRIxRrHiqFzq5/F0ysd+6WfZvPQY/fUtmqbBYFjd2MBUq8maj5HaFRhSjsbFiEqglZNxFGNkOBwyXvSL3N1quny1aDPJsFbJMObUt0Y1Lc4xEmYzRm1Lr9/HOoexFu89d7tCShES0AJrqJ1nbgJSCPVQaVcMrPboKkEKxRYg1qPNEZYC4xymVWJMIV/1LTYYCuMookGDJcY0VoIK3nhUIl4jPiZvRFWJxiQPxAq9UKJ4fAx0oaVpG5p2jmqgsR6toN9VOAXf5VxRyM5rdmatuWvJedvknaNA7lp2FQu02zc5urWHbWs0GFY31uifW6PYXCdGxfkUv9YQOL61i5+3tMcjpKgoqz5SOPysRiP4poF+CRqpb++gkznN9h6hC6w+9jBz32KiUAZBmo5oCrrZjGp1yMbVB6nHE/zuAWbtHFjJHZkL9AAiS8t3mYg2i2cSTDxZhNuuY3x4yGz/CA3KxoVN1jY3Od455vjmPr6ec+7yBXRgmXVTbGGoBgPIaA/vwzIvYHIV+d2FXZJDVqfCDFnBqEBQlgV6soAESgrhLLx/yFBXyFBeu1yol4s1acE1JO8ikha1MJ+h8yklijPginSPIg7F0oRAFwEMhVh6ZZ/CuQRBlfQbJSmUZU7I2KWiXCoMToWJ8n2KgRhy6lTAe5+UYCTF7zOCLUZB1eJjQLA5jJIKJ6MPWVGybNNXVRunPlwy4Shg0jiwwpKqRbQATVBaiARfc3TwEm0z4/YLn2FycIe2HrO5OcSI4No58+0D2uMRh8dzxvWcEMCahHQb9CvWN4c8sLnK6rnzbF18gMuXvg7nVqnbA27d/ATXr/8Kk93b6GyC4DGFxVjL+toqhXNMJxN811LYBEPVSFqE28h8NmM+75hHyyd/6cMUrsT7GfHwgGY6ZevRd/Pk134jD73rKyjXLwFFLlJ0KJ5g8oqnSzxbqsPJ7SaywFot0sGSa1cAkzxc510uWdWkcFRRMXireCt4Ay4E4nwKpJoQ4xah4kWoTYmFolaZaMe+zujEE0UJRvAIaEWvLSijw8Qirc5G0NggZYk6Q1BLN05hz7iIuYmljgnJF1HUKbjkJRRVn7IoiCHi2w7pEsoqRk8XGlRbvERCEQiV0jWKOMEWPWLrE7vCyFPXHZ3vKLIBtIDsO2Mw9xXI3XI6yiyxY3Znm8rDaHsf4/r0NgZMJzOKtUg3nSG+RHs92ozQseII6lKxVFVg+kMKa5HWIzESvSdMa6hbqq2Srj9genQbXrpF76FL0K+wwx7dZI5va3xoaYZ9ts6dYbC5waye00wPqVbPLEMnp91lOFEed4nmxFwIHO4dcOuF62zfuoWEQK8oGWwMCN6z88JLaBeI85bjOweceewqhRP2r7/M6tY61ZkVApLQGzmJCKAhhcEWcemUIDcpcZ4VVyBxhFmxFC4rhFOhNGFhxZ9E+FUN1lRYI5zURugJ0iXrntB1SyXmNFKPDmA2ol8oa8M+hbUcHxwxHo3wUQmY5BFESW5VTJ6Vs4vK/KzcSBX2bRcIIRduaQ5vGwsx4KxbUpskSzfkwsmT5Oqi/U/yJKnffIzE4LE2Kx8NyTuISue7FNLjpM5lmbNadCoQBBDFhgAxYiNESQi5IIYgCeklfkZopuzdfob9Oy+wc+NzjPd3GK6e593v/QBPPP4dRCl4+doz3Hzm8zz7K88yOzzANxOCi/R6PdbX+7gyeUdVv6Q3HCLFkKK/wmQ05yMv/hO69pDJ8Z1Uk6RKYQ0aGrq2pSwczllGhwc4a1MusXAUQgq7aUE790wnLdOpJ1Ji11d54NxFeky58fKn0HGDc5adz7zA9qd/GNl4mCe/8bfx/m/8TWysngWzhrdCZ5K3wJJWJBA1LdzeRER8QqnHNBaMglVJ3qD3LJFPeZRaXSgZoTOGxgidQD+2SOa3s84u5+NCgUSFsWsxGyVx2MP2Ha2f0XYz7MBAoXRhhtAjqGJ8xGCJ1iFGMbHFSIkxhnlQqqqPqwbEYPBRKfu9VFtFQGygsA4nJRKUrm5om0DhBbwhREW8EK1DnRC9R2JJaSpitNBFcJHoPGgHdYOfdWgMxNghkowfFYjh7pD/2yXvGAVyN+GAYEJHpZFxO2cyaRmsrxD8nDAP+NGUSdMxPLdFVRXYIlUma+fpRjPKtWHinopKXTcYa/BdR1fX2C7Sth0BpXduk/noiPpwhF1fpSwdtnDMdg+o8diNYXKfneB6JSFMme7eoeqvQ1WkKul8x4t6kIXVf1oSRtxz+9p1Xvz8c8TOJ6STFKxsbWGxvPTU8/i6pTcY0o7nOBw6a5HCUgzW6KaeyeHLrF8+h1sZZhhnmik+pryF5hxIDJqrY1MCXAlAyoUYa+i8B1cgGjEmKZOTSuyUlzHWLXMcIYK1KYeQkv1C13WAxViDEbssoAKYNzM8inGOdtow6AW6Zk7oamKIxCD4Tog+Yo1Qlg5nDWhAWaDZEjSYqFgRjDOEBf9VyIogpmR/4iFLi76ILq3+ZdhtwdWlJ59FjeT0dI5FClYsrW8RsVhDeiY9rTBOKxCS4pAGozFF/8XQGRALkZZuvsd8esStFz/Nzc99lOZ4n+nBbULj0Q5WNh9m44ErfO5XnmL0k7/I7Zc/S2iOkRAp+57BOYWqIsZAQWofY6CuPdN5DccTupxEFo04ZxLwYaFMgwdxFFYoKofGSGEsQqpZCF0LIYUdo4cQOmZ1h/cWLfpsbp7BbfbotOZzzzxNmO1SBsWpZdjrgI7Z+EU+9eN/m90XfplH3/21vOfrvp1y60FMAMGnxPUiZ0ZSKCKReIpqykawGjEKKkqQSJBAJ4FoBBsFFw0mpoK7xEghicNKUzI8aOaVk3SOZYGpKNN+pBsG7Jkebn3ARrlBYQRXCNEonYlQVkRX5HEBtiiXLDj9qk9Zllib8nwxgDGOLijBd+k5tUt5kTqgwWcQiibjqyzwtkMbjykMFMMUlm5anApdnGPFMeiXTOdH4COx8UjrifMGnEdjyseIzREGThdbvn3yzlEgp8IESoqZFmJZWV/HX46Mtu/QtjXqldl4TBUGrA8r6sMD4rQBEdrJhHnXoKFHN5qz3ltBYlrsvKuJoxliDZ1X/GROKC3RGExhaeopcV8pqoqmnsOgpPOeNVeg8xapPY2dcbRTs3LmMlW1gcEtK8ZVFbEnhX+LhUo1VWVvv/Ayd559ka7rCCEyGAx4/H3vYW1jk+c+8RQuRFbOn6FfDGiP57TzjtHtPbxG9rZ3OHf+HH404/be5zj72IMML11OOY4YsDYhkSBkD+IkGa95cTXYRDRIHn6xQ0yRXPwYsrVnEyRXFvUcJsXErUkWPyZdaxFnNoCkUEUKL1lq4IXdXTbE0FRDBmcuUqyuUB8eEk1CFqTFa55qXzQQtSNKyMUkdkmNQs5VCCn5rzkXEjXBKjV7HGKE4LvMk3R3QRmQ8x131wmczt2mwsdF8ttkGHGCPi+OOz1VRU4StVELWiHRhUjDfHSLgzufY/fG53jxc79CO50w2tvGxAAh0kyhnkditAwPWnaufx7jXDJoKo8ZdoTQ0QVALNPDDsHiu0hQRTVgncEWKRRmllDZiA+pKtrm/JQxQAyUhaEoHU3T4MTgfcB3iq8LmqB4nyz46JRYFPSGA6wtwbSMRse03rG6ukHsC7YwlKag9YFoBwm5Fzp2r3+C7euf52Mf+wjf8M3fybt+zb+BDLaSF5LntyrYnGsh3T2ZbS2FG43SGg/nB3SF0szndF2HNIG1WFF6iwmRIkKhBoISrNDaNAYWYctlPUmO8bhoGMUavCChD+pwGAopUGvQwiDO4dRiFyFSLyd8cE0ktg3eQDAQ1RC1SyAUY3C2h/cW5woMSulSyNb7lJ/s2pZu3qJlMtSsK5hOpqBKaR2T8RTTBUoRxuM5RqEdT/GThn4b8bFNHnAUiJaYc6H3kmy+HfKOUSB36dM8APqbZ+kHQ9Gz7L78IjQBq4bpZEyBoz2eMHrpZYpW6J3dJEgEayjWhgy2tpCiwLFC4SOmX8HWJu3BUbJWRbEhZTDmbYPdj7T7Y8qLW+AMXdvROWGwtortOlYeusT0zlNMR4fMJ4f0NtYRZ9MCekpiXuAWcDuAg1vb3Ll+gy5EMIa1M+s89uTjnNla54Wnnqd0BesXNlhZX6PXW0E7TwyB6XjM8c4+semYjEZIEzHRsP30i1yylvLcOawUGBvTwkCq61jkQBZ8P1HSwBMRNC4qxk8niSPO5jyUJEsrxswdRab3UIPJMN9lOCdGTJEQMdZYmjawe7jL9e09tkPLnaMpDz32a2id0JiSzhR4E1HjsS5ZjR6fY84WbEpILkMQuXK8NAmPE0XQGHGGHAvO7Z35roKGu8AKccmUnBSp9wt47EIrpJxPSrJLqhkyjgX4IYo/1bMn5s0idBBjJHQenU+48cLHGB9d57lP/xTjvVvMjw+JHoiGpo2J1RiDGEd/VbCl4KVjbpR56wltgGmDk0DslHmjWOcIAmIVo4uixOQZBd9QOIMtXeb4ygufkLwwY9KY6DxpxTHEDmZ1Mra6VqjrlKMoqgG9Xg9bOTyBtmloZscMBj3WC6XGI6GBGJi3Da0pUFehWhJNj4hjHB1VEej2nuen//Ff4+UXnuU3/PZ/l3LlQmq9BRydRKxiMsHnIpsejFIXynxoWX3yAvZMhT8+wo0bJruHzA7m9Lyl9IZBG6i8SUg9MoYlTTgW5tMi7wdQGENfDGoswRi8sXhrCAimKImlwakwUMuSeMyYjI00UDh6wyGaiU6ds3Rdx3w+w+X6k6KqcNYwr+fMuqTQ0MTsIIXDdo6mrtOaESNx3qRUmSj+aILzireRZu+Iyjja0QTxUIjgQ0eUEiEk74zsnRdfxEL7Fss7R4GcxnHDEt/tomImLSsrq/gwJtaB2XzOwPSoX9pGDyYEV1JophVHKMsSg1IYoQsJNmcLi1upUGfQKrmqBKW3tc7oeITWHabvaEdjtKzwAtW5LYaXzkE9p1uxTJ+f0k0nzI73WD13Ke8BcSrpvFAeC9y/gDae0e4+6gPBwKA/pCpLiihc//TzGGOpVnugMDucEFYCgYAtLcNzm+zc2aYZTShKQ7/s085bpCq49stP8cD738XqpctYkyg4DJLgsvEkwY6SYrqBxHElBlXLoqpcc+gDSXkAouSCO13oiERTYk2m/8n5gOATrNbHbB0lRTI+HtP5yLTpOGpa/uaP/AgXN7fo5g39TILYBuhE6UKHccK0rvGqNP4kSZ7jUxlWuxgbJoeqEmTZWJcZgO8GLyzG0yLnkUgB4SR/k4oFjZGU2I8x8TKRch6K5IW6ffU4swqqnvHhDnduv8ju0z/HC89+mK7eB+/pmkjs+hlZKFBG2pgWZh9aVIRmHIlE6hzOw/vszaa6gdIKRQ73GE1pfo1K4QzGphBKWVgKm+t4zIL6IlK5IiGdQvJQood529J2IYEcYqRwfdY3NzO3U8wL4hTfRDR2OBswcU7sPIUdMJ8dYIoek7bA9DeIpk/rhboTjo4nNF3LSk+5vFqyNqj41Ed/hq7e49t/7x+H/jkiLkN+F0WrKSSlqgRRgoWp84Rzq8Qrq3TnK+JUWBkHigfWaY/n1EcTpsczJscdvZliVekFh4tuybqb6NaVaDIc2EC3aqjWBoSqRFyBLQqiS5BxUzqipDomNS7Tm6S6EZOAYFS9inJlkPRRznVFApU1rAz6zOazRAKqaUH1RtAQMQj9qqRuZsyPRlgxVK5ktHvAfO+Y9eEKo8MD5ntHrFV9Do/3cSqEpqW0DvqWnnNIbelan1gYzIKXD9TFV47NL7O8YxTI6QrnqEoUy2RSMzw8JhzVXDxzib02MpmPsAidBrq2w5UlRoTp6BgxFuMc9eGEYm2dum6Zjw4JIVI6g9/t8F1LO5sjVYUtC0yvR7m1xvzGLoWU0AbshiX0SjbPnoG+waxsYg8CruwR6z2Ot2+yevYirtdL6KBFWERP018kmddz2rbFVo4z66uUruTas8/RHkxYW1+nWl+htBWhi4mN9HiGWMtk95D1i2dYO3+GaEu8jcx8R2jmDIdrTA9mbH/2GmV/iFtbWe4PkthsTaaKyJavetJOI8lsWSyzaQG1mFOEg6hipSDlT0zKhWgAkuJZ7J1hcxI/dC0iDoIwn8958YUX8QHanB9ZXdtgLJYbO/s4McRQs77ax60UxM7SdB3j6SxxDKkh29kJN5+RUGqScvY+FREmb8OnpGyOVIcQMHISwlh4IKdDo4vixEVdSOxS3YcIuNKgMYXpEjRYM2vvSQ5EIxj6HGy/zPbNz/L8c7/M3uEt9l96kXoyoZ63TCdTSivEribEQFCoO4tXS1eDqEFsghobyVxckihlXK5hcVFxRSAKlIUllanliEUGUPR6Fb2ywLm0wVU2w1MoMCQIqQ+JMbnzAR/SplmpTS22LPC0zGY1XdemsGFULBXGCrawYCIxKGXhqIF5rFi9+Cj9zccYzSbE+Zh+UNbPVcznNUe3b/PMSwdsnS148OKAF575OJ/8xR/mvb/+d6FuMyk1FfwigqiLjFui6MAJvfUegY5Z64mloqsFdrWiODNEuk2q2sPBFN2bEJuO+qilmEBbppyniRAt6MASCyGUMC8UqQxl31EVBcaVeJNCaBLT+BIRKGzipMvIxUjyalxRpvmFQtcS8r4xRVHQNTX1dEoIgcI5nHXMR1NC53EYjo/GTEYTuvmcotdnOj3g4PY2ZTDM2sDx/iFVr8KHiO1V9M9s4ZsGDUqoI24SaX3AdQkAz7LQ+h0RwXrnKJB7LT3X6zEd9hhUJUW/osTQf+Ixnv3s54jHNajSdi1a1zhJKA7XH9JZix32kdUeNC2dOIoq1Uf4WUO5tYJ3Bt94TFkyr2t852lCQ5hF+hfPwLxm410Pc/7Jqzm8Yrhz+wbj0ZhoBN/WdG2LDwHLsnw8D7yT54ghsn9nl+A9VVHQNQ2j4zGuLGm6jrptsZM5TdtBUVAFQzHo01tdY9zusHfzNoPhkNvTW5QbAxofGM0nbJ27QtzeptmfsPPcNS5/zftRY9G4QK8saFAUYxIXVlIWEUyX6i7oMFQIibokAV4078NgWe4MmKvHNe+zIDazm2JofZMglyg+eu7sbjOezhCxVHZAUE2AAyvMjYHYgXgK69kYDIgTpZmFVNRmPDZX5KdIn1mGqVKeJFUJR++z9wDed5BRUtYkqnZYBJtOKGROVzADOeeTET8532ZtCssFnziJUriLu45Pr6c89ekP88P/8Hu5ffMFvAbqRunaDiMmJWddh4YWKOiCxYcT4r3CRmxMeQC3ZAJO47e0FjGCs1CYiFWhMA4IxM6nKhYRnCkRcTg3wEoKUQUfiRqp5y2iIVXn68KoSMo4ikU0eWSz2Qw0UhZFrvnQHLqMyzZFDRoN44myOwqwavjN3/o76A3fxQ//7/8b27v7jMfH6RxlD9vvo36V6zuHhDDnsQd6/OJP/hPOX/0Kzj74DagaEh9C8hi8ScV0AkiEMgor6qCNTI8aOuOpY9pR0w57uH4ftybImVXihZrYdui8JYxmWGNQD7ZTbOEohj3EQudr/PEesU1ABKcgPlGV2AVoxArGCV3TYQuXwk4xGUkqKR9RHx0n2h4808kkIQ5dyiu1bUtZlnhraesWX3eIQidCW9fUdU1VljRNQz2fUw56rFRD1AfWCkt/MCB0XQIEOEsznSWK+90JXjtkGrDqUZ/mZ4yKhEjsvf0a5B2jQBaW4WKSB2OQ9SF7n59xoV9SRku34rj6xFVufv5FnEba2RRtOrAl/bUBvYtn8F3L4NzZNGnKgrOPXaWdzIheMVUfBpZKDJ1r8KVDekPi/gEiwmx8RCwt649c5cr7rmJDh/E9xuMdbj13jdi0CSIq5CK+gLHuVNhFEwQ1x9mb+ZTp3iEFlrZpGB0fJ3e5cAxXhrS+o9mZYAtLfzhkcPYsFx6+Ql23BCtM9o4Ih8fMRyNcZfGzhB0fT45TTkAt+y/vsvWuMSvnLxFjwLky1WQsyBtDImo0GSZmJKGWyElNH9KeF1FAnBJigraYvGsfBowpspLMyWbScZqhNF4Ddes5ONglEmjpsNayUvZZG6xx4/ZNfMbLW6d0RSDYSHTQkSqbfYx432GtS2Eliajp0uKYvZEFbiou6D4kJcwTqzB3IcEW+Z4QA12X/C8kbYIVYlzi6ReAh6ZpMCo4VxC67BWIXSZ/U949gQs0wN7enPHY0EWYtJ6gltClXFK/EKwWycLN8XkjZAaFxBfmrFBaQ690WM3klhLo90pCaLBRsAYKIYEZyip7S0LrAz62+Jjg7tGHFFaDjDxql9X2vov4DsrSYNRTVgXWmozYCjhnMptxh7EkRWhcUkjREINlNIs8c2vGyrk+v/QLv8D/5Y99C9e/9ht5eft5pvWEw6MaiQVF0UMMtG3g1u09Vss1Lp7p8Zlf/km+5dJXEELeCC4ukuYeK4JTk8Z7X9F1KHuRatRhdyZMRyOsCsNL5zAbK0RrkWGFrA1Qm565GM2Sl6AJ4m6MwVYOEzq68THNTJFxQ+0joV8RBVy/B86g1mAKBy5zwBUF0Zq0106GEbeaQCLqLK2mwj9jLU3TUjcpzJlMsEVoVTBicVWJ7ZWUfkjZq1BVet0K4hxWLDFEKu/BCH42x1qHbzpmo2N6ZYWZtvSOPRx3yNQgXZGAKEbQEFjuzfw2yjtGgSwQMktFEoWyv8J4OKCeR9avnIO9PQblCo+8790cvHSLevcQvMfgKC5swkpFM+4YuDSAmv1DQIhdh9ge7twG7XQEUTHDHi2eeQiEssA6R2sdFx97lKtf/5UUeROepp6wc+0Fjm/uJupy6zCuBznZutwUx+RNm5ZWc2Q2mlD1e9BTqqZCEY4PDhANqGmoxFBVQ6L3VDh6RY/xwQjvlbIaMOy3zJo5fTekHnm6tmZr2Kc7mhFDS6NwfDhi8LlnePe5sxhTJbiqKGIzjDEuEoo5XJCtbWNcymfk/Emqzo44Y4ihwxVVggp7iMbnwi9JuxBqIGqkkAJiRKNndrzDdLyNaJuYb4m4fkHTzGhmU9wy+ZfyB4FAFxOCXooCsQkRZozJykaXSdDlXhxq6XyXWFEtidvK5TqL3BdGTvEp6d21IzFGIh6lY0GTQtSUO1IQIl3bZBr0lHg+LQqItTzy5BNsXNxi9/B2qkESj1GDt5GWgFMHUTA25Y5SGE2zx5FqM0pnqJyhXxWUBgwJKSaxpTQGweNsgmaLMamtOr/k/RJjKLqAhICJOX/FInekiA0Yk2t/ChgMS3pVwWKL5KhtompZpJyjolEwRlFtQCwxSArpWGEklsnI8ysf/Tg//bM/zvu++tfxy79ymdu3buK9EtqGrk1Fo94LdRR2dkesVYFrT/8yX/8b94nElOTPASKhw6mlwDIjoMOSsFrQRs/s4Jjbn3yW9mPXeej8FSYbu4SNAaFy9K6cpby8RUTpr61QDisk7ZxGLBIx6uFsim+maGywKz26gxmT/f2U7O6V2KYhusSPVfQqjEtbKDdicGWR0WUe6yxiLYhQNw1ePLYswBg0KsPVNUxmf9AcwjZlCt/awqUwXYw0XUvXtjipsNbRzubUbcPKcEg9mVJPpvT6K3TbR7iDOVZadHdEexTRw4bC91ApUiLfphzL/TqQu0SJ7RwflLLXS6ifsk+5vsZsto89u4abT9GpYzjcojdc43DtNqPrt7FqsYM+x8fHSDC0dYuEiG86Rof7MG1Yf/wJzPqQopcSyl0zh/GYbn+E9vuYK5f5yvc+wtbVS6yYAlkf0pXC0Y0bHNy6RSeKKR3OCNYV2VI+4QRa5A8kL1QheMb7e7TzKbYqWKl6dFXLrk/Mqv2QXPf1i1sEHzh/9Qpt2zLZ3QdPAgOsrTG5NcYMKkzjaZqGg9mM93zFk7Q+MD88xhrL3gs3eeSrjyhWzi9RSDHnQtBksSwoRxIcN7sWKllp63IxZpGMjKnKX8TiLIh0iXzQpx0NU4Feh2hHaEfQ7fDehzdY23Fcu7lPa3v0+gPqds68nuB9SwhNqsgdlAn9m5Pc3kfmdcegCElBmJKYF8UFKGHB9WXEINYSQo0xCdoac5WuPWWEAEuliaQQlwafLO0cakzOwQKCbHIiNqV8hFNhPOA08eXmmQ0euvoALz3/OWJb4OM0wWXzvvCLLJMBnCyIMWOyjl2yHqMGgqY6BNMziAaKXAgXNCXM265Jy7uCZPSP14XHJenZoyKqGB8oC2FlUBCDUPaLlL9CsUXESJd2mczU/12XAd3ZyIg+j4eE6M3ItAR06JcVZ1cKbk5a9uuWH/xnP8j3fOu38973vZ9nPvc0vvWo91jjMMZSlgUmOCbTEQeHU0yxzUsvfIJq/d3Lfkntk2hjFuOwcJbCJsaB6WhEPZ5wfuU8F6qL1NOWrg7Jw731MqPixcQxtb5K9+Ambm1A1R/Cep+2gBLFWEs0DjdYod0M2Jh4pKqVYfJCSocpi5Q+MkJZVpkOyKDG4GyaD7YssGWx3AVzZbiSeN26LkF9F/uBZHh4dKBEmuAThYpJXq8PgaqqsCK04wk0HdaWtHtHdAfH6IrQbB8SRhO6KLSzKd4LTgJ1WyNqErzaGeKCofptlneMAokox/vPc3ztGc6+59cxPHsJY5TSGg5HBxwdTth49+MMjqYUvZL5wQHSeda2NgmuIA56hGaKsRWYAj+d01hDM+7o9YfYzQ3CsI9b6WFtiZlNqZ1lw1qqYcnW6grWKO2NbXjgAToT2L9xmxvPX2f7xgFBLOocFrBlhXNljl5zQrmhaTJ7jbTTGdOjCV3XsbW2zvrZcxwdj/BdR+EK1s+fRdpAbYWzFy7iBn22r93g4PotXFUwOL/J8NwW84MDjsbHzENLf7WHcxVKJGik6bpUwzKac7RzmzP9TUJMhYsLC9xltFWi/jAZi19i1GZW4JjoMWyqewg+YF1BmuUp2RyCYmwKaRlA1ebvPPiG0c4OMjtkdVjx9e99F6UteX77ECuBcTslmogUKQmPCK4sE9JJEpFgV3fs3jlgvb9JrwCUtDjmiNSC/8pkbH0kpMKxZSjKZCbjk5BUgrQafK4dWVD0LT6XbMWlhT2CTZtnaZREz2LcCR5UPMtKEIXC9anKXkrEh4CzBaaI+DbgVDAxsRwvGJBFhdIkhGBlHEQPORSW9jBJJJmOtB2w94muxmq66xCVqnJEDM5UFIVgrccYj1YJeeessDrogzjK/hora4+yoL442nsOZ44IocWIxXc+5SMiWBLCx2Sa9hDSIotEnC1p2o6ihMurK9Qezp+/QulKYjPj/V/1tfzk//FjRB+omSExVbob24Og+OmMputom4Zb15/h6vseuWvOG1wCkWvERMF4TYV1mvrENhG3sknt0nbUwy5SqkIb6GykUU8znjC7dUCwgCkoL25RnF8n4BmcX8OuuEQlIo7exXNEgWowIEhErMX0yjSWRMA5JG+KpkYQZwma2AwGg35SwD4VBYOmepzMAUdceMo5vK0R5yP9fj8zYLS4uqUMBtpAu31E3zm0nTB+eRu6wGzkmdzZxXVK1+X8kHO4wqTcXOzQIGhI+/BwX4FkUaUd7XPzc5+g3j7Als8yXNkg7G5jj0cMjWX345+jv7LO5pOPYtoGY5UighQOs7UKlePi4w9RTxvauqM+GmM6j3uspOz3cOdWkZWSsvGUBioDq87SEZjtHXG8O6FcWWPj3Y8QNnvceeEaN6+/zMGdfcLMI/3EjyNCslSK4i4PJC0+aVFTjUwPjgidpyxLBv0+KnA4HuGMwzct4/GI1f6Qra1NDEI9qzGFozcccLy7y+z4iHJzj35ZsbaxjimmdO2c8xfP0NVztA20bUNvpSJqwfHtPdYuTYg+pFBbhuGKsOSCQvRU0tiehFck5Qog1XMYIwQfcCZXmufYu8lhEtGA+oAVz/hwnzsvv8wDWz1cDPh6n8cfOc9L27u0Tc10NgGTOLJUDMYlOgo1Ea8eHyPj6ZydvV0effgRRJXQNTnnkTe7ym2crPOAJyTkmJLCTTEteKlm5SQM2nmfNwpSfOhyAeGCxTeFFpw1ix03iDmMhaTq+5OSkbsnqhhH1V/LVcEpER9CJqKMJuWJbMQ5izO5HzLzv2cRWsuKvu5ou5bCpb3evU81LSbnbBJJpiGYCNLRo8QaT38ARVHiXIWxHlv1iWaNS498De//hm/j6rt/PYWUfOLDP83f+B+/m8cveoaV0HU+gwJSrk5iyhvctcdGCEuYT1mm/NK5IrLfefZu3OK4X3Ltmec5f+lh5rOOw/1jNLQ4CuZTRcqa2AkD62i7RB41PriNxi61X/6/0YSTDVHxLlCu9FAH0XfESc2gMwy1wNURG4QiCg4IYpCYdtksbcHAF9AEggjza0fMXtgjEjisAoOLqwxX+5gzA9ozA1xVQpG2bbZVmeo9QofJuY8ub2FQlkXaxEwjhXEMraPtOqbTGb2ih3aesiqpqorJZELXNBRlkeZa0xHrOkGga089mzPbP6Q0Fp17Dnf3aY6PKaoed6a7zI5HFOI4nI8Z9AcYFxGXkuZFY7DGE1qfNrMSTzSkUOz9HEiWGGk+9RkG18aIt8xvP8+d0FEe1qzVHatlBdYQmpa5DwzLguLMJtXlK2hhCbMZoko/KKubiifRLWve3CXGSGhbCnGYlQJ8R+iE7Rde4uCFbS4+9hibX/skt8YHvPTis7TPt4wPpylZawvswKBFRIJibIEre1hXpnikxAyhTUTUKul5xgf7GaLpmE7GjA6P8V1HG9LiPT4+YnpwyN7tm1x973s4d+VKsmRN4swxbWTy8g5jJ6xdOMt4fMx8PufcpfO08zolj0kKwnuPH8/QLlWIF2JTta+kGM4CyJos7UXY6mQ3N2MSY69zed+OkMJfaiJN6CjEUOTaiATzhRg90DE5PsKq52Bvm+rKBaqiJEaL2JIuBNrW07btcgc6jZor2TWRDlpDjMLR6JAutARSkhObahqCstz73GeFYE1m/g1kzi+T9hEh9cMSwrvYZU4WitSlPVWkAwkssAEqaRF11kL0KUavHaLlvboDJVmYqgnyqaYlUqX6GY0p9yOCCan9W01FgAkiawiaUWMqqAhtSNTfiMVHpXAlNnaURikciDUJUitJiVvj6fehrMBZh7U9ptEwnxfMzRm+4t3fRv/K17PbCasl3Dye8dxhpCw63v1AlZkFisyIkA2NTGOzGAvOFKm6X4XCWaIqQ9fwnjXL0/M5e0cjvv/vfS9/8nv+Ausra7xUtxDbBHGIZEh1Bc4iJhlavh6hYX5XW4omby8IqBOKfqIH8m0HnaePY8XDMFE0J9bivCOfiqHwULQK0dBFxYlhJRpWbUGUQEekvjlHCk9vZpmbiFkZ0ERFK0fPGEKXchqmFNq6AZSyqii8Qt3hjKEy0BxPEsV/VHxo8F2HRZjOG6aTMV3n8UWBaqSezdAM6z2ezTnePUBDxLuCcX1EPa/pDfrUbUsbAxuXzqNtgDbgooHGE2ZNAghFxfSFUAhxnpBaqfT3NMT87ZN3hgIBtsoexfoZxjfuMN6fo+VNiuOSYX+dou+o20hRFhADh8dT1s+exZw5g0NwTZusY1W0TeRq2rVIyIyuaEJVdIFuMqE9aCh6PTYuPcD5dz1B7z0P488MWbtj2H3+eaZtRxtSHYUrHPNmhhkOkc5iXIXtDZCiOAGx59oFawQMdMEzOj7CFQXz6Zzb126zujJkWPaY6CTlOevIoD9gMBjQsz3q0RyjBucKzly8SDeeMj08ZjqbcPv5a4gzGI1M9/bpZjMkQJkRQ5qL7ogdtsq7B4aI2hRjj9FjWOQzipQw1Jj3AHE0bSLIC3nHvly2lhbs7AGEqAgdGlN4SzQwOtpl785NwvQIyoh1jqo/ZO+wBTHU84Z6nviv0s6HEa8NIRpi64kexBZ4H6ibmqatGfQHC3DtXeNjua8HSvSREMCYkrCESGVYrlnsUbLYsvYkJ7I4h/cRMSfkis6VGO1SZxqWnGKv0B5ZXFFw7tJlBlWPkZ0x9R0uwZ/ovE+oHpTOp/MRNRX5IThN6jwKOeFPphovKauC1SpSZQLEiMNYR78QJHqiTePLOiUEJYTIaDTj1rEwqypaOeLaX//rdPpXwBg2yhXivGHaWa7vBx69aOhZd5IfIz2yK07l80QJQTC2SkouBEQDXayp7AoXts4w2dnmxrWn+bmf/jEG1YDCOELoKJwgtqCRtEmbiMVopELxRSqbvpeE1ORciwsGnXsqU9BVDjMoMC4p4raffhnUJOPCg+vABsUEJajBSwr5mGwMAJTRUnYDwiQANbZXQ6f4tsOs9PBtQLqI9EJiwPVdmsl1JNoG8Wmv+cbWiecqBHwMKfTnLH7e0LQtk8kEVzhiWaYq/q7FlJbWJ09dewWVc8mj7xW41QFiDWWMFE2b5l2I+HlHbBeUPqnAUpouUSQJ+K7F5kp5NQta4LdX3jEKxPnA6nCVprtJ/3bH8LErlO2M7mhK0XUMV1eR6YzZ9g6xb3n52ecY7B1w9l2PpG1UiUh/gBRV3qgnol2XcN9A8AlpYm2BK/p4ExhsvAu3usZRM6NnheLiFnZrlZVxw7RtuXntJYgdprJUm+uI62PLHmZBxr+kFzdYZzOduNB1Leo9vgtsbJ2jlIqmrlEfIQRsVbJRDun1V9g4d57x/ohq1jLZ3icEz2BjHd/vpdqEfc9QKo7Hx2ysrXG8vYepLF0UyqKk9jVnL5wnRji4dRu3tbmsvA4hhVHSYpHZe9VniGKqoFskBhXy61QtbozJIS5dhntUDJ5IIYoJLd3skM3NPqwog17B2tYWXg23t/c5HE1o1BLaSPAn3pArbIIwksZ/FzyBxE82n89YWx2ipkB0kVw9qSqPMSb01SngwnIxCoCYu8JxCwTTspAwxLx4pryQsw7v09hI1C1pS9GEBrNZOb9ykhpjePzJ93Hm/CUOD4+YRqFuPGVu0xhjZvKNuTBNc/GjEq1SWTCa6kaGVUFPOoqqpRhEysLho7A3VSYzj7OOCyuwtWJQ0yUa8lZoanhxXHPjyFGySm1g2u7Sxlv46HFUHBSGnikhBJouQbqLyqawUn6utBNhx3IrgoRfpigLYlRC9FirhFJoi46L51e4c3RAO2959qlnmE3nSFR6haVyJvGOaYd1UBZQ9CymMgyrKvUJJxxxKGjQxFQNybssLNQKjYc2Ji9NI9a65G0GTQtsoXQ2EKKAj9iOZEBqXPiiEFOfhxjoRhNmt2ukntH0HeX6Cr1+LxWTOgO9Eq8RA7RFonT3MYJJObtohc53NE1LZcu0l0pIBbCDXg9IMO1quEJfA75KqECiYtcEybm2BZEqkEgXUWhzgaePhManXCo5txojUVPfhS4muLgRQojvhBTIO0OBiDGsXzyHrqzQ75eMbuzSjgR3fojf3aHb8/QGWzhTYH1g98U9jqYz2oMp1dqA0qatWwtNA86QqAiwCU0kzhJDjWjiktG+w/aHxHFNLAsmt444Ojpi48GLPPT17+f5n/kVhlLxyLuvsnP9JrtHx8S1Ga1VzCC55NF3GGtTiMtYjLNpUyjJu921HYV11OMpRGU4GHC0vYfVxI9Tba2xdu4c6+cvsBYCs8MjfNtiMlqqjkoQ6A+HED1HRwe0s5p63mDEEaxDa4+pDGtn1zGFQNOl/b5Tqy5rIbCcbAAV4jJkJad2UEyb1aRNplLaQPMATbUPUUOuzwiE2NHNj+jqI9b6ytqZTYYbG7Sm4NqtHa5dv4kiNG2d6NIz/UkXApor7tuYNt0JPiDBQYx0XUOqNYkQO0JIoQpy7YoxhrZrTrwRPV3LsYA1Zo9DU1Fi9AnpE3NIyZqkWBEy71aCyiZnJCmONIYMKvdSRZzM2K0zZ7l0+SGuPfu5tKti2UO7JqOXEgpHRHHiKW0kYMG4VG2OcDT3DKKyNixSvYcV2mi5sd1wNFd2JoYuFqyWjrqZY41h0E9gBrqSoyPD9dst016fnm3RecO7zpcUKPiKG7c7jjqlGDrUdwzXSkpnAZ88mBhSm0Q5GSs5TFgUBQlQlveLQakGBVGUabvHhTMr3LozQmdzpD6mZzyuUJxJ9IjaOSSS6Pw3+mivYOPcVZAKjVMWO0miidLGREDTvGytovOGfp3IIX3hKDtF0raRd3mT5LoxcZINxfR9SHCRZLTE9M51ykooAIezJV1IpJ5REpeaCYHOkneHTPBrU9hE11/a1CaxwJUlq9VweQ9RFeuSQZRoUJLH3rqYazWyRxsiGM07I4ZkkMW8R4+PRN8hGYSj+d6DQHRKZSPOCiYEovd0RvD2Pp37UkSE1csPouKpbq0wqNYY1ROagTIrodfr0fRXkHmkXPWYWYvDsPO5z3P8wk0e//Vfz7EJbG2dwawM0KpAm4ipUiyXmAjNiZ7pwRH91VVM4dBBSR06mr0jjDXMrGPw0Hk2HrnMzuevEX2NRM9aVdLUcxoX6ZVDqtXNVFAYI5gFIR8ZFaFMjo5oZzPoD+j3LZtbm6xvbTE9PAKUoioIzhEtTJoRa2fWkaak1+sz62oODo8T82zXEUPk6PAA0ytouhmrawNmjWc2m1EVJUXhGB0fMdhaxQWLdjlZnCMUKQ8gS2UgRjIttM01LCYlgMUm+o5MDbLYayTGiEqkdGnhCyEwrxsOtg8ZmBWqlQpTOo6nHbePDvj40y9yXBuaWNCFli7WWOuIXoga0v4URmgXHGWSrF1Q9vf3eODSxVTpriHtkkguWiTiJRKdQkghoUWUa7GB0CJhLkLacIukKDTXlQiJyt65Ao02VZtrgvKiJ0y9MS422jqx1Bf/LiZtv9dn8/ylpBxjSmhWxtKppygMziiFTcaAEZOox0n8bJMusj1VBoUQjWejX+BHNQd1y6Q1dFLhNeU9fM8wUcu4DqwOCtCWOQ1t1yN0A7qiZNgzPH71PF/x+EWK7gjfBdY29/j0nYCzJdI0HEwCk84xKFOlvTE5lJZrZZxLYawuGyDBt4ixFGUKDRtjsL2CFVFWtOOwV3Dz5esc7d/BilI5mzw4QGJSvqVp6JVDXLnGxvolEJeIN6Msx1ZwqQanCAJNSuqbqsCslmgleN9Rud6SCeCkvxeouLTgirEJzrxcxBdejVkiJV2/R7G+ilmrKAZFTqIntBWlo3QmbdSUjUCTQSaoUrriZEMz7LK+KMRwAv9ezC+gzBHQxZ4kRj2qLVMreCnQJuDU44RcH6NYJ7SF0LUp/CyFIziPLwO9gaOL08Qo7IqUb7qvQLKIYC9fhNBRrG4wfLClP9pn+/g63dl1Nh64THVuDWk9x9e3eeYXPsrg3U/w4PvfR3cwoT0aEYxwXEdWLp2jMMNEwd62xEEPCkc00BwfM3rpDtVXbCA+0M1mjOuarutYH67R1Q1Ht25S9irK1T7HLx1S9Eqm4yOM2wSxFP1VehvnKJyha2qWvPxKLu6J7N+6RWgaVs5d4PzDVwgq1HWDj9Ap9IseDz1yBTfssbq1Tn/QZ7w35sjPWd1Y57Of/CRrawMuXniA7mhMb9ajmY4wZQ/FcfbsBu3uNmW/wjrolSWuKGhjg/EtXQwpjFEUqARMYYmxS5BEXM4LJRij5qrghYJJ3SHE6BONu5BpMJLVGjzc2dnn+ku7xK7FaMT7mml9DAbq6AhS0oaYQ2ICqVwwbSCEYLTExgKkI4QWqwXGFcxnM9q2o+wnMswF1XyMqeYh5IR3VE/MRY/BZ0SRJup3cu7G5Vh/jAlRlGC+Sdm3bUvhcvEZKcxAho52XaanP4W+SuEde9eQ7dqWF6+9gG8MsU3tLabIm2+ZZRK67SJ1Exm4yJmBRUwAA8E4JmIRD6PjllkT8RQpvBchikesoa4j2oNeVVIVBo1CMJHV1YK1/TnjrqUsHuTrvvHf45u++dfjJzf52Cc+wnT7X7B2psW0jmYyp+48L98esfJApOgZnHPEmEO7OcjXdV3KyVjBx5Ze0YdcTR9CgNgRbcmg8lzccDxz60UkegojVM4ulW40ii2UYc+wVhiMKbl08RHGXc5ThqXmTwWeqimf0QFqEyJK837xkiz4xf6Fi/BOerkIhaV80IIBO+bjU/jyFFKytHSlwVcW7ZfE0iVYe+lw/QpcAjcs0IuldVgxOEk08i4Tb86iZ9Y1DAcrCSa9c4MutvTdkKNnt1nfPI8M5+zs7jPYuMpaf4WVakrjJkxcn6hr9EJBglwEopj0pyEhFCWFvEQj9lSRcvAB430qtC2Wk/ZtlXeGAiF3vCuIGyVsgAwEutsUlx9gePERKp+QVTu3X6JQQzuZc+vWNu963+PELmI6ZTaeMB1NWH/gHMPNddrJHGtTOGv0wku89LFPc1ZWMCtDPA13nn+R0XhOMW9p/Ag/6LH72Zd45ANfw+bFTY6ef4m2bZHSLfdwLsuS/nAFVySOnrZtMd0J+63vPPXhMaVzrG9t0TUd04MRBzfu0DQ1veGAVj23br/MxuYZBmur1G3g8ruuMjlItCcPX36Qa08/xfr6FrY3YH1ri52jQ9RZNtZXCVEpy7SgSGFoY4BOKWze2AZysV3Kb4SQaMmtSxW0XQzJcs5bvzoxOZlrswWewhxKGrxRla6NGFtwdHzErTvb1EE5Gs2Y13U6vixxTrFFlSy0kBOalryIk6pzs0WoIZEJWgOhndHZPofjMZP5nPWyytZcLtDKLMA+ZBc/KmJ0WR+yWABVU1jESJF32EuFctYmcskYfYaqLvZWl5THIiaPLzM1LXBrMXbLRe60tRdCYD6bcePWLWZ1CrU1IVIVgnU9Rk1CnaWQC8yCod8GjOk436sYIAxE2A8dRBi2ilKkXfliBxroYgAqhB51m5iKo0+Mr0UsWBv0uHRe6Y4js73b/OAP/T2e+vzHeezRx3jpxi0OpoZZHaBNyWyl5MbuMU9c6FGSlMVijxQyO4CxmlkKZAmHNuZkjxWxArFBtGO16jMokufmW6GwDsTjTYcYMK5gUJYUYqnKISur5xkfTO+e9AvvL6ZaEJdDQmjOX5HD0alz0zqRX8a01WZ2+pMCMYt1JNeWLLyTxY6bOkuFp5K9VbGJWl2UhHZaFDQaS2Es/uiY2WTM0cEB49svY2IkRCFWR7R3dtEXKrbObPL84c/z4Huv8PwLU65eusr150b4bsLl8xe5/hP/mNXzD/GR6ZzB5haPPP4ID1x6iK5c4wgIIgRjiVbwpOJSyICYzGcGqT2C99iQ9+ZZMEy8zfIOUSBKO5/i63le7ISumTI6PKC/dg598DJt0zB/6UWe/cRT7B2N6V06z2a/x86121x87CrqOvxsgjUFk5196ugZrK7SF6E53OP2Rz5G3G+wj57DWEMdAs18Rnk4Y/X8WY66CbaeI1jK0jK5vY9gOHv5PLdebmgkFRe5qgfWYYuC/nANZErbzOi6tFh38zl0nsHaBhot2ka0C/QHfXorfbrpnCjCk1/3deCEqtcjNoH5dJIonOcdm+fO8q73Psl4b4/+cEC/v8L62iq7kxH1dMbaYIUCw6DfpyugFaVtIlJ4KslUBz6cbHmbXfuu89gi0bWLWGxR5Ekoy/hyqr5ebF8biVHyAu6o5y0HB4c0jWc2q2lan7wZV0BR4IXEARU7vLYYJ7RNYEGfYSgTZYYPREkWvzEOcjRqOp8znc9ZXV/Ni5oSomQywBQ6QGOm2+gIwSMUy2S6IHknxhPrNN1/fi51pCh0UooxKkSPBo+xi+r9XDypZGTXK6eptZZ+f4DainnQ7M3ArPOoN0yCRXWhlBMLQAC8eIy1DKxwYSUyPVJssKyWJRIaqn7gzKCP61W8tDNif5rrWYxlMvPEYYUzLWXRIaHjkfMl5zYdz+y2PLPzAvP5Hs989qOM5w1dDEynNUYMpY8YcUyxzOrIYMXhXOonzZtzSfacFmAFa2z2vE4+09AQbKBnYVC0rDiIVmhNpFcm1lgUCusoHayt95CypL+6RlH1wTRpj5cFZ5nCciN0jWlL1y55iW61j+/bjKDSlFtZ9mlc/l5jzOGqpIgWTLrAsjp8wTpg2pTj0KCIV8QmdrVQOryx9KVHb+7R0T6H16+x+6lfYvfm8zz6+IOsxprjvR2unL/Ax6+/xPve83V8/PbP8Z4nfh0//KFtLl/8AO3kGj/8oz/JxUtXCDu3ePLXzLnw2Z+luLOFrl/lQr/k6X/8jxi97z3o1QcZPPguTLmWch9ANIZgLEjay8VIQt21JrK63qfr2QT39YGo9z2QpWiI3P7IJ2htoDGBaTOj7jrayS1WNyzxYIfz584xrQzTYcX0cIzdG7N//SZP/Lqvpduo2H9umwJhuDKgbhsmz7/EsXPEYY+yrfEebIz0L59Dew4zUfbvbLMhAxobOXfuAu1shjiYbe/RTmY4IuOjI3yrxL5iS8dgOExbaIogpaNnhogoTT0neM98fEToOlzZIwRNLr4rKNfWcdZy5/gGRb9HUVVUa33G+wfU4xmlK7n88GUOX9phdHBErz/EbcDhzh1k3bB55gy7swnb27fQS5cJ0dNqRxMVV5b0Bg4XoHBlLs6KWLegLTn5J0alKEpM3gjHSt7qNUqipk/ZQIIH59yyyj5G5c7tHXZ29vE+0vmEaPN5+85ESaH4rqO0BuMKmg40FER1OOfolwVFaTESCF1K+AdfJAUVItIFjkZjLly8mDeKimhmhE3/Js9FJPE8Lekj7vEQ0Ihqglsu6kKSFyGZsn0B4VWsBDTtZZX3oCGDLsjHLrybdP7TzL7zuknVy6StVn2EJni8tVgh76CYyAItQmHLVNUvQmEtBS0Gw/rA8uDaCmvrHb1CmHlDXfepu44pnsN6zvHMMp0ppg+2ssQisMIUg7I5dLhDZTybczyrCV3EqmGgwkQ93hX0RNmslH6VtvcVwJiw9FIXNUGLZ40aMWj2RjICjgJtU02Cc5GzA8v+3NPrB6zUELI3a2B9YFkbpM2mnvyqr8UNUsgmDcIF3ShISPlJ68HvjOk3Z2lXK9ywIlaWOPKo1WzoaC7WXYAl8vvFObNyUVn0WVYukjxyxeJxeAcrBAaNMC8rjguLq2D07NM8/Ys/g4kdRRu4/tzLSHWGv/dDHwd3icPtOU88UHPtpQ1+4qem7NY9fuSFa0xv/nZeeKrCuU2m8XE+R8WgKdj9lWs82TdsmM8Qh8/x8Y98kmbzUc49bLj5C7+IWf0oj37Tv0l/uEIXQK0lSAaw53G28KAS5iBtV63BE9W8E/THGysQEfle4LcBO6r6FfmzLeB/Ba4CLwL/jqoeSjJb/zLwW4EZ8F2q+rE3ukb0gWc//EvsloFRbKjnY4w6Hnxojb3tp3j6qc9z+aFH2bQ9hqtrzM0hahU3mnLjk0/zUPVVmKAU1jE7HqGqNNMZRdljuntAuHEbFZsmeGEwx2Ncv+D8ux5m9+c/gx30MBe3qLdnNHVDtTZgundMmEzwlaPVSGLCs4izKTYLmDzxog4T1009Z3w0op7NWBtWxLbDuAShdVXJYHWV+qWXOL++zuxwiu8C8+MpEj0Ujk4i5cYKvRzDv7Wzg4mRo50d6BnEGnrDPkf7+xAD9AS72qO0DoktOMUW/Yw4UmJsMWIIXURcibG6RAfFkLivErNtqg9JqZwFoknwPixRTtPpnO3dPeq2o+26TI3CiXVnTKJaj2nRJwqmE3pSpIpwkVS7EVI9irFCVVrqXNDYhYh2noPjEW0bKKzN10/7tiu5lFtyzoKFR5LuwdhFHQuoJqTYgsY+xrxla4xL8INZhNZIkO8YU02GCDmJ7vJC9MrkrYgwGPS4eOEMOzefh6ZlzZYczGsQ6KNU1hKQZS2NM4bCFoSuoSgdzkSKnk15o2aGsatc225pfCKarDuLrUpCWxOs4dZxw+WVkl6ZtiY21jJt4eXjyOdvtkjo00WDDS2XB4ZLQ6FfGm5ODC/V4MqCxkPn01bNiwRxos2Pd1n3i2fEJO4lMYriMabARCF4xRXQqwpsA9WgJNRzrJpUxFp0DAaWrdUzzBTOXr6CuhJMmRPyp1BfMS6VScieosn8Uou97QlpXxLIIS9SPiCl7XQZ4tK8LYGB7NWkrcbScFRo0pgsQ02wMDZDOrvOcD6l2v0sn/2xf8ijpuRzT19jEoe8+IkDbo2H7HKZtlsB+xi7ky2Y19hizu3h+5mPNrkgZ+k14HHMik28RspiyiiOmFzY5GC/wY5n3DRbPLPb5yduf54/+M0P4nc/y1PzH+Wrfu03srZ1jqNW6VB8HohLYLWRhJrMzyRy6rnfZnkzHsj3Af8z8HdPffbdwE+o6p8Tke/O7/8E8FuAx/PfNwB/Nf/7uhJRnj++wY3jAwbrWxgTGPZXoXCMZgeMD8eM9g8ZSp/zwVGuDtP2kV2LaTzT2ZyVrXXa0YyubhkUDmcM3fEE09QwaZkbx5Vv/nqufejnefD978OUhvW1DaYXzwDKdDrj5ede5L2/4deyP94HHEVRMGrqJbmdK3sUZR9Z7AGiKdsmhaMaDvBtw9H2LrOjEWe3LtJfW0GbQJx1GOsSimVrnfWzm3g6XLSsbq0zPthnMOjTWE85XAUVmnLK+uQcTb9kfvM2zfEMEdha2eL41k3mRUe/2MAWBdWgz2y8C0VDHO2lRGbocmmExUqVbjeAK4DQAmBikZPpZU5ZW6xNm0ktFhNrLd579vb36HyXNqyyiUsq2oAbFlTiMAjROLCKqkPVE2OXeKCcA5sKCWMAKWwOoVic64ghTXRnSyajKfVsjh0O8T4l8rvOJ7bePIFUk/40mSXVGKFpGyTX4cRcua74ZfEhi0p6Qs6fJJqKBeoqhe0MIZNIGrPYzvYEhaXkmHQEH2rOnF1ndaUkOI9QMqprClswKBNKZ96mIreQMsFEHxEHYqEywlkLg76jNIabo45rOzXVcICVRC1ehy6TLireOGZdxEcHvgPfMWste7OScVeCFFRxxuNbhke24OKGoTXgDgKjW4FaDJ3pcdSUVDiq2GBMYpr1ncfGAMYsFYoxiY3W2BZr0y6fGkEKqOtAWVkGPYXDwGCwzqyJiCrOFlQVbG2u4lbOsrayyZkHniRoiSy2CF4ANjSF+BJLAXRNS2iT4peqJA5LoumwXUyUK+kniYRT07qxUHyacxuceh9CyFvI5i0Axh3lDFzT0EbhuCqIUrF+dJ1nf+Qf8u7NM/yjv/Pj7O0cwDxwWQ2PSMkoOs7atMvkqB1iguc4zvl8vMy+PsAV74jFOXbkPF1xha1Lnl/z0DHXP/xP+MzIcjyN+HnJrL/OrXgGu9/yAz/0C3zN1YKtao+P/tMf5Gu/5TfRP3+ZNoBf1ORYBzagRomFYAYF8bjGxLS19b8UCkRVf0ZErt7z8e8APphf/x3gQyQF8juAv6vJF/6wiGyIyCVVvf261wDGRuivlxhnQQNrG2sYByFvmVoN+kx3jrnTwIXNM0zGEwa1o7pUUqjgBhUIVP2Ko1u7mA5cVG4fHnL1q5+gvnab848+SLNzC5m2FFpQuYLBoI9EGJY9zj36EL0Laxx99tNMtw+Ix4eMY8u8slRbQ1wxwNiKECJBEmOuGBKfUjkg6jFH+/t0TcC5Hs4WdKGjmzf0ipLQdVT9Cussk/0D6gPL+gPnGaxsMJ81uMwM6sqSuZ1jJMEKL10+z60b27S+RSL4wrDmepRlQW9zHbWCtYpooJ4cA4qqzzFtQfBYU7KsMs+xYqPJG5ElHXoKCTlbstxPJEYmkwmHhwc4KxSFYVY3hJA20SnLgm/6wDewe2uHp556GikcUpR4ETJhL2Vh6Xyg8y0h+kQUZzQRGpoUOnJlgXOWup4zm44YDkqsyVpPFlXxJsMl4YRNOOK7lLCGFPcW0s6J1maIct6fOsREUgiZXDLGxFGVx2HKkyw8HJYwXo0xkeuRqVKwhKgMhysM+lWqRC9LxAkmhkSJYtOOh1FS/UkdA5Np5Gy/wIeWShznK8EUETUFd8YNM3W0scSFtKBr8AyKAozS+EAdTA4veqKJTFrL9sEcZ1cxeM5uwEMPC1srAddrUDdgrRQuTCtu+4I29nlue8ooOtYsbK2BKQXjSqyfYYxdJs8XeYYQGpwdYCipmxYkF0kagw8tg6rCxAGmD352hLOBsio5s/Eg89DyxNUnQDeRWGJIW+wmgEJmAVjsU2MN3XiOv3lMf/0M8zPrhAdGdLuH6KEnbTN44gUuvN9FOEtzPkRz/y3ep/hY8gTNwKEmUARJ+/xQYnTCS5/8aZrdMT/wYzd45vaD/CY55HJfebI9YjM2eJf2J1ItiJRYEcQbXvIdz8U7jErDx4rHueXXmDa7bB/d5F/sfphHzhU8+OBlJh/ZSeNu9gyiN5nj+KyNvPDikPff+Tl+y3d8C5/5iR/jK7/1O3AbF7EmYG1La23eR0ahsrBSEYsG5w2F3r3VwNslX2wO5MIppXAHuJBfXwZePnXcjfzZ6yoQUGzV5+xKwWikxJD25+jalqghFewpbJw/z6brYY5T9Ws1rGhu7zBd7RPrc9Rty9lHLnPxoYuMXryNHDc8NOyz/fln6A83sBWU59fZv36b849fpfGejUeuMJlNiT7Q21ijPTpGD49BPdEVjHb22Xr4Cq1kfLlA0FwwdaoZrU2xX5qWqiw53N0lesWRlF9QpTfoJdroXkV/2GdgHPPOU1Y9IoHp3oRm1lAfjJiOjpnuHWCbhvl8xIozHE879ie7dCjlcEB0JZPjGatbQ0w5ZOPiQ9Smx83JMygJDuqsycohsXe2reZd7xwxGJxLSbu0aZNNcFe65SLddYHdvd1ckeyQkHY2DBqI3jBYWeX3/a4/wC//0kfwLTz74nPE0CIGqqLEFSbToXS0bUvrO4qiSglra0FiQvcY8OoRH5jP57lYMKFqNFPfJ5JISd6HmLQtrE3Fj6jS+VTd7cRgbZGViM3eRi6+R1IdSUgUNwmxk4KS3oeM/EkQUpMpapKksMKi0MtICrFZVyDq8dpw+cp5dm7uEgWaaKl9m5O4gWhgooE29nA+EggMSwOFMu88bZu8pbqtWaHjzEqfHobDeURlQBvnHE1bjmpYHSY12vrEKIx4yr6lt97HrVncACyGeevwraNa7XG5v8XWxgVu3XiBT93aIfqa9211vO/SEEolVharJGqTvHe9c46q7OHskPkksLczYrjmGGyVzLxnNO04d+FB5rLKQ1ceZTT+JapezebWGu9+99fwzIs3ePixJ1EbUUneqKomAAWnmJM1EhViG+jGc6qgFK7IGzI5WgkUOea/zNPEuPQ20gc5OZ+jnKnH8vXy+DFO6PoRLwN6foPNTtnd/iw3P/tpjq/P+ej1NYx7L9/cfZQHmz20M4jtJSixBkSmrMuEHoKo40Ed8V4jfLTY4JMi7OuUoyYQ98d84H3v5Ynf+M18denZeuZFmniLnp3yQnPIz3Qtd8x7WKvXeKHe4Oc/eodv/YqzTJ/+OL3f8G9jZUYhc+YyxKpBsueVmIvfGQWEC/lVJ9FVVUW+8N15ReSPAH8EYH11CF1aoMoy0PkC341p5w7XW+X/z96fxFq2Zvl92O/rdnea29/oX99lvnzZVDKrWEmyqkjaokUUxQY2IcECRIEDD+yBAQ+smaeaeEB4YIAjW4It2TAsWIBoyTL7almVWdlnVr7M10QfcfvT7ebrPFj73IisolHshHwDbiDyRd64ceOec/f+1lr/9W/mN26LBYgSSX9jLfNmhgLM1RJ7uWCjkmSCfPSYvdfucPvzb4rpnlYcfXufn/xX/x+e/ua3ufG5t1magj/8h7/JbH+f5sYR2UJ/vsRNK7qh4+a9O1ycXVEUlsmiIPUDkSmD74g5jvDqCPEoEeRlk7l8/py+62gmM0xZUE5qidJdbmgvr7j11j1WywVVVWCtRZcVq6fPmM0Uy+fnDOcLNsu1UBJzwmjF/HifdAbt5XOM0eQUaYyRLOZhQGEJMdJ1nnJ+SFaldJBRk7UjJEVSYFI7Fgh3DdVoZNEvRSNdGxCq0eqbDJvNhtVyBeNuRI0PamEtIVq++sVfgKB569V3ePLwhPuPPiUgEJkrZC8RYqCnJ5Nkga8KYhRXgDTqALRCRvWYuLg459atmy8pznnpl3wORoH2xDAuxxlt2jMjE2ssCFr+ojEvAqe00uQQUDoKph6FjqrGVD87UqBH7/qXvo8X809KmfV6hUmZIhraqw29X+FMph96zr1YTeRR3JhzEhfVIJ5OwQYyEZckSKspM00IpJC5M6+5t+soikC90Dy47BnqgosUeNzCjapGU6FyZuo8bR8YkmERLctuh0bDhparjeLjEyNQVrvik8szur6l9Ws2aD69iLy1E2i0kUQ95bGuYqvoh4wtHNEruk3PbDLlvfff5Icf/oCyqMkhUjcTqtkBtqqxhcbZihs3X2XVtnz+81/k4MbbRCW5MeoleOlFvPAII/qIsYpu2TIdRPle1iV54ujMWnRDGdiyj178KK6nxpwZg8EYC5MUj22WS7xqCb1jOSlR0VL3LfnpfQ6LO3z3YSbqm1zqwO+qGRu9oteBCo9NAR0DoLnSBpsdZ06xnzpKVfIsVnzcJy6KFaYM/MLhPn/rK3+aZ6c9z//+/5OvP7ukm3nWa8fnw5yf5I7naQK+59Ic8PHzzNlVzzA85V6IJKS5MUqDcigVyCqjjL6mKOsxnvjnff2rFpBnW2hKKXULeD5+/BFw76XPuzt+7I9dOee/C/xdgDs3DnORMnioJyWVKbFqoN57jaMvvMv+jWMWZ89ZPLmPXq7BBmxt0HWFnZfkypGiJ18FURuvW4wVqCYNA/WdQ47fe4MP/8E/pah3mN6c8d4vfZXLkzMe/eGHHBzv8+EPP+SVt14n2cjOK8fcfetVfvAH32HwMgUFFEU1wdS1uLC+hLNmDWoIPP3pxxSuYDLfwaeILQtSF+iuVtjCEbQmRvCtp55KkZnt7WCswzYV/dUKWxZoHzFa4Z1jnXvMZAqLM6zq8aXGWEv28kB27Qb/uOPi5IrLs99n/uotobOO7Bo5/EYX3hQJo7GfMY6YAvJ8RbRTcsjGONJZHX4YeP78Of0woLXkRsQYxG4ly3Lv8PCA3/yd3+Zzb3+OH/3oQ6xTo3V5xCoNKtKFjjz6Ixlt6PuRNhv9eC8I1VUZmQlWm/ULqiZimphGx+MQxgW+ULJEKxIiSpnr3dSWuaK1BSRiNOXRvXQsQkICUKBH37TRv93aYsyIV9cwXkziYQaiTTFJlPzvfO49Hv3g21gcTmsGJfb9q/WGEMXiYmuNYdDUVnK7Y1YERgFdjpQWbs0se6XBoZjtJiZ1j7aOaTLsDJmhC/TZ8GxTEqsp2sFOvuJwUtPFxKLzLJeZHz1qeWgTzsO6S5x0A51qUSkRYgFZo5WhZOBg35FdZDCgfcRpham0mG9qK0UvDWQbqRo4edLz4KMly/Ma5iU3b93h6OgOg2tYDxtc1VGVR7z7xT/LD3/0bd783FdkQhynOD1aNmzFftdCQCW5OjWO1emGeNpSvjKhOdphfWPDcNlizwNFsNe06usIabmBXvo13jRbaCslttIKUqZIkTbDlYtMOKE9ech3/ulznnxyD1NM2LW/ySftM/YLx60SmtiiiXhTYuwuuS1ZBjgvW34nZCgdJ9mjgmOmb7PHOTf9J/z3/+h/z0EzcC8vqNKGS6/4SJW8o2b8qrFcDAsuaXDN65xFyz/57gP+3T//Omf3P2Zy7wbZLyhsIugSZT3RedxOQ+suyMO2wP/8r3/VAvJfA/8R8J+O//1/vfTx/5VS6r9EludXf9L+A+RmmBSWZB26rChTR0Bx+M6fYnbjiNC3sliyJaoM2KJm+fARR9VdfF2S93axgwRHRRRDjmJdQiJ3PcNqYO+L7zM7O+H7v//7fOmv/wWa/Tnt0xPiesP580ypM3HZURxNQRWSCFiVdBhqY4hkmvkupqgRAGtLbdTkHOgXK5an58x356AVzjpC29NtWuqmZra/h9MWYyyb5Zpy0tB2LTu7uywWK8LFmtR50maQDPS6hKy4ePCcddcyaYTN5IGmqSmqkhQDrrCsFktms4bjw1sMyVzbPgzDGFuqxMZDX9t2q3FRHClcIT+DJDnOKYs/Uoievves12uiiCIIYfSx6gMxK5rJlGa6w+pyxT/9rd9hsVrTd5LToLTGx8Dgh/HvgnNyu4lXlRozHQwpK8IQhJ6qEst2w2K9Yj6ZyuePuxmlwFr53jJJoChjRyW9MLbEMFPihqXAi/26UtLRxShQSsoCj6cUUWRiDhJAlQMpiw5iy0LbLpVFKyMOsTlnjm7cIADaObIXq/9hNLlrrMW6gjCM36uC2iqCE/dkO+5RNkNBfxFQRebgoMKUEVcqsnacrTIni4F17yBEyIm2i1ytEl3ccN53vDOvePtG5vHVkuVq4PIqclomdGoISeFZkgmUlMxJZD+w4zy39kpe37NUTsgEEc2gFEUMLzUfBoUhhZr1qsN3hscPT/j8lz9genhI7xVVNWdoA9PphMpE3nr3fSgcR7dv8Or7X0XbYtwlCenhZUuSaxZYFlhVR0W66GmfXzG7LdkdZlYQ5pZwGSUfHv4YdLWFrV4mWYg+5MVBm5OQHyZek7SlrwKPn/+U02enfHKuidUOO/77vG1+j7vVgiJalLec5oJLl5gouN2fU8ZEcpZzlThxU37S7fCh2uXZZIpKJ3xRn/H1zSMe9IHXPzhgj0P+8L/9lNLVBLVhR/V8bR75rXPP0u+j3DGUEzb5jIePnlHcvWT26m00UvP0mKapUOKaLJnA13ugn/f1L0Lj/S+QhfmhUuoh8L9DCsf/XSn1t4FPgb85fvrfQyi8P0FovP/xv8g3oVDUxrJRBqsTuetobrzHZG8fozVtu6FdrbBFgVGJuqzI5xd0wVO5kthHWg2VKQhxQHUtq+fnpOxZPHzG4mzB537xK7z3N/4Sj77/CR//s+/w+hffpVWe+axB7c25/eYrBASHTz5gy4KduubmwS6rnYagHMVsLnuAlK+55ih5PhZnJ5gUMa5iuVhRFRXBrKlmE+qyYu/4AFM4qrqmLio2F1eY0jGUFfjA5mIBMaGGICN4TNjZhN18RHj8KecX52RrcTlTVhW6tJjC4HNkjWL/+IiDe7c571bk5WjzMWaGiJmhGR1nJfMjj1NCHDO2AZy1aK0wWmwuzs7OWK83aOVYt2tQEIKXxLws0Nj3vv8D7t6+y5Nnz+j6DqOd2DMkEShGoE9rbCWFympIOVBYi6IApQlZlv5hGLBOgrm6tmU+mcr3prx0keNeRKaFrT5FKLoxyc7CWFmgxzBmh4+CSEAEg8Rrt97thIFSKCOFKsSR+rx1+uWP4OxZwqaM0ty4eYekLTGJzcqm6+mTTB4mQ+0smxQYfEZlzdpDoQJVIRNsUIbTAU76SKMcq42ijo5JB3rQnHeeqyGxjj0BPaYw9lxedbgYueMcOwUUTcfeTsFm7bi8gksUOqyJYWBWaEpTUTmHI2JzYlYb6gpm02FUemuMG33jRnpoCHl8H3tCrOj9wNd/5Us8evKQO3cOWbQ12vQEE8AayqamPniN195+jecf/YAvfvlPY6sZgRfU261mY6s52S7rY47YrNHJYlKiPV8x8wlbGYpZTT91JBNJw8/amOjtxJG20Jhk86iXdiWMsJbWmRA8tjVMUk/T1VTDDTbsUjcnXPVnfGX5If+xsrjoKFNmP5SQCpYqsdIthYm0TrEqM39GO44XBR+rO6zqG0xs4qsTxV+bJezzj/nRMlKt7/B4XeLfuYPjhP3HHzIfeszeDJcndFd3qXduMZtZdsKMehLQxkHUqJFlpfQY1zBOWy8K8GehfPyLsbD+g/8/f/QX/zmfm4H/5b/0d6GgKBWdyVyen1AqTfvsGZuzB8wP96l1x8FeTc6KsIjolJncuIHyibb3kDriYs1alejGcPbRJ5z85BG7tw/pzhfooHj2k08oFZRVSRc8p9/7kPZqyfTWMalypJioj/fo1h2TpmHZLskpUO5OyTcO6LqBoqzExG/b6Vy/bs3i2VNUjLSbntgNdG1gEzQHkxpbGFTpKKoam2D3xgG5UGhrIULaDNRNQ3e1pOs6YooU1QQ3a3DOsHj6CMNINKpKooKiEbsPv2zJWlPP9onpRRiUyqMjaQ4MGdy49M8pYkd4whgz+h+pMX88ojHEJEFQi8UVIUiOeLvZkFKi7ztQGlXVDLHlxz/9AZ98+iH9pmeIPTEGjLNiHZIz3eBHvUlCG8sQI0kb2n7AKovRAmslZdBG9iveexaLBceHR9cQBwgT67pjzS+6M2GVIZTXKAVFrFBAqUyMAznKASYSupFUoARLjjFDlulH6RcBVlsdwsuHFkBSkqZ3fHiTarZDf7nAWIliXQ+Sk+2sZdENBJ8hKkyGTUzoUeVtTR7zTBI9ERMrFivHxdkak4NAMDYRVcKiiV5TxAylwtvEDat5rXYUtqdymsYZdirNwWyg6CaEtCFrS1UVEgsQMzmBNg7nxN7FaFFia8b7htGriq1RoAhTa1eyvz/h4PgVTi4u+cH3/pCDo9exOwqlM1pPsLrk9r0vU9Q7RPWUV97+JUyq0HqFx41f84Uo848tghVCOMGxeL5k+eyS6rU5bl5RHsxIu4nUCotrq/NIQDQaMhRDxEZFSAlJdhEltx6bjZgSPg20OdMXEVtozvqBQGY+KYgXhg/0Hgfrh0RtiWZgaTwbF4kOtPJUXWAnGm4yI5F5SuLo9SN++dZdXtORr1Yl9vRbPHCZ5GacPqg4q6bcfvUeN91zDo8OOPuDHzJ0U6p8l356iHl9j8+/dsArcc3Hv/f/YGfnkDvvfQAUFNoTiwrlM7qy6Kmi2GnIbQf+ZYXSz+/6TCjRlVI0s4pPnz4V+MA59g4K9kpPGRakCmaTGTEGnl4FSjNh4zxN02CXG1GQR0NOnm69Yfn4GXv7N9A+MJvPyFkzbFr0usf3Ha+9+yaboaOcT+i1QB9pWtBeLEg+4aclobBcrTdYUwgcZix1MxfjPsZI1PEZSMGzen5K4QrajSe3nuViSbUPa1dB0qzKBlNM2b9xRB8GAonj/Vu0q46qaejdUg6/nMk+0q036MJJg2wN5aShi5rCFuicaHamrNdr+uyhsFy2HcvulF7145QQUSrhQwRrJIsEhVKeqAbJSo92hLXGfAwrfjwpy5J9vV7S9hs63xPCQE6Zfmgx1pFDRvfQdsvxoVaokBi6Tpx+yWNwVZAMBzIpj15USoMphD2Vxl9e9knaaEkiDFJItgr37fXCtkSgsOAlpc1ojdayYIyjekwgjEBGMsBlrwEKPXLtFXbMw9AYRJeYyEqYWdcsniThWy/dsZAjZcqUtuaq8xRZo5VDj3YgXR8JStIIrVagJZ1w5WEesoQlaUNJpBxVOMu+o8mZ3VKzXyvKWqOcouszXQfNkNFlxrjIbpGZ1h7TDGAsJINiYNYYTD0wdAFlFGOYJzkJCUV213Kosu3W5U0RYkPOKGMw2jGf77C7e4jKNUtr+d53f8rF1SnvvPcWbXdOzhOMhtLNGFrDl7/wyzx58H3e+YWvoWZHY+EQC3UJkjLXzzu8KMhaiW1KzokKy3KxYfPpGdO7e8T5jOqopb/V0q1aJptE00MMsLaGXssOr0wKl8CPefSMIlDxTZOpxxjDJGlm64huFI83A6ebBa/88ud48psnPHoY+Z7vuKBnsJFdYUHgc6ZJkXmGidas/MCJq/lQH+PnNXs3Wyp/Qr9/hK52mD2z3C5WPL34DmrP8dOfPKAqd/l+sjzL7zF/dElr4L13p7z+1R3ef20Xfd+x8+5t8sSiswMKjMqjAWkkKyOvS0PMceQK/vyvz0QBAcXuzgH9p/dxszmHd2/z2uc+j3aGnLZiMOF0d53H2B4VI7YuMDdqzIUh1B6TEz7Azs1b1HXDevDs78/Ye+02od+w+OgRadAsL1Z4E3j+8AE2K+zBDvnkiupoj3o+wRaGzcMlfTuQmoIQM001YdIIJq+1IkcAEaG1qzXrqwW69wxdR8yJ41fvsbu7j1/2xKuWTXGFrkpuvnYP4wzt2XPaixUXz6/w51ecP3pC8h4KRb/xmA42Hz/AlRozmVD049RQOWxlrsmmejqlnu4RbENZFxhtYSXYvjGjZj7rUXin5eNWGFUQxk5NFro+6et41YvLSwbfs+47+jiMO4bAwIBRmRw0tPJghhDEIsXL4a6TEVv4NGaOjLuKzM+yb8haoC4YhYVyqCWfCD6M8b7ijaZe+ntbsZscEWrcY0jHjFKj31IgZ9FucA2ZCORhlGUUNhO9F3dflVCjpfvWpTeOKukoZmDXi9ucEpFEYQtu37rNt7/5TYqyoSpKVn1LSomyFI8rayxNU4FKLJYLWA3oXKCVReVESUKngugN2ncc7GjeOKqZVD2mRBxbhwy13G9RwcSCKyxJRXLWYu9iZRLLSYHJmHJ8tAyjmE6hkh+hRXnPYxQfrBCFSm3saJ+RDdPpHrPZLpIqsCIRGMLAzVsHvPPOK/zg+0+wVtyDtVbgCp48/ZTL/pS/+Pm/gbPyvWsj96rCjFg+jPgpakuXjqCiorMC1cw9+EdL0iKRblbkSYk9mDI89wybDRNl0TFT6FH4OeqyktXYKBkeIb3E9hon05gjqgs4VbDUCXd0xPz1O0xT5pf/2tfZ/JPnfPN3fptXJnM+fxmZRE3QhoWKdKaj1IZF1HzL9zx57Q0evf3XaVc9q2/8Foun3+BBZXmjnvGVomZPdfQNDLrnsRr46Oljfrub8DTdZlI5jr78Pv/Tv/x1Dm4OFFXPD3/7x8wuLti/XaCrjlXONL2h8ApCQ8prKSQ6EVWQ5/wzcH02vgsFTTXn3p173P38F5jsVNTNBIhjxjhkZbhcrFluWtzUUQJD8OzcPGCxWFDPJvRtx9C27Nw8JMWI8YnleoV5dspsNqW5c4uDL+xSzGq6zYLJvZucffwpftOzCj2TnLF1ScqR1ckFk6qh0wqco9rZw9UNemsxsLUTULA+O4Guo/OJFAcKXVFGg1r1TJwh+J55WTB0LfWdmyyXS+pqhi0qdo8cz84WqJSxVUE/RHRV0EwnbFICIm7SYOdTrp4+YWJKyroihYhvO5QOYDxF1WIbCFkgFpSRA1ArNGPWuQ+gItpLwShcifcerTPOOWJUWA3EHj+0rPuOwUdZRKcx891Idjd4QlSopBn6gRgCIQpNV2VJKPddwDhw1kCStMOsxAnWjNkQeaTwgojJMuB9wPth7PrTtaU3GRTiSro1TtTCvRLfK+UgJ2LwwNZ2ZFSuJ1nU+hDw40NIEphP29GyPIxGgmb0hZLGfIQK1DV7NG0ZP2S+9rVf5Bu//3usTk+YT6c0ezM+eXAfoxPKe4gadE/hLDsqoSqDNduvlTFaMVGJTT/QuMisNlRVQBcRKotNCaPytSAxpYS2lqxGt2P0dTiRMZacNShLxMuuK8jUlSOoKKmSOYubcUgepQrs9vUi93RKCe8HvG8ZhsBmsyITMGYfP9R88xufUFQTfDIon0C1DLajMBXvf/HPMmnucN1Bqy1a/0JHY+DaqiPnjEZBVmQlEbcFhnbRsn56Tn18mzyfMRwl3FVis2wpYmASDMUIV3ptyCoT8pgnQn6xK1BISFpWGBSr5YBSFh16dss5Hz14yr15x/T2e1zdO0b9gWHwnp/qgWmGMit0G6lUJuFZmJJHtWX5+i3+4t/+Dzj/wUP+m7/z92n7gXXf88mm5+EEfungmHfdPief3OfZq0eY2yVvpZr/2b/3t3kyKdg5yty1G4aiZkgb7EJxXL/PdLKHcit6NC4aagXRINOxAzcp2KiIHQ1Kf97XZ6OAoCgmDdOiZDadUlSFUP+ydHtaKfIwcP/DH3H6+JKdV0viOuKDhhyIKjOcLzCThpgTpSl4dn7G0dEewXu4WnN1uqBbtbTHS25+5W0eff9D3LMVzbRkqQZuvXIHtMaWlsvHZ/QXS7pNR97bIRUl04NDXFFKAM2WejiK1K6ePmEYOlATnC6wxrCzswM+EtqObDSuLpnv77NYLunblhpH6Ds2mw1t7GkJlF6hlj3d81PycoWuHZP9XUxZsFqtaOqa4AdSLrHTEnVliN2Cw90DylnD5eNHtCFKgNJoHZWSRuUIRLRSMn2Mh7n3Xg4ylccuW8ANlRI6DpjsUQwopXHGEqLoJBJyIuUUJJNcZYyRaSSqMB5kClOIkjZFga8gE+JAGwYUilk1wxmDzgJhbAONrJXJRAExSBe7DdDJWeigcl/In6fRJyjE4Xo6gcw23jaPr0+h0daIAHGbnY5MSNtIV2PsKDzT15qfP367jomOSvHqK6/y9ttv8t3FGW2/Ad/T6ERlC1TOuJwww0AaBiqjMZU0KNtJqioLbuwqfOuZTSpmjZgcKm1RMUMal+dGQ0qYrcneS7BeSDJxOiehYCDRpylHvO/QGFQqyVnhCjBWoU3E5gxZjbbuW3qzQuvM4BecXaxQ2lA2DYqGothBYUWNXgayAaWtxDf3PWZ+wN1bb4NuxukiikU6iqi3B7oas1bGVaJWhOsDX4pJqR1piJx9+yOK4xnu1hR/W1MEQ2g7lj89w0VwnaEYKes+J3xKlEmezeuQscwYeT3eOwAhYqNmGjS/cOsVhpNHfPj7v8PiH/99fn0dOcqGx7VhP2j2BmhNxpuEjaCKkremc3ZuvkK9+ynmFyboOw032KcLPeW84Esm8kpdcP7sKdMI5lEkNhM+4CccPfjH1P+T/4henZOuHuD0Dfq+5aK/4qjcZaItZSqoU8LlhDYJ7wI5KLLV2LoQKcxnoHjAZ6SAKAVuMqVUlq7vsXUpFsdbIZfWDIPn9NkFQy+Ml5g8q2fPme9M2D864HzzhBQCTmkef/gxe6/epcSQug0JS+gHrIbprCZeLnnlzdd5HH/C2SfPhOI538HtzshAt9pQlCU2eFotMEffbSSQSRmxCFEZkxRJZYahRymL06CrhtgPxBhoNy3TnTmqsPTdgO16vMps1mty4QipI/WJ/Z0dWK4YVhsGa8Bo6tmEIXuctSSjqXfnzFIgpYGiLsS1szD0faY+uMGtt77MdP8pj376PbhcC6yztWhHoUeNhejj0qgG1uOIzzVfXhLjAsc7JebeLh89fcbFqqOPlpSUCJtyL0FROYgpVZLUNWNF1JhGUZfSVqCzJAyvmJAibS3kzGZocdpRF5ocorBqlEwWV1eX9H1Hae21SV5Ko+7jJQ1Bvj58Ioo4QiVyX2W21t8v6KIpJGL0MkluWWrajEvjSM4WskVh5eup7fzx4n/EBiaTlWY2n3P7xj4flpqrlaffbLBaCppTinL06tJ6THnUQDQjHTNjkLCpcqYpXMapxDDEMUkvXesctlkX5Jf2QEqmjjTmoIhKORK8l5zx7CmsHlm0fsyGkenDWDsy0hJaO5wTVwBURJkIVvJu5nt7aFfiTEP24k6sRhsNlaRQmRxJ3uN94snjJxy+8jZay/ccMS/we6PGkU79TAHMCoJVkDI2yhRitYFFy/DgnOnhFFWWqL2a6vYuy/MVi6FjFjXaC71ZK0UfIyZkshk1Pi9JQ67vF61oG4edOII1PE4teweGr37wOZ49+zHl4ntMNp73VwmdetKoTNRZgS54c6NoPPzTRx9xpAt49ox31gP7nUaR+Hwz4XAT6T59SFYDtYrspI+pS4fZPOPq4bdI57/KusgcNAcoMyV8+G12G8W57nnzvTfZqIIyRMoYRESovVDxx/dOjxHRn4Xrs/FdoJjuHXBwfMjZw0eEl0zuYhyppkSUcSTtaGOCWUXqNlx8+BTfeXZfu8PqasHu7owcAnsH+wx+4PzxCdQ103fucfTld3HzisWPP4azBTeOb3L79bt0lwuuHj5HZ00fA0PXUcwmYBTdEBh6schAj1kDCpTRY/cVCauW0lhC1xP7AdV7Nl3L3r1bzG4dEWOiUIaPP/qI/mrFgx99KIK6zUBYDfguUE2ncnjGSBgG+rbFKkPZTNFNQ1bCA6+mU5brNZfPzwDN4AzN3jHK1ezdfZ3dW6+9iN5UYiNuAJVEmasz5KSFeaRE2JiDAq8gSPCOIVLngTcOJ/zyu6/y/p0D5i4ydQmrM4Ubi2hiVLYLpbeLnmyElhtiJCdFjpochRYak2IYPMl70UekREiJTd8SkQcfo8lGUc8bgSWi8PljjELffWmpvaWByu/lB5PEhx1yJMUwdvuSQZ2ifMyAUD9jwmqDUdud0HhAh0QI29zurRL9BZy13b1kxik0gw8elSIGRe0KCqXHXPWMsoqsM3Fb5JQnZk9IHk3A6ozRWTy0suhtgo8yCY0Gh1u69dYFCoSFptDEJJh/7z3d0JNVxjhFURaAJQRF30c2K8/VxcDFWc9q4fHeYnSJdYWQBoyRe1zBMERQFmsqyDJRaq2xxoz7qCxZKlljtSH3HTHDyeWVpEdiiNpJWNJL2o8tlPXyL200yUrRsKjRbFnTJEf78TPUeUuZLWZWYm9Mmb5zi+G4ZlknBgdYYR06Y8bQsnFJj9gOKaVEg5U1m9Mlu2eZg3XPrKo4ePd97l+0/OjsMeWv/Rl+e/8evzWp+GeV47fnU/7bZpff0g2/3xzwG/aIH1DxKYlla5g809xZTvn3//z/nNf/1K/zuLjFf/3ogj949ZCdv/qrqPeO0bcca70gNR3F4R65mTOb79DMbrIaZjy9f8Xpd75P7NZM3rhN3J+DchRjOuW26ObRlt6UDls7tFWon3lffz7XZ2ICATCuYrazy5OzU9IQiJVBpa2BXWa53BCw7N2+Qb27C+sVSmsW5+eEn4CpC1I30LYDbj5jiD1nz09499d/leWjRzz6x79LVdfs3blFsTNHNzWx75i+dpvyyRPq+R4pBIbLC/Skop4U+CePcTszgiuY7u1JEliWw0PQ+EzXrgnLNVk7UXJvlkxMTbH2hGfn6FuWSV1zsV5QK8P6YonaRKZlhZ+U9KcbVg9OUDZTFSVRW8zRAa4uUZUjak3oA916yaSpGEKkrCoCkcvlGjeZUU0OyAmsc9iqETpritgx98Go0bZ97MC1KeXQ64OEWJHEDyoJoywOLYqMZeCoLjh+9x5vvXqHRyfn/PjBUxYbD8YyZC0YPAWFGvckAdHIqEzw4HSBtsgyV0lqY4oBo7ZdfyKQBX7AolLA6HydMyIwnFisCOVfAoEYJRzX6nIlqXTGiH/Vdlm8nVb0mIRIlmhWZ8qxwI6xuHrb3UsGu1ESM/CzbNPtwTSi+hnKasLdu69SliX9ekPtSkmxHCEyZbfGdxlSGieXKO9bhphFm6OVdPc5Q2EdWkNKgZxE/OmcwfcblBZIUOjJGWPSdWEpCyfPi8mgFdFrfKfoVwlnCgqjqbMm5MjVVU++Ssznjt19Q4gdBulsU9SQNIVtcLYmZEXOMl2Kjs2I+0IWt97Ol8RsyDFy485dESHqFxHAP3PQKcZwsPEA3Mb/piAUZ4U4NhhDpQq6R0suf+fHzL/+HhxZ7I0ZRV1Tz2ac/8F9lg8XFEPEoVBxq5dQ4nSjNDqBygl0QucemxRN71gUiq58ysHM8eN1SXh0xTefnTEcvEHxtb/Ej8OUjsjR7T3a5QX9cs38cMpP7Jqo4NUv/ln+4Df+W45j5N1bd+mvIt2rc64u1pw8OuG5q9lcOH6wUFwVU/reUeeaO9Q0V+esyx04P+X8O99h104Je/Da598lWEUeIlplYqEJ2WBNSdSJ5MDVFuX0qA35+V+fmQJCTLhJg0qZ0A8SjGQNGek+r67WmHLKjdfeoqAjnp9jm4pw9pzV40g9nZGVKGr1rERpze4rt9C7De5JgfcD8XJF9/wCM21wu3Nmtw5R/YDB4G3m8vQMoxU33nuNk/v3SU2JN9JpT3d2r8filx+IzeUVKnjSMJAuOprphFt3bnP7lbvM3rpHebDLsFjz4Mljbt+8y3f+4W9w6/iAp9/8kFvvv4mra1YOLh8/hxDpNhu0ilitCYMntBt8HMjR024GNu2AbSwkTSCyd3BAUc7IyhAZ4y61dF5EydIYXR2IPqKxJKXlEFZ6TPXTjBgJKg74xZLQXdHagf2jPSqrmDrFB2/e4tU7x3z8+DmXVxsePb2gH4J4SVkr1u9ZwCQfIlZBVoPsKMYuSiWD1TUxeZkQtFAUo5Y8aqsVOUdm04l0uGq0NkyMrKprSZXYiyPQXIhBIoVDup4YtnGgL7ysBAaIGQY/SFDVaN+ejZhlxhTHw29c7rJtlF86BF/UL5TSNNM5h8c3GNpH5KAJw4AZp4YchK4rRVr+1ohECKw1LrWHGFBZdj39EKkrB7mgy5q6tBA7cnZgjcBMI20ZIsoEjBUBpyst2gnMt77yhJWiVgUh9HgFOhe4wrHLlNZ3XPkO62qq2o5Jj5oUFUpZCtcQA2hjyeOkE9FoY9jyAE3MQhnPgRR6UvSjtxpj7vrPxg5roymq6hrCGoaBOMieitE9N2jEvytrZslx8ckJ+tYu1c5NzLQg6wJlS27pkmHvhP7kku7BOXkVBPYLeSyGhmQTPnqCTaxdom4yq6bC0jDdeNzelN23dnj8rR9T7tzG/ZW/wcPjL8CmwJx9ijnMHLx2zGA0VVPSNw5vDbOHK57+k/8DP3z+Dc52j1j95CGfTzAAbQj8k4+eUOkKpwp6s2SxeYaPG9LZ/5vHTz8mvvY5ah3Zvzrnwf0HfP6v/XWqo9t0KVNnQHlWNtFHmOSCIgWyCtsh+Y80Nj+/67NRQLKIrcqixmlNd7XE1fs4H6+7zKuLBfV0n4Nbd+guH9FlRT2tSHszTDY8vf+Q+Y1jZsaxbs/YrPcw85rlk2fc/8HHHL/7NouP7mOtxZQFhQbWLf3ZBaYPxMs1/abl8HNvoKqa06dngMHWE2JZU1XTa/GgJLYBKbE6PWN9saTSFbe/9j6vvP8mdTmnPt4nWY0qDPWk5s7ehMIWvPH1r7A/mRHbgL/saDcrmvmUq4fPOXv4FK0zO4e7RBJD36O6li4MRBKT2YQ+esmz8AkfB/Zu3UQ7S9aM+4c4CuGiZHgywlUgwjpjCDGQhihOvGSyHj2DcsTGHt22pLbFF4nz0wt2smL38ABlFLu14d07BwzHe7x6tMvzsyvuPzllHXraoGh9xGcliWkYsafXGqE0JYyqRoQpya4iDkQyuqwwSkGS78tpRYzDCMDJTiIlYcIAI4SW2XpWJbxMrEa/JHOII2KiriEvCdQSp2I10nkl2TaSlWRTaCt+VSluEd4XcMFW2JgBTWZoV3zvu9+irCt88OAFctoWrJgzw5CureVNVtdqebTANT4GQh9os8JpRWUghgEDmFzTr0UPk3H0gHKJunHoIqFUxFhACxRUWNHNDH0irBLOO5SKZAwtik1OzFpPowp2ygatB1aXLc5V46SXR62TYr1eU08mWwmqJOZlM1KxNeQCUk3oxHG4bxd88vGH3H3tDQ6Obr8kGPxZCGsr1Ny+n0q9+CkrLTRktAYfsKbAtQP222fMjg7ZvGqxOw3LuiU1FdNbd5ivbxMfr1g+PmfInrjc0C07srNgDbH3KAv7RzO0hmFHDvbpqiEelLzxa79EvzpnPhh+4yffZ7L7GrGuudWsebqZEK4idn/AXZwxrHYobMXl3/svOf/Db3IfzyxccbuasRtb+jQQtYgiD3NDkXtWcU3VP6LAY4cNT77z2yyefcQXfu0vMZ2XvPnFL3D3q3+OdampfE8Z1gQV6WyiC5kJBo0lEMhWoSpLNP1nYpH+2SggQOojelJSuYJ+tWae9oiI5XfXdyxXLbfeukU1mZP8FZ3RpCGxd/cmpXGcnz4jZVkeTmxBu1gznxr+8De/y8TucfDBO8wnDR549NOPcINh8ewM7wxFXeALw878mFQW+LYX24/xUHNVhSmrn4FNVFL0sad/dsJsNmU2mXP3S+/R3Dqiu+pYnZ4JRFJowXhDZBkytmoYrKOzEWpL3ezSLpaYPpLanku/xhaaqd1FO0c/9HRDSzWpyClSlCWdb/F9hzKa+eHNkR4ph9w2CjalJDDGaB8h4jsjO4U04sVZbCxSiEiwaJKwnpCobYEpFedXlxR1xU7cQRmIvkdFj82KvYmhsXOO9xouNx0Xq4EHZ0su+8DGZ9mxC1F2XOqCTtspYmuMKLCWyWLrrVWGHLFGQ4qoMVBKkgUh0BNjxppytHU31xTdTCYOA9aODslJX08PSXJNpeNHjdOGrEvUuKT2UQpODOK8ql+igrKdfbZLdb2lzybu33/AtKml8/cv7mlhlQXxNNIy4eQUUBFCNihd0g8DyUdIipJIXRTiWKwVyRhsUKQUhDodFDYbctSs+gFbZyZzw6QU6MtqJdBHULRrSP2A0wqyQEqTpqYxBtX2XA0bXNQ0RUHnNe26p6oS1gjkOKSehBtfs7weraOw6ZSDXGF0SRwUQ6vZpJaL/gnFfIeziwUHx3eui8SL4W3c8flwLQZVebx3ySQDnZKiU4XRCkdrSlPTP1tw9hsfMqnfQiVDUVv81OAnYu+fjxvsF46JKjLrPNmLZsYYg/aZ2A0Yp/DrljYM+LigVwVd72B6k1f/1C/xu/+n/4K/+OYv8ju//V/Rv3rMw9UG5z/PxWXi4PWAUwq9d5uoBr7xnd+jyTvcGHZR2bObW26GTCBhi8wz72mqzCRl1JBorMJj2LiSt957jfSlr/KdZaRxM/79v/rXWe8coOKanL3k6cRAlSJOJ5hEBhScR1IN1Y0pl2frazbbz/P6zBQQbRTGWpppzdX5FTHcwRnIKXO1uMK4Kcc376C1pqwa6VQ2A5eXHXe+8DZ7b97Dn21IXU+MXnjwKWGLkupgQrtcETYdRT3l7rtvEZYryk3PMg5cnVwwL/dYnZ1x+7UbXC3O8TFi6wnZOkxdC4NmvDISkRkWa3TO/Nn/8K+gdEHXRpanS+ppTTEtWC03RO9RbcSHQNd6zh49p2kapjtz4d+nRHP3mDtWEVIPj5/QXq5RSWGmFXpWYIywawC871l3HX30mLpkMtsTRhjqhb2zEjpmHPfJMWastQQy1o1CuCw7C2fsqL/I6JSwGfwQCCniCserd+8w258CkheerimREasVQQVqkzB1SWkKqmbKDx88xsdAKhQRMV4keKx2YnESozCh9Jgah1i6SOaIpmxKaltikh7pvbJXiaMnkB5jOgRqMuQ8KsnHjkyIYRIDuqX0bjUcIQudN8UEmHGZLtbtZiQDbKGvMDrwvsh+U7yMZGltqOqGz733eS4vnvLKq6/w6KPHxE0cKdKJ2d6UWT2XaS8HfLuiW2/o24zvB5IPFEZTWku1OyNoiESMTjgVaI14IekAfvAMuWBGKffgaiBr8E5jaiVWMAlSUhSuYEWPC5HSOWZ1xXxnik6ZbghcOCt+V17jyophaPE+YJ1BqwKrZUK6Zroh9F6VZRqyYz5O126IZNba8PDZc977whdZr1YvYL5twR1hRI1oMkiMX5drG/0E46E42pVojVHC2lMZlo/PCN8rufOld7DRsJkoTF1QVBY/EUuYIotOKGfZEiilZdoOFUVS+OcBu2oxYcNlMceYPXSYsPfKB3zua5/Qf+sH/NrdI/6v/9//C6unFYt0Sjz6gAcHO/RhSnYPOXCPMacN+zNLqZ/gl2s288TVKqO8ojua8qztyN2CV9DEuqSLBl9NOPrqO6ibB3z3YsFbX/rTfOXrv0JoGnLsKXIkGsumUoSuxwUokjBOfQrUpSWvh/H92GqRfr7XZ6aAqBTpz5dMyobUPyMMHbYyGFVzddmye/gqzf4uygjOKYarEb0Z8JvAnQ/e4/zTxygUi5MVm5M1qMjBfJcYPYuHT2kvzqmD5967rxMnFe35FXXlOD87xxnD9L03SFZxuViyXnXUOzXeaMrpRLz49YuONCe4eHbCK+++zs7xEZenK5ZXSwpr6AtPVZZopVheLpjNppRVRdcO1FXB6vSUbrWk3plj65J6f87enXfZeeUGz3/0MR/+499idXrCrLmJMjWWmq4fUCbQtz3RB3Jl2TnckQx0kHjPLbSiRSdhrRV4aFyQqzFx7jq2VG1zqeU1GQU5DhROM7UT/LDi6myFLSNt9MwO9uWARSCGEETcRtJkL4Z4eehh6NFZbFFQYlLolMYqhVeJQWV0WZCzxyiFUU50FSNeXhc11tYoVaDIFGyflcQwqqeFARSIQSFHj722KdmaQ6acrvUWApskKVLayuQSAyQohHOMz2OGxzjFidr3j7d5WzW9QlFVDX/uV36Nf/yP/jusNeRB8fDBI4ahZ+9gh9l8KjsQndBRMZ0f4OM+J0/PWZ0uJaXPOBQB79dY66kKqAqDImKchZGKHeuCvktcrVcYZdlLlnKd6dKA3lHkEsqyENsOl6nnDr9UpCGQYk9oO5ois1vv0mXH4mIpwsnCsTM9AJ5vtz4YrTHOXGfKi4pco7HiZqx6lHYMSRIItTc0kyn7+7u88+brjEsv+WpbxtX1wzP+7uUWWo37rPFgzHnUAY1wl7GGyls2P3jM0jQURztMj2cwSbiQqApFXQuLLBSabA1xG1xVWXRI5NaTdQbvcSEQ645keqapxKgp7/+Ff4+fFnN+8tNv8+bNY3ZfeZc/7OH3fvgNLj9+hyLvgPld/vRbP+Df+XMDhWnZbSJnywIXbrBf7uEHxdfu7PL+2UP+4d97zIOi4fDNA958+/N8/PQp3/eZWwc3eO9Lr/P6L/wyajJnHRMq9D8TyauufxLbiR2iVZjSUu5OqHdnZE7/dY/df+3rM1NAUj9QljW9q9EofNtRVnMZ3/WE26+9g3IFEFAZdnb3SKuBdrVkcXLF3bfucjxtePLDnzA/2OPk+U95+/A9unaNtpblZs3+qzfZ3d+j61qUNZiiRJUFxc4UJiVuf87TB49QrmK2e0ByJbppaPYPUKZAkcZkP3ko8rChfvUVnt0/5/L5BdYWDAxU5QynDKenFzRliXEFzjr0HhRas7O3w2q55uL5CbtHh1ydnoPaZXJjlzs3voKbFtz/1g94tFpw/pNPcaXAbM/PPKHrmB3MiSmzd+MWShcCW2QRCGYywxDwwzBqHRRaWzlEs2g/QhDHX60kdMmWjhgGrI5Yk2USGgwpDFQTR7vZ0AdPUddg7Qs1fhJqaYiyM8jKgop4n/BRMaSIMpZCi5Yj65FKq0aFQxaQRKsMWLLSJBVl8W8dXhmIAaPEeXVLv01IUZBHK8L2NY2HVBy1KHpkccXgxaZe5WuYL6YgzCeVwRpCkqkrKdmjqJTQvFD7/lHG5PbfMtZw+/Y9Dg/ucBotRzcHTk/PODzep2kqcg4kHVisLmEdmBRTTFOze7SLHjxx6LEGskoUKjGpLSEEhpCubUIKJ0mRySbqiaFoMlfrxHIVQFcYX2LOPG2TULuKqjFUdc+0VKyagosTT0DjdqfkynA1BC7WnezojKGo5PD3aQV0Mo1qy3Q6u6ZJW8OYr6IJKVLWBTGJtqS0jjrBbLbDdDajqctR8PkvcQDkl9htW9JDGtMfRz+0ypbYTebs939KpzN6WuIqR15sqKcF89v71LMGtz+jubFPbAxeR5bGMxDBC9tuUBZCRekTubgCbal8TTR7HPyVv4E/+YCr//w/Z3h+xq/+j1/h/T/lCJ9oLj75Dof19/n1r2fK5RW/9Q9WXM72IQ90Fz357inrzSW33nmLY7Phg6+/zvGb7/PIF/zWRw84uvcmf+Zrf5Ybb7wNzZy1cmwiZJOpVMCYcSJXCW00YaQ4G+fQztLZjFGKsmnYGwyP3eW//EH7b/j6zBQQv1jhbh1hmpppVdOtWnYPD1i2a0w1p55WhHaBIzDLGVVOWfpnBGsZLs6gTdS3jjCPn6EXa2ptWZwv2H/zLruvHOOMIm56Ln/6kPbZmXTIOeGcIy9azO2bXDx5hg6JaDU+g1UK2zTMdvfFkG20/1ZKkWLg6OgWfq24evqcqipRJJx2FKbg6vklOmua3TntVUu0gWa3ofceqxxVM+XTjz6mqmpiP+C7gc3OlPnhLrPPvc7qu5+wvHjCnaNdirqhnlZsujXd0BKqknV7RT3dIWmDIsDYPZOFvphypOtajHEyJIwPo9Q/sT8HEf/1foVTGZJnszqnIYlZIplCG4ZBJoU8JJL3KGcl3U+DtRCMR2VNWZVsLhcEFFiobU2KCgLi/ZR62QHYAj9OBK4oiIwTk9bYssTUBVolfPIYLbi5VRCiFxrsOI3EkEBZ4iig09eaiTRG2QqkE+OoME9BDiQDIUS0lv1HOzoexJRE45BEL8IWtXwJhtleWwV/SpnpbM5stsPF2RnWOqqqomkmKCUL+8ViybOHl9RJE/WAnVrmtw+YH1YMTwMpaygMzlmGNuCDWLSUhcNHRegjxiZckTAmMZ0aCltxMiw4Dy37rqKMlrAZ2DCQYsa5gHGJ+aGhmjp8m2nbc7pWESkZSktpHdYYmqZG6YRRmoRkTmTToHQh71keU/DGFy4kATBa0TQVzjXMdWLv4DaubEZhX/6Z9+ufW0u2Hxx3iypvxTajWabEjDGaBKCUpqZA9x7lA/3ZEu8DRRfYZM/V9x4QncK4mr1Xb3L4hVeIhyXN3Tmdy4RRrT6kiE8FTRCxYDYRrxxRD3hd8MrdN7nzv/hf843/5r/jx5/8gMXJp/w7v3DADxcPmBYlzzaK4XIOrx7STHqcXtLcvcnsqMSfOz5cwU/PCy7sjI+eeA6/9AGvvvFF3n3/A+rjW0Tj6EMeLXECIQSyNdIoRU1MCuUkNC6mgCksJhTk0uHdAENBcTDF9MW/kbP3X+f6TBSQnMVqwilwk4b96Zwn65Z+vWG4WnM7llRPP6asC5xSuGVPvFpw9cMfk01N3J3y5Mc/Zc++gaumEDKxKYgpMj3ao6wqcvRY55jv71H6zObslH69ZukDxjiuTi4oC8v+nSNy21EYjQoJrUWTrNTIEEnjQWKMWEhcrlAJCWZS4jcV1x2pH6iLAluWVE1mtVyjVhsm8wnRJ5KRaaBtVxRmj+5qjW8HfB+YHe7wZ/7mX+DZH97jp7/3Hdr1Em0jtjQ4WxG3pnRa0gYTFqXiizY5jnBASiQlaYo5e5QSiwytnUA9o4ZitCnEqERhFDon6qpm1Q+U5YS+u2LTd5RVZrIzYcgBT8BHT0aUy8lrloslJ2dLUCVaCatLaQmymlQVg98IyK3UmE1SsB4GKisCMp0Tfe9lP5Fh6HpJtFOQtKT5ySJW9iJkxP9Ia8gCqW13RV3XCXSURZyXIkJRHTFyyGK4R74WnrFV7udMCMN13sS2MP2x+xZxAcYY7t67x/NnT2maCXt7+wy+wxhRC12cXqEHS7U7RZsEvsW3G3RZYwtP6HpCiviYoVN0raQkdmqDs5ZMomqgqjN2piksZBeYzyqWFz19BIMlDqP/mU/kSqEbSxk8BkuyBdSWNos1PNHjSoee1OiyIuYVWUQ8hBBwOtG1HdqAMW58tSNjyoxMLK2JWaGcYq9sqOYTiI6ULTqLKee2GGzDo64V4S/DW8j9ut2vba9r6EttCzYYW+Aw1DkKwywMmBSIWDZePNnqi8Dl6cc8+NFHmL2G46++zY0vvU5TWBYBSD02eVQsUH0DWHxpUUWkCb00Q/Md/vzf/A+5vHzAxelPuHx8Qnjtc6R5we+efJdJvc/xL38ANnB++jHl/POcNDv0r5xxZR3v/OVfIKkDXH0P9hSRDqUNfRbaczIZHSOFeeFrFTPgDGqULpiqIGUoJyW6sOQKBrOB0ywWTf92if7iir0nni8oDibsH92g/+gjNt//iJ1qymTqqNo16eSU9bNzdIb+2Sl5sUbZAVuVXN5/wCqsuHjwhJ2dPfYPD+jWa5bPzzFNQe1kiaxLh3GWarbHzp27rHPL448/ZbhYsMmR3TfvEk/PieuWyfExg5LcDjWqihmzDjUZhn7MztagDf3QY4xlGDztcs3hzWMgo53GOku76ml2JhSF4umjUy7OT/nK1/4c641mtbgkp8ywblkkSNOaex98wHrIfPqtb6O0o7QFIW6kYzGa+d4ewDVuzEt6B7IadyF+fCS1MGhCBIswaOKoI9BAChQOdmcTNu2KFs+gEj4rMDWoJF07WgSHORJTGHFr0Z30ITMESNmSwkDQgZQCpdI00xmH01vcf/gYHQd8CIARE8ecIUYKo6lKx6RuxpejIcvX91HMD7cq+zTCVCkHtHXjgn/EzNnmgiRykgZB9j6RwffXGgylJfBqCOKrZbVB3HMiZnQu3npkba+XmUU5Q0gRjWI6nTHf2WG9EjeE81PP8uqcnV3HzmRKyInJ7gxtM+UwoU+ZZeuplcFZITQMweCSoykq+qElk+i8tOfFYMBmfJvIIdJ3iWGj0KnAY9lkIEdyNJio8b3Cb+DKOLSryWiGEMhJURnFdFqwtzvHuoTPlwz+CqeFAl1VJfWkFtaaVdeUabGZMigc0TuwoksJOaBtiVWJ0G+uf0bAdfGQoqOuMf6Xi8j1TumPTCxbCrBYeCBaJgCj0RmKUmOUJTWBFDxFcpiQqFSg6jKTdWR43nJ2/9tcfPNTmlfm3PrgLo0fc8d1Kbswfvbfl4V+pnUafXiXm7cOmXzZ8cGfl4nbsiaHnmSmRG3xIaLchGQ0SnuSGuiUou8SPQ6rPCQNOYmY1iRMEvt6kyJJBbxSRKtRpsA4g83CZh5cSzFO7IZIpQx52KDCMDInf77XZ6OA5EzqWoazSFkWmEYs1U9/+oB6/xZQY44MxWyCOb0ix4A7mNGUr7O6uuJqsWKyextbNYSDOadPzzCmIKw7hqS5ZTK3bx9issFMG9rVJ8RNjyZT3dpnfnDM00/uc/dzb5ORONrp3h7JlihlqJpGvk89YuOjlUNRWGJSOFfQzGvSItAul2xWl+zu7eKTROpu7/4UM+tly2yn4Yff/0NefeWYycE+qoGkArH1tG2HD5E09Fgyr7z1JqePH+GvFvghEnpPHzumezsUzQFp5B8ldS17Q/o5Qx5DnbYPoytqYg6S1qf6cRJRpDCgjTxGk/mEbuVYti3lrKLem5Bbja0N1llCEouSlBwGyzD0xCA02pRF7GS0Qo+q5aQiSQfWm0v2du5wtLvDxcUlunjhxpptRpdG9CFa6LV9L1PC9r3OOcqOZ4Tq7OhtpZUihV5uoygFTuVRNKg1AREwDoPHGFkOj9tK8miVo0cxX9KiDM/jkWLGZji9dCBurxcHpCjKJ80cZ8uxgCfm0wmLywvWqzUHh/tcpZary0soLU2C5XrDKnluNxNczqgEmy5hdKZ08o8X2tL7jB88xm7DrgzeKyyWOo8K/JxElhE9NmtIhoQhRIHrlO8pm5qqqnBNTVmXTEtFymt8XBLDEq0jOZc445hOJ7iyIiSDNpYYx59VMhIXPHqFpQgY4UKrLFNTip7tec9Io1XbVfDItnq5gGz92l66dcenJV/recjbhbsimzwy87I0NSYRh4TSFuNHIogSS5NiiNiQ0f3A5U+e8uTBp1QEmld36Crx50o6k+RbG+9XgTVTziQVoXD4DMussI3GKyBXZJvAgjeeqApUbpF3yYDuMGFCZQcUVxBqvBqFtOgxhll2csY4cpEwCZIxhBAIPlC4gjgMpK7DlI6cE2ntMesBLjcMF0vi1PPzvj4bBQRG1XWPriakQ4uLmnyxZtU+Z7IB3Uyp7xwxufcKqinwqeXkt75JfH4h/lAXkp538/U7dOdLnv7kY4rdXdrzE5Y/bTiNiuNXb5GS5+rpKWnT07kler3kySf3aXbnTG8e4v3A5eOn4mTarZgeHVIUhWDxSg7K7SivtQYTqWcN3g+UzqKqino6wRaOYRhol71QgEdP7WGz4Tx4nj94wC/8+q8QjUUZT+kK2i5KvO2qhdmUhVlzcHzAG196nz/8jd8V19Ms/lE3bxxJkFDecjSkq94yq16ItbSY2SWF79NIrcykJEmECU1OA+SBHDSrVWB+uMvdnVfEV0plaltzenpJ0gWWAp8SMHalScFoqr5ZLwjDBq0KCquJOeCcQ+XIuo18+vABb755i53dgtOTK5QqWXYDG+/Fdt45ktFo5whR1PgxZQY/IB5SI66eM0PKEi08ls0XBosRq+zoqSQFZ/ADOicSAvFsc1FySvIcj4HaeUsUVjLBOTuysEYoC67POHIQE0m0RSnNZDrDGLEC187RrpbcvXuPxeoxZWWYzCY8u3zGZh1lF+ID0/0JzU6F7i1utWHoPZuwohtgYg1OZwgR56CssxgeZrH+0EpRFlCUBZshShMxEimiEkaesQrUQDltaOaarBXKtmTT0g4eYzzGbN2TNTlbiskBppwQtbgWb/UzWXi3ozgyUiix8kkhYq1DEUnRj7sohVZG9D3bRVIeDQl58T5uxziVf7b7VyNTK43eZ+QXE8n2Z5q3Cz+kSKXRjialxKAS2oFNGhsS8+wwsSAPAy4bTNVACbpwKGtR1ogB40gQM6PZp8ILS05VQCKpQfzM1BR0DfSY1FIGMaFXdiDEOQGwaoZJM5Q+J+qarAa0k7jooR9Ay+ve+rxhwVhNFzw+RSZaEzY9adlivSE/u2KCZXiyJK0G7OhN9vO+PjMFJGnxgMkhYFxFHgKVh0InhsWKtGmJ/Yaw6AmLjC40lsh0bw77u1xdLAhZk/rArRs38csNm6CY7cyZHu9xeO8Gw3KFP70U+4Xlmk1YocLA7Tdf4aIdMGVJ1lBNppRTw8YHytkUbS06i/ZDjdkJClDG4EpFManJUYz0yrIkxC2EIk6vfdejlCL6QFE4fvS9nzCbFEwPDrg6W7M+W9B3HWVZMZlNgRU5BLq+4/zygnndsH/rmLPnTwg+kVVk9+B4tJUX/FQp0YFsu2fGg33rtxQDsq9QGVeMbCXvyaMNhbEZq40YRwbPRduxfySGlH3oKRuHKwo8kagUPkhqoEKhtKXrPIMPoJRQc5OiiOVoRZ5JyrIeVlx1l9SVwzawulxD1hTOoUezO6sk7pUcSFGSA0NO6JDEAVglwqgXIWZQRqaIbWhUTnShe0GRV2rsjjNp8OiREQaZ5EdNCVmosoLlSSLhmHO+1YEYRlbqS9ALjH5VKFxhaKY1681iDNnyKCyTyYzBdzTzKXdu32W5ahnansm+o64F/SwnFUVVoVdrXNeRfSCHTNYaHRPaCjV58BHnNEXlZL9kDCr01Ih/v3LgrCNmcRyuJ6IXme2AtStCClinsVZwdq1H01IsWRUoW1PNDuRAzR6IIzlDXTOhtnCULMrFOVprQ06aIYhYbsgKpwwafc1YlJ/F9kcyTm/5pY3H+Ps0vufyPqdrmF+EodtCLzTrHCI5ZnJIRC9pntsdZdYQlfx8TVaUyTKv5qRsSFVNnIoxZBbTLIkMUCL6NVb0QUZFUB7DjJgyKW+wLonVC5ayUpAGXJiRC0WuW4ZuQtIZbwtinyhrR0GFDRUxBjG7dBLFHEOUiOicKYuC3Afa8wWzuqHsExdPz6l8Im5WxKs1i5xpU0s9K9gtppTpyb+h0/df/fqMFBBFNoaiKomblvg8EdYd3eWSyd6Ecq/GGsPqyVOmd+6QHz8nLjXTL3wB//AElCKeXY4HF6SQsa6gKQrKyZQ7b73G5f0H/PSffZ+jo33Jr9aZs4tTWC/YUZErn9hcrDEq4y9XlLs71PMp9eEezllUSPgs9t9CIc2U0wbtBbJRWuit2mhUP9D3PQmxzVZefK1IkfOrK+7/+GM+/94r3P/BQ4qqYn64Q4wzoW0qOVCGvme9XOG0JmrD4St3uTh9TlGU0K5o5nO2thyAKKPD+DjKdA9ZUuoSEWsK5BgNpJhQOpFjxmhHTgpdWIrCsjep0aHn9OQ5066hKBxDzOTsQBWAHoV9EgAF4L3Ygvc+YIuKqAp5X1RGYQgpCtRBxBWWfhi4uFySe4s2JbKrSMSksIUmh56sNRJVrsf8czVSHPO1Wl29dJjHIHBdVlIAYgiiLUFhtBFVeMqkMIzFRRGDxjlLTIEcPZGEcYYcM4Ut5PDKSMTu9q19qXhc25WkCATeffdtvvXN32az8hwcHtJ3rWhsyIS0ppmWVFVFGDzWRHJusSR86DBFyXxvwnyoSX5gdb6EoKhrR1FLNG1MvVjW5EDOkZB7ikLjSjBa3AVy9sQkuwpXZqq6pq4UOgdCSiMUJboKrTMhKRIKVzTs7d/AWkm+jPGFlkYr8TnLecxB0YDOAgVqTcSilOSe13WNc8X2NvyZPe+WnnuNb/FisriGtl76s+3XEAhzLBw5kWK4JrVsd3A5ZdFHZZlMVYhEMsmIC0HOhtAOLM+W0EeGqaKyYgqpC0u2oiExzo7Pk3iYJQ05lkDGuQpbJpIXqK+aOIzVpEaz8QM9iWg6Jk1J6DzJJgqmI3Vd4NzQd9SupHYFIXn6xYbCORrlGM5WlBcbJqkg+p44EnRWPspUpCA2NbqYkJYazn7+W/TPRgFRoKyRLsD3tPfP6U4WoAxXp2fU8wkDnt333kUd7xByjw4Oe3yIsiWbx08kMyKL55CeVKyGnn6zxttM9b0PCasr9lzJcHrOqmsZVitSEpy5VBa/OmV1fkXtDE3ToKoSPZ0y3d2HLBGmehzhhaMu+cuVFTdbV5RjN5fFqVQrkhcr+JQgdAHfej793g+ofE/dTNFZUxQOdEaPWQ0ozXR3hxgiYQgMm44lmqIp0VmyxsumQZmC4DO22FrMix230kYmA6WJ0YutR0ooejk4tMAcCgVaS46H1hROoUyk94FpVbJ7dEAXPKeX5xRlgWsaxFdrhDKCx2hLQiJRe6/ofCYpyZAPcUChsboQk0DV4wrJYF8uAzo1oLTkPyfRU6AzOkd8PzDkPJoQihmkVsUYSSvutSkmDHJ4y7Jdi9OwimSVSCmglDjERjRjKgg5q9EGHnKKYr6YJBzLOY1KAYtoR6IWM8A/6t203YnksUtOOaKSojQVb7x6i/ufDCyHQFk6UqfG5THENJB1AhNROuFsImxaVquOoDU6a0zI4gFVaFwVcVbhnBAXtLFsD1Olxn2ACcLG04qQB7QGVziUBluAcomgMgZLSOGlSU0sSpKSCN+qnuHK6TVM6LQTeDLLVPAyZJTGHURW+bpAa20prCH6nhR6VNWgtH7hjrB91LXEE28TH+WDL0112yKTR0hufK2MhsYq6+vXsL2MMQKDjTshQsAoxaAV3kFWCp3AJkU4XcLJkqrZpVMDth6LXU5YW2KtHRMzxZhURLOid3FVgw+9nD/GkLQheEXbbSiKAjaaUnnmpmYoFMvliq6LTOsGNwTRZ60GCfXy4Dcb9KKjmTsYWlaPT8htR1COxWpF0opkFK4qqHen8m+oNSwGzMi4+3lfn4kCIkEvBpyhLBQXTx+hsmL35gFqsaa+ucfOn/4Sw6TmYrVibSvadkN6+BAXMv16g2okLZDSMVyuoR+4PZlQWE3/o58QwiDpfJ2HaUWyhmSF898vV+y4kvb8iurmAZPDPUJhMHfuYapGTArzi0MjxijNV+kY2paynqALSwpJoI4ygVGkNhGGgdQNWJvRtcKSOd6bE4ZAP6wRdhS4yqELR1FUxGHAlJbpwT7rywUxBh5++pTlsGFxecbB6/fYnF9SZIOezsGKKaBRIq4zxklXluXw00aWqdFLBrrEiFqSslhjsGoUzeVEWZWCfhnNZD6n9R0+Q7tc00yacckdsU6hlWgn0BqlHTE4+iHi00jvRYnBYTbE1DHdnVCain69QueCrGSXQk7kGIXhog0hQK8RC5fkpTjQk7MafxmSvGAgk1IkjCmHKUWUUZLzbRWkKFNYZmRniUNxRo/W6B7GwCo/JLQThpdY18jBJp5dRu7TbdRjTuPvxaAxJwdJM5/PUSpinWUYNMaYseCJQMy4gDFKumStKJuSNCQJ2wqSozJ6ppMUoo6PmdIYscVR4JTFWg3agpadBEm0LlGJWWPKUbIwkjCAtpMqjPsin0k6oYxltrNP0+yiTEEKvZAKtfikxTgyp8bTXn5m0vErI9Rp7aAsKpRStJsVl2cnzOaHWCUK+7SFWEH2HlpBfGnaEO96mTDIoweZuv7z7d/bQl75mjU1LkfiuJMcf2bkjE6aZDIeRVKK0muaaFk+X9H+8CGNybT7Fru/g64yRhvxGQsZS8ZahY6KqBSwhqwYWkUOIrZVoWNzLhk12hn8pkMNAWMM/WpDu27xXYcxRlx4Vx2b1RqrNVVh2JxfsV6t0MB6uWK5WKJ0ptrfoVOZ8sYeDgliK4xlsViQjcWsWlSfUJuISn+kOv8crs9GAUGM7Kp5Q7YV9U7DcHqOm8/ZeesN3Off4ruf3Ofk8oI2JcrZjGY2o2hqPIolLXm1QbURV00465+zc3hArS3T2YzJ7oRn9x+ha8fJxYJgEul0QZU0xQT65ZLp8RFps8bqQ9AFxa0D1MGRHFRRpo+Ux/9u41adIa7CeGPLzZxjIrSBkDPJS7aCrmpy9PgQmdw94tbxAatVTxgCi+enLM9g5+iIaneGTZIeqK1iOmvIfmB9uWB/f5+ffHdBYS07ukE9OkFfLDgPGbWzS7G/R7WzRwpR2CMqYt0It2nJj9B61LMoPdJorXRYVlEWlhw2+C7R7O1RNAVZKfZv3mCzbOm6QYpFFpKj/NTkaxun2fQr+tATs5HM8rHTJIugryhqnLU0dUPhNHGIWFvIAQXX/P9AYMievvcyUWUolJUkyKxgG5GVYQhiHR6TZKcbbchKMYREVpYUJdCKpMYpJaJGCCSPanidxVJdY0FvbVpEk2DGZa3YsytRwacAMLoeh3GpHMjZkqNi/+CImAeUzhRFScr9KMbTKBWE8RO3+L5M3TsHJUYZUkgMnafvetpNK4wgLQfsEMRgUitG5tILJpk145Q52t33g8daYS5JKJsUOo26JhsYY4kRlLZYV2OcA+XlEE6yw0lp9Cnbwk0jX0OmMo9OlqJykGG5WFLPLerygh/9xj/g3o3XUNNKxHHGjKQT0XUorUEp9HanlGTpn3K6vkfzmAGjkAS+7VIrj/5kLyYiiR+WxfvoHGAKjIEC2WsZl3FWprhibpgcT1n1Czi3xC6gpzW9M6RZI+p8a9BFIfsdK/RjbUTTQsrErsdvBqwR2rcfvEwtWpPwxG5gvVyRRj3VcrWhXayIITCdTjlbLeg2Lcoo6umUYeipi12KssSUQjnPWrFYLijLhkpbTp4/J6Epe0W66vFnPcmH/8HP5j/p+kwUEIA29szKQ+zRHrPcUx7sUh7dZpEGvvfoEZ3W3HrtdfZu3MFOd9Ejrg2wvnGbjy/+IfZyQ7te04UO33vc8SHJRC6eX2HrCc8uz7HOYLqAKgpM4Vj6AdUpDmZT4qQg15aApdq/SdSGEcQeWRlqbJjErru0JXq+A2SGtqcqK7LRDF1Pv245e/RM9iJ1wWx/l2a+xyxEcl3gMqjkiZ08VMNihdUQ1ETCpLAYC82OKJrTEHj1jddpnz3j/NEpk6iZTQpcWaAv1vhnJwzOsmkX4vejM3akp3qP+C3pguAHyqLE6NFVFbHzKKqKSV2hworF1SVlVRJywrgSWzpKlQnRk8nSQCaNUg5rNNFn1t1AIgJq7PA9OfVEHYlK2EM+FKw2EeWENDEMXtg6RqOUHErtJgg8osVmA6VodIlBclmsKYg5k0ILJArnCEEoujEGsWsxop532qIT5GhI2aPIsnzPEJXAWEpbUGpkcyX60OO0EzhUKcgJ363xCHQVU5BzZEw7jCmMh60VEV3KlKVj2LQYbXG2ImeFUp6Bjpg0SUd0odHEa/uZrCPWWsq6ZBIaTk4SfhjGrlxckhMZbZWwk1RC6zEwa7wfQQwepROPpJgIyJRnrHhYhSDWL9Y2uKJienBEUVbX1SHlLBMLApeJ7mPcnY1MwhAyZTnB5JLQJfq0oZztoGIknpzTr6/4+Ie/z+u/+KtknXH6RcAXMMb1jsv0UduTkkTlaiWTR1ZKSASwJQEL9DYupoRAMk5EWklkrnwSKSeyLcUiXiFOz6XCW0V56Ji+cgM1l+mw73oCmS4M+Baiku9vsFYaEieZRNY5jLX4KG4GxjoGBUMMpBixxoJzxBDwXgrx9t5MOWFnDXUhX8NZQ3O0BykzpEijJgAEL0v2WV3j+4G46TGqwOSEW/SUWZOuVsSTJfFpS5r92wICIKPw0S55PsdPS/Qbr8Bqw08fPOHjjz9h9/U3+PyX/xRlNbtmgryczzDfPeL1X/0Vrh5+yuLJOXrI7M0bnp6e8s4br9PFCzaXV+wVNd0Ezp6esLc7IXQDKNjd35XDRYNpatTBLVQh/PysIY0Mb9RWLStjvVYWmilDv8YOA6kfsM7SzGrOHz+j0AWqNNjGknJkdbWkKC07O3ss0oV01CniNx6fEsuzC/phwDUNu8e7VFUFCuppQWwD58/2efitH7A/32G2v0c2huViAxcbtHO40uHKiFYWawqSH4Q1Yy1RWVLWKOcEJzaMGpHM4ANX647d+YzpvCEMG3y/pl0vyUpjXQMjtLC1Qqd0qGghGIiRzXogZMYO3QpjRsskJIvWiLYFl4uWy2WHVRVlU9J1HWmEuA2ZHCJD16GNIWTZtwTdopXBaIfWA1ZbYdvkTG9EL6LG3VM2oKInxgDao2UhJSy4lMhpVKOTXxhLIvuiEDu0GTvbrLHaQU603QqQ4hGj/HsxhuviIe6vGpU0KWw42Dni6vmHmEIovgqD1sLKS2kr/pL3UimNZDJKt6xVxDjY359wfrIROE1ZjBXqrtZaFO5jxspWdwIS4CQPBdd08xjSaG8vk7O2jqKo2Ts4wpU10RbXdNA83ts5bn/Ost8ia3GntgXWVCjl8D7T9QPGakxZoPtE8hvi6SWmyPhhQ9BCAdajGaQeUwq32iS5n362qKD1uEd8wfoCgcxylulQgVC4NQJ95YzOevz/GaIiCT9bfM2UWMb3gJ41dM6QJyWmKpkyQxWGSgPOEMa8eWstKUZCSpSNFFgfPKasxjhrmQxLBTokrJIincZ9WVXXkrsTE8poTF2KsamRwjX0A13bQoC6run7nn6xpDKOIsKwbFGXGyZmyub0lHByLju+q55Jr1ltIrn5N30S/8tfn40CojST997jwcNHzJ9v6NsN9z/+iNVixeFrb/DGF75EXU3Q25tCjYIkUaJByMyPb1Pt7zDceM7JNzYsP/yUThW4vV2mN3e5+uRTzi4vKF1NWdSYnIlk5mWNKwuam/v4+Rx3dA8mc9ToWCvFKo+upEmw6RGL1UrJxKFBWXnInN8aQVYMYRAGl7borNjZmUnEqbOUpait8+DpliuqYooqDKH3hGFJUTpsVWBLhzIBW5YMIXN85yaHN444eON12hBpVi1p09MvVtBHklqLuy1OLMq1xquMtZqQkuSea4W1JdoohqFHacXlENjcf8q9G3vc2t/BOCd55etWfMD01n5Ej/bvI7WzcHSLDp8GhpSvcy6GPmNHG5KgAkpnMIlqUuOfJnLs0CXUlRu7YkVOjjYk1oPYrpiU0GjMePg6O7LAUFhk+VkWJTFGClfI/iBsqc2JoKKsScZDgZxlsoqBpCwpJzZdoC4aMXsc0whTEipy78VgcbW+QKk8FgsvCvboxZY+hDGHfcTqU2TSNNjCkJLHGEtRQD/Ia5SwJjn0tgtmhaZA8uuJHgzUteXmrSPWyyUpRsHTnfiaydcRhbazFpUFMtTGjFCq/JkaN89GF2Tktdf1hLqeYosKpSzmZzLXR3FlyMSwVeGLnXrpCplssiYM8npRijB4GmWpUk9cXWGipZzOqMtKCCSuRmuJCB7BpxckgHGZ/7P03nz9e/XSZJV1Hl0CZCpi3EflsYCkJN5tWQuRZnuQo8epAoshETaR9nxNsVPRukgxqzGFBLJpZ7FjUTNFgUlJsu2dmJHaLMVAW/EtQylihlH3ycgJF0biMKCyRiWhWyej6bsWhxvNPCNd31NagQA3qzVpsWZ3Zw9/tmDz6AlFP3DZP+T5o8cYnUk2szud4C+WPD55Tjz4t0v066tsdpke93z8/e9wdXbK3u4xX/iFrzM/vCFiNODlB4c03kzC8CcnRaEr6tuvUjUNJwffx398n6vzC3Z3pjTTHYbB8/zsiqauKdtWWA1Ng7l7i+Jzn6M5vIGzJTEl/OhYq14qWNvipVIae141PphThsUC5+TGta6kKAvoIu2mw3iLKy3KlEyaBj9y1uuyYXKjJoZAbKEw0g12XUdoe0I/YE2JwbC4vCAkz/5b95gd32BwBT4P6NmUZn+fYtPiF2vcBtCJmCNGG9CanMX2QLIezDhua4zR3LhxJAI1lXl6+pz7zzecPltw57ihrEpMghiyQMvGIVwHJ/CYKSAXBLPCE4RCqyHpgexGrHvUUCg9UE0Uthqw1mOyg+wpnePG0RGuKFGq5nx5xdnijM1mTWksNijJWScRlYcs71NOA5AJbUAbKd7a2jEHJWGswTqNHwaUsuQstN7UDaJUT17wDaVphxaNEnGWMjJxZoUZm4bN+mJc9AsVO2WRoGwJFXJriDhR5UhRWqw19N2AsRNyNhhtxC8N0bVsl8YSqCRFUaPloNSyB6uKiumkwvc97XpN33Yy2TEmJ5o8Ho6ZwtoR3pF71OiCwlmUFot358RRwbkCpR1ZGRiz2FOA5BUhyMSS4qj2t6U8X0kxdAFrszQnSYkeKWyoXEEdgdWSMoLdOWT26mvcff1diAFsHu+AtH2ChQq81YK8hCT8zPXSx7deZNeKdavHCWSEvRDfyxiMiAxThhBRQSbNmJPs0rQlbwL98yX1wY5k+jSB6DOmdMBoTWMNcZyNtjqhTBI2F4qqKDBG0fVesmKsYSCP5ANN33vWgyzQm7ohDAPLxYKsZbIJXU+72hBWG/aqKfnqivDkhHKIbIZzVosl/eWCxpb4TcdeMWNH1wzrlrZbc7ZZcevt19nM7/+bO4D/Fa/PTAFxWGa7t/jcLx0I08GWjLxZ4CUxErzoXMZLqRcvJKdEOTvgzi9+nd13P0//6SesrhbMd+fs7dZcFgoz32VKZPbaazDfp9w/xpTFNRyQ8zaqTrpuNUIg1zizkgCmrEYOegYzmbLYXDE3mrJ2UvRKeRD7riOSMcVo6zB2VkY5kskcvnGP9dNLfB/IYzetDRhl8O2AaWrykLl17ybJJoZsWJ0tyD5SlA5tLG4+pd7d4epRBzqixgBFyXIwJMRaBCUWH7P5nLfeeoPdXdGTtH3PnTffZX25YHHyjO//+A8oCs/R0S6VtcyKAq0QirKyONfw6dNTrrrAx4+fs+7lYMV4UvbUTUMaAqPJCOREIsmDWkCMibow3Lt7m69+9asURcnZxSVPzs7p4l3u3/+UR/fvQxJdRlLSsRsrOxeCoqoq1Agn6dE+xaAJMYAyDEPAGissKqUoCkeISVyVo0w3gUjW+tpQUcVETJGMxlp5/0K7lDZl2+0CiResJumARZuxVcwfHOxx//59tKmwVkm2uFIYZcCMAritgRcveZiN2hVZlEvPbpxm73Cfvu/xwyAw2mhWaYzQtWJKOGMoy5KiKKjLGmcM1hqMUUJ0UqC0wyhHjmIwGZKo71MU23aByETzkbffHhlrHDkkuqGDrLDaUWsoUiCtB6wtoG6obh1w+4P3Sc5RGdnz6JzFAPSa+vyzWpqf+f04hIwUgVG8mUZa74ucEIHo/rgOQiWhNxvAZiX+d0ksiFRWqJjwlx2b+yeowwodB0xd4uZTogoYqygmltQFoe4XTgSRcYQ2tcGvO9qRmamNYgACiHhy1CuZjceaTB42xLZDrdfUdU3dD4TTK7rzS/aMxaWBzWLJrO+xk5rLtiVlOD66xSQ72HhS6ri4f8r6fIHWinvvvMO02eX+2fN/mSP2f5DrTywgSql7wH8G3EB+rn835/x3lFL7wP8NeA34BPibOecLJXfE3wH+MrAB/lbO+Zt/0r8jtE9R0mb9Il3uuutXLz1k499Q40NvRhYKjEwpBHud7B4w2z0QNs0IG7z1pa+RjZNxXGbia5M3+fvbzkNfdz8withGX6YXU4nc8CEljNWUkyn9Zo0LCd8OEAK2cuQki7S0GujNkmpnSjOZgrasry5wZU29s4trNyzPryibGoVAXbYwDEPH6fkF696z2KwF0vA9TVmjoiKsVjRNg55OMM4KxDN6RWUlegq1VRMXYF3Jq6+9hnWGxfKK6XRCzp6T0+coXVMdHXMrf4mPPvwBT374nFldsr+zw42jPUKOOKO5eH7CRw+f8vxsRddntGsoS8WAsENSHOiHQHAizmsmJT5FlquWvd1DrvyCmzdv8uWvfJlsNM1OxdonhidntG1kp6ngxk3OT8+IMRN8gDxqwkdK9eAHjCmEiaQNIXhszrJX8nJveNK4VFYMwY+MHTmoCRFXFsSc2Ay90JgRzF+jrxP5gvfX96MaD/jt2SUaG7kfpZsAsqZpZmhtGYYNzjqstRRFMcKg6ZrHpsgjw2+09EAs6IXmmtDXBKSMa2rqSTOWriRGklphFIRhoCxFx6CUwo6wqeTBR8lhRxwEwkixjsHLHsa9mAbEG0wcjMlqVH8LwcHlSI3CKktlLCRFkRKqbgjlFL93zJ1f+lX2XnuDVFYkq9AqoI0iqVIIKGZc6KsXr2tbOLfP+3YZDiJa3LJV1QgR6Ze1JCMKIepzWcobrdEuogZpHFLOqD6Qe49Tlrm2DJcDpIxfLTA7U3yzIjkD0wqVFDF5ohEqgUeydURYL9C3lrhU/KZHYSjtBIcIWFPXjfCrpw+evu9RIVG2MPRXXK2XsgMqCjaFgnqHWhuMc9z1iWHdsTlf8PD+E3SfUV3ixv4tbh6+RiYx2EAMWxr0z/f6F5lAAvC/yTl/Uyk1A76hlPrvgb8F/P2c83+qlPpPgP8E+N8C/y7w9vjrl4D/4/jff+Hrn2dcJwrZfF0otmPttqhIP/KiK9l6VQmlXNx0jVaoEEQ5PGKdGWF8qDR27CMLI4+4uVIjbfef8z2pzMhxB42R0bfMXF6csFqvyYsNze6caj7HOUvwg1AqW49qSlxd4jcF1jqCimRtme7MqaY1g4/4YcBOGh5/cs73v/VNvO64+cabNLs71LM7LK+WLNctddS0iyU5RXwUEZQzktnhlbwO55wURKPRJtP1K84vF2gT6OOUkBVtv2QIS3KCqnQc3bjNR5uB5xvPs/UFP35wRvKBkCPt0BNQxKTl/c2a7D3WOFCaGDJFWWB0hyKxU03orzq6HLl14w7tecfNo5vszvd4dnbK5fKMREfVKNatkA2Oj/ZYLq5oF6sRdpGlrko9ZVETIwy9CBaTymglNF1GP6w0HgRKjfkgYycrCYDjziLEa5WzsoYuBqxxgtlrsYKRZbv83GUKAeFEvaA0i6/WKFQkU1U1dV1zcXE1Qlcv7skQEY1OSpiRoKHUyHvKvGhWRgfh7b23ZVylLZX6upFJlFU1OginsflJ9CFBGkWUeZyAIpDiuJAXbUuKkl5prRUDyhDQKZN9Tx4GSusonMPZEmcbdDLYZDAaXGnZFBV6/wYf/Mr/iMNXX8dWU4yV+0BZJXTYcf8jeg35PgUIHhlX22ljbNCud2xjMZGp4wUSEMbdiRAPBBFQyASwJROkHNBKi/Nt6zHtgEoRPcYE+01ir2koUknsDX3MLNsLum5NdopBR2xhaVSNGUkY5Iyzws7yKTB4jysqVJFZdv3olqBophP6GOiHHqU15cGURU4MQ6K4cQurDTFnXNaoKE2KX3WEHz9hfbFkaAcOZ4fUOw1GOWJWtCETkxJfPQ1iCfDzvf7EApJzfgI8GX+/VEr9ELgD/FXg18ZP+z8D/wgpIH8V+M+yjAq/o5TaVUrdGr/On/RvSffPiyJyvWz7I6rLlzMa0sjy2H78uqj8zNSSJCMcuel+xkp6bBz1WDByHh/ClK4/bzteK1nVyceQB9NcbwHBVBXzW8dC5R29b0ptqSqHcRNUYXBGQ2FBB6LWTJwmTSuBP5ylms+oHDhnWS9WfON3/gmuVvzyX/x1qr0b42uC4xTZtCs2p5e0Z1f45Zph04/LThm5jTHCKElyiFpnKSqDD2syPSEOPHx8RnQFyjjathXhnavQE6gOKi6ebjCmwGmH1L9IzAa0JRmI4wJTYySrI28tNcQbazqb4P1Av9jgCke/7im14+L0At8HVNZcXSzphyU+9pSFQyuHyhWz6ZzVsh1RsDTStzX94CFlJPbWMESPNUk6egU+RIyxo1fxyOJJ4FwpLqxR9lA5ywNfOFmqKyO2HSP5aOxHttDmC/gl561P1BZaYVyKCwajlebo6JirqwXee4pCGoWUEiF5QhD9gqiJx/vuxV01Fi55PVvHWlGfG7Y25yLwk0ITyCLqQ5H6gCLiEfW6UtI0GJ1ENJkhq4jWDleUYA1RKbIWFlKOiSJlClNgJhPKohHDxJTG7ArITrHwkc44Xn3/q3zuq7/I4c07KG1R2slTnBU5i3uvMBil6Ily3gg1eXzGrp+v60ZNEIbta8/bd3b7x1ptMQopRKMNiUImkUwmW4fRGpcU2VpyVcizrTI5BNLw/2vvXGMtya67/lt7V9V53Fff27enp6enu2fa8/I4trFxLD9CiDCBECH4YiEiBBay5C8BEoSCYkBIfCMSSjASirCI+IAiAgQLrBFylNiRgA8YYuE4JuPHOHbPdM/09Ov2fZ1HPfbiw9q7Tp3bt532SMzt8dRfffqeU7Wrzj679t7rvdaMG6/eZW0rsLF9io3BkK31TXQg+NwzCyV1aBgP1qiamlmY40YFflRQNjXQsHJ6TFYUuErJN9YikTN36iGwkkryxtglRkq4dUAzn9GUFfPbe4T9mZUSaJRHwgqsrRBWhTpAFWCmFQ2ORszLMGvujfA/KfxANhAReQJ4H/Bl4GyHKFzHVFxgxOWVzmVX47EHzvzV3fzT57quY3RwJCoh0KgtVO9c6+bnYpCSxOuSK2CaqN3aA2kyJs5ckMjBasyFExe4OZxEe4e2GW+BNmqWzgbgRwNOP3OJycYqu1evMz04ZP7qDD8asfnIGn5lBE7I84xZYZN6NB6hVY3DamuMR0N29w74n//9v7F9YYvnPvgRisEmPnirUJY55uWcfLzO2vlVZlunuXn1VeZ7N1EnNF7J8gHUiqqQZblVEPRm0K2rwHA4pq6FyWzC/myPqmkgCCFAqXPKqmLWTJnNZu245B5c3hCqQCaCSEbdVGZbSOnQhbYGRzHOcIVnb3efDI+vHLkMedfz7+P05iaqjvFolTObj3DzdkVVTtnePM3Gxmm8rLO5fo7HHrvBt7/1EgcHh2hoyHyO+Ix5tfCKK7xHnFLVJUWWRZfKlIbdtR5FVRUDFFPuC49FdWtAgpI5oFIyJ4SypKoqympuXGfX0KtmdLa5FJNWRj27ESU1taJzzMspWWaFvLxX8qzGidkcgnQYI7V67xK9REIw1/JEUJqgoHUknEbUXGO1TCy7gMcjZOIjGQsEsRLQoWoscSCO3A/wWYb6jICYfr8u0aCMfcHKaI1hsY6otwBOJEbzl8wDTMSz40eMHjvLB37sY1x6/B0MhyOT7CSuPxdzkBHXXlpAIq26KgUYhs56T/QjxLYpP5at10RodWmNq0SbSFyLGiWTLJgZFQfkGVLkFiOikKGM3TpbYYPJ7JD9V3dRt0PlA9m4QARGayPWt06xOz2ElQHjU6dtTqljZbjCaibIrME1nnrgaaqaLNqQwqSimZQQAtV0zvzOAYNS0aomHJRobclXN/MBjrVUZqhNFdSgVKptUWWXcr8FxWu2kKBPGA9MQERkFfhPwM+r6t4Ro7aK/GA0UUQ+BXwKYHNzI/qEt+cW7aLtyrit0GYFVVV8jFDtqpgWOXVsoi0WJEvnkyG+mxI5SRZtrp2octDYpxC5xW4f2++N4riI4FXJ8wGDx88xXF/jzivXuPq1bzC/MuG54btxg4zRxprdXxRPjnhhuD6kqRv2dvZ56Rvf4sbOFc5ePsOTz70f70eIKKq1GWB9znAwoCkrgrPSvMU7x5TlHtnLubm8ipDlDg1Clg8iRx4YZkO0FrT2Vgs9GzHUAE1F2TTM5yUhh8nBDGpl+/Qp5tOKvbsHBPF471Bf0bgK1cDAR/dUEUvg2pHaklGWYKqS1Y1VfvRPfpBzj14wd9hQEmYT8rxge3ubU2FMlnkGg4LBYMx8PmejHPPU05e4du1VXn/tOmUJWWGbRROiIVkFCUWsxpihTmOeL2nNEykWxIlGKaOJKhsFbaKKxaNAXVVIqLhxc4eVHJ68uE1iEdp6FiE++8jQhKCxlKtJD04yNk9tce3V7zEcjKy8cHRDbtU5nbxOISZe1NBYfQrnKCtTkQmKhIbMiUWja1SrqbPMBTGTrCXPtOfiUEJlm+lwNMZ5T+a82QgQyvkhQTKGfsTaYIvVtU28HxEVsmh5SKibmOus5O6sZrK6xebjT/Dnfvwn2D57llMbp0yF2bFTxkV0z3prVahZYgSNsLfSVVQFuFiTPjksSLvmaAmHTzbI5HiQbCepoQiamXpw4SpsxMZFZkCBgRvxyKk1agLBKbXWlM0cn2fs3tpl77VXcKOcWgJ73uPVHC1c7imGBTo1le5kxTP2FvAqIgzU46q4nzSBDXJqB5BR+4yU3nkWJVgLDhXLkCAxrNXEUJxagkinyfVbCdKKxyeKByIgIpJjxOPXVfVz8fDrSTUlIueA5BJwDbjQufzxeGwJqvpZ4LMAFy+cVzTlwFlIIEf6AESx3sX0BkfOt77jKWaDuOQ7kywt7mQoT+6BXamna6wXaPsl8eEuVBlucV2a5Cy8rEIIrK5vMHxujTOXn2Bv9xYclFRO0dmUrMghc9RBIdSAcO2VV7hx4zXWtoa8771/imJ82ghlqxu236PzEs08eWHRrhqUFXJWxmPrhfPmmCAel1kK7ywzX3hz5S0Y5UOKLONwZ8pkYtXqCA4pc2bTwM6tGXfv3mZlPEJjbIRWntA4sqhndzFldgAqbfC5UIgnqFK75XQUo8GI9/7Ie3j83Hma2mqaz+YTDmf7zMoJVZhCVrF/sMOdK3ch5IyGMYgxm3Nqs2B/r2A6Kc2zyhc0TdNmn62bQCEZ4Am1opmjsUBlywVWB0tREjcuF+utuyy3mu2x8p6LnHNZlpRlzXeuvMITFzaTnwVpSiV1k7mSdypAtgQhsLW1xe07r3M4OWA4iJ5NAarK4kdCVOMkLy+JczbewTZLLAmmF8sZ5b0zAkRAq8ZSjYcGdUqRD4AM7wqyPMe5WAWPEi1r6gbwY/J8jdODbVbHm6wON2kkxjXVJTQzmnLGXB0HTeDWrKT2nqd+9EN89D0f5PyFi4xGI8vz5Vx0JukwfUnKaKXyxJqlBUXcLG0NLdZOLORkN0GIafQxJnGh4krq5HRDWmavuxfUTdMSDImOMiFeItH+U8dSyOIcDYr4giLLUYGtrREojBR8MOKjTqgEQsz6XK2ZxHM6QDbTjidbRhO1Ik0IzEWs6qAmz7LY7Rg/pJhNFUmWWcGncsyhWYyxRIKqnTE9QTyIF5YAvwa8qKq/3Dn1eeATwD+Nf/9L5/jfEpHfwIznuw9i/4Bl1dVCLyot55H0y0kiWGpPTJ2exGO3qL8cokpqEbgUA606k+6ojaXbnyW3Q2i/P9kinEttltVuqX0m4IZjzgwvII+E6EVVUVcliudwPqecVtRNw8bFR3n0nZetbkVaWjHSWJLqO6oFmtJSYRRFQa0W9JaqtflU1wAxIuLAe8jExQ3SERplNF7h0sXLbE0PKGclB3v73K3vUgUI44zNlQ0mswPqMuBHY5qyoapKK1jkM7Lc08xrgjRkmafIPcM8Z5APTUoaF+AD5d0JHmF7awtR4XB/H+eFui7ZP9hlXu8zXhcaphTDgM8DN69fwznHxsYGw9EKkwkMCiMg4oQmSg0BpW5qi02BqHa0mAYRpShyAlYfXsQxr2oGRYETR9PMaepgZYslA1wskiXM50YMrt/cwZiFFPORor99Oz9SPIipTBcuv3leMByO2N+/iVCQZwMGgwEiTVu9zyLaS8Rbbq7kFGJq2UCoY8S7GCHJBwPm8xkilmJDJKMoVsi8VWqUUOKo8dWcEBpcEIbFKoVfY319myJfp/AjBvnIMiqXc7SZUVdz5nXDtKq5NZ0zGa2zeekJPvLhj3D2/GNsP3KOoSvaOI6F9J62PNvgUroRIsOTbBkWvQ3qF7aNxNClNSvdtahRso/XLkk4qX38jiRRkLYJsSBfnKm+QuvtFffuGIdTY9HqRlSMUdM6xuIEYoEq0JigUjXEBItK7jNoAk1VUwergVPFFEvaBKpom0lsga9tDbu4npOKHWHhFN6xqVp/Uynt7sZ0z1Z1YngQCeSjwF8H/kBEvhqP/QOMcPwHEfkkcAX4K/Hcf8VceF/C3Hj/5oN2pjtBliWQ7sZM5CTCksRiesKFSupoYNJRiSa1SeJzl+AcW6O5w/23fSRKTWpGfD3S/3Q/8anWNhArtWV5QdMMaZpVRh1OdKEmWRhtJeqPE/fVaKdvdUOgInc2wcHcGAeDImYQNoLhnLlOJiM0+OjFFPCNspKvMnQN6+NTbJ06Y9Y6zDW2bkrLfqzK3Z197t7d4fUbrxG0oqnmeD80Fj8Ttrc2ef6ZZ9g6fRqf5wRtmM0mPHnhce7cvkk+hMPDHZqq4s7tPWazAybhkMZNOHVmjZt3bjMY54xXHErFdKqgOWurA4pshabeIYRUDtcWv/OOujKXVslSyvloHwnBNltnckKRe/IsEefMgiqbYAKgU5AmEsaMycSiWP7oyutMpyXDYdbJTmDqM4kq1DZGJNRmpI1EpWkaRsNVqvk1iqwk90I9D2aTAMqqtFr1BEJVWkleolwjFnTXBKWal+CEbFBQ14ovBvG8WT58GcjcDB8avHoKP2SUraMuIx+usDJeI88LMu/IJSOUh5TzA1BlUldM1HNtMqXMC/LVVZ7/6J/mqefezaUnn2FYDMldRqZWAha3vDYUISTBwKcAUtuQhZhuPa6xEMsILzGJEWkNtMyXMw8rpGXbTJxM7eNHIxyLdZdeXmJAoHF81rfuulabR5G/t/ggiVJBiHKBQiNm0FY1KaGoQEPAS4U0lnSz8Y6plYVEoiouU4VGScome6ZGFBOT0EQvO+XePSp99n5hf1vMv1TC+mTxIF5Y/4P7K9s+dkx7BX72B+1Il3O/R410RNpovys+8ERAUt2Go/rYo9d1v2dpk4ZWpXWUEKRNXKVjoCfN2yQp2cLJ87y9T6onIZIKIiV9sKUZkajPDAKNNK0zQFfKakJM7Je+Sk3lYcZEqOsS9Z5MLHmFz4SqslrfRjDiBJTMUnanNk2Nlo68UXTeUAOWN6qwhHBOKIoBBQWDwZCqKhkPR2xvn+LCxUeZzQ45ODzkzp1DymAujx/9yIfxCvNmwnBljTt37nDj5nVEhKwQXr99nY31dfJhjd+b4MI+s7uvU+eBP/ruVSSfs7pxlqaZIQ7ybIU8Wyc0BYf7E+bz2jyLMHdY76y2tcss4V/T1Ax9brmf4rMIocFnDrTGu+i2q7bRhUbxKtFmZGVjm8bcP2czqzm9s3vA/uGM4XBtSeIIMROudlL9E43pRlSs5O/u7iGTgznlwQ1Gw6EFiiIEY3HJUCQEvHqqKGZqCHifWSqUHNay3BIINgFXKj4TclFyArmDgc8o/DqDbEzmc4psYNUJnZAXGZkoUk2ppjUzhf0Ae2XFrdmc2WDMxpmzvOvHf5Knn32Oxx67wGi4SuFzcmfR7O36oMMAxznvBIJfSCXJbnivKlrbNsfZJbvrVG25tW7yLRMZ1TioEZiF9LHw5Gpf0DocuKQC0laut/60doXly0zCtO/OxPJdJd1iqoMSQpS24rrP6uae36xL942quNTn++xVx3mcdpnbNM8eBjw0kejH2T0S7jGQtxctzrdMRWcyLrkIdu61pJI6hojEE4t2Im3tG1RbDgvMgOqjztNnuXE+0VssPezZbAYYJ9E0tsklTsT081a6VTFxNUantAVjvFtwGwtF3nLf67puY2W89wzU/PDTRlnkAxDfBmAFanzujQCJedk45wlAHW0FhGArGRd1taYSssA4z3Aw4NSp0zx+3lM3NT7P8eKZz6fc3b8NUoGrKKsDZrMpDY7ZbsnGnVW2NlZZ3YTD+Q6ST2g0kPmG4ajAywBt5gzyNbLBKZoq48b1HSaHc8shJjPmVYUSaLSmrsA5hZhBN5Pa6n/4jOFogHee3Geozknl6UMw1Z4femiELM9BLF4GUaqyopxbttPDyYwrV2/w6CMbhECrrlIsVboGjWnGzSbUqIsSpD0f7zy+VgrnCIczpvUhDrEKiGpqKdGGOibuzIkbo68IEvBOyLxjmBU4HJlArsLAWZ6q3HmKzMeo97Hdj2DpXgIcNnNqgdtVxevTOXMVBluPceHZd/OR597FpYtPcu6x86ysrFsMRfJkdGLJKRHLmhvlNtF03rWbdqsGaqVzoJvLKqp4l9ocsxZbOFMTCs4CfeM6TGswpuJqr0s20aW1fmTttHYDTZaZtMEni9PCOLEcpBdTzsT+t62k/a/97uMIYxf3++3HnevuSUvENSxsQieNh4aAJBzd7O9HVO6hwLJcZL7L+ScsufBqcu+16XDU9tJ0qT3Y5Ou8T/fzMX3EcDhqxfOu+iLdLxGVLPOU5WITIsab3KPfxTisEPWkSYKxr19wMYSOvjwaYWNoGl4cPrMU46JmTKxj/XAXnQ1Ug0Uqx8h8bax+X3LHrJsG7y3tu/dZy21L9DayMYRBMSYvCrQ2I+/KeMR8NqWq5wwGBcXAsz+bUlcVV669wqvXlAvnz7CyuYYOM3ZnEyp/iMqQl751h52bBzgZMigCeZYxHI/xxZAQlNNZzp2dOxweHqJ4QlRfZVgKC22sD8V4SF7kZC5n4C22pKpLyGxsvc/QWvFFhnMZQSHzVr50d++AqlNv4dadfcSZTcn+eUJd4mohk5zgHY3WVIlTZcFlntrc5DWfEw4mVohJrQb22OdWkEgEnCcvHEWjjFQR78i9RZmLmD7fi5A7S3nunVDEzK7Oe8R7VJRpXVGL425dcbeuuVvOOURY3djk0YtP89z5izz/zvdw+YlnWVtdYzgYLDbFPIfM7pXWSR7zSFlHiL/fkzIcJ47GxTUISXUlS0t0Npuxv3/Q7rzdzb/7Sm65Khihivdd2kB14fG4tOl21mbbl9iPlmSItDbE2IDk6nncht/Fgqgc70KrHdVy1wbaXtX9jbrsAQrL2g/t7DHd+7X7iXP36cWbi4eGgBwtU5nQHbh7PKZYTJ52Rh657ujGfPThmMFzsdgTBx9i1GmXqKSJS+fhZ1lOnhc456nrkrpOBYfCkk43hNCms/DeUZYldVXFbK5hqW/dv92FeXSMWmNrPGRJ8JTf//2XuLu3x+V3XGRtdY2N9TXz+5djIvjF0oMn6cXFsXQ+BqhpoKFsN4Oke3WR+DhxJCVvqGvUeyQTgnPMypJap0hhJWO9zHA4Vop1trfPsb6xQVnts1/tUlKxfxjYf3UHnY4Y+A28F/YPdhgO5gxHQ6b7VmehpmF9cxOcZ2/P0kxoMwcxt20nlv2V0BhnrkntZ7YBcRa9LWqcPepwLic0Ao3FL5j0sRjrb33vNfxwDS9msA8akDCE0gQtbSq0ARVTU0rnOXnvWV1fYxoqaBqyRsnr2v66qFf34ELNIPfkKla1MG4UFgxovLLLc2rnCC6jrhvqIOzXDXMq7lYVu6VDspzNc4/z+MUnefbcBZ595p2cO3eeM9uPWsS5L0heoJJ5cD4WeXKLjbddMybvdtVHptV3HS688yZ6spXlnBdffJE7d+7wwgsv8PWvf5393dv8o4//whLx6KLV78fP3XnaXb+yuMHi2kWDpXvq0rH7aSIWe8X9cM+5Y9veu9ccvcd9NR4sfm/XLnucKh9Am14CWcJiE4WOkgZYEIPuRpv+poeBLm/AIhLzAtn90iZ+9LrlY2FBGDp6R2V5ciciImJpH+azOSEoVVW1hKfVzWr0pAmWmK8so141i94aUVJKWLK5sBzjkkalOyZJ3RUwlZMG5erVG3z7O1f46le/SVEUrK2t8MSTFxitjHj6qSfJs9ySKCoxVbtfEM8sI3dGjAJq4yBCrVGawjK/St0wzAbUEvX9UVVTzUtmkwNmYcJkvk8ZDphV++SZsrIyYLS2wflHLzMYnaYK5o2VD1cYh5pZFVhbhd2DQ2bljCxXBoOMYiDglKJwTKczUw0Fx8rqKrt37+DU490QredokeOoGY0GFOMxRZZR+MJyhlXRG6+x/FjGlHgbhwBFViCSEUS5dXdnwaAAV155jaop2Dq9QdPU5qbc1ISygbJu64OU1ZyqnBPqmkbnBK1pVBif2Wan3IO5Mmg849Uxhc9Y8Vb5r4keO5XLKLXCe0ejAsFR4XG1Vbncnc+Y1g1TIHMZwXnWzz7KmUfO8u5LT3Lu0YtcPH+JJy5eZjwakWUFkhUtcfDRMK2ZM2+oZBs4sq4Wm3SaX10spJGk1rl58yZXr17jC1/4AtevX+dLX/oSr7z8MoeTSTtXn37HpXjvJUtKRxWUbBmuZWTSmktrXJMYIJ1Xeyvt3jAtKI6DOIkZvUNbn8R+yjHtpXMu/vSQbCmysMV2r10iFmib8aI9Hg3tSRNgNh2JtpVUmK0jfbTPJHqVFmbfPGnIHye2vRk4f+6s/uIv/O3OkaMPUe85J92J086p5M1wzJconXNLs27RpBVBtW1z3OhI2zZ+a4xLSeqm5a/VpX6KSJw4C6KW1GjWhyPXH1kc9nlZnF2o1mA2PeS737vCdDo7tuPee4oi58z26YUYLUckNqUlnO05SXYSsU7ERRe6Yx0XQdpI7YfGnETOshgXfkiWDcw24z1lObVEkxrMewqxamyxdGniwiSOb9MkLx3L5VTOKlIQJ1F6dGi0S1lQoE/panSxcJPl1MbP5k5KnKnA3v4+dV2zfXqTW7d3EBGeefoyRZG380LTOKi2z96eqUaXT3u+dVlR1RXz+dTK/arVr3fO4SWqUklMixDUbGR1owS1vE9OY6W9aJ/AWapw5z2bm1sMB0NTR8VNvRsMS0da786F5BCyOHbvwpHO3FscubfdlZev8OqrrzKfz49bWgCMRkOeeuwy42zlmLPfh50+Zq0fPfx9Lz5uO4kX23xYqL3u81WdA+2Fi8/320PTDdI6PfbnLPrXNm/fp9FPBG7BUIsItyc3+Me/9JmvqOoHvt8I/P/EQ0FARGQf+OZJ9+MtgG3g1kl34i2AfpweDP04PRge5nG6pKpnTurLHxYV1jdPkoq+VSAiv9eP0x+PfpweDP04PRj6cbo/Tj4fcI8ePXr0eEuiJyA9evTo0eMN4WEhIJ896Q68RdCP04OhH6cHQz9OD4Z+nO6Dh8KI3qNHjx493np4WCSQHj169OjxFsOJExAR+SkR+aaIvCRWW/1tCRG5ICK/KyJ/KCL/V0R+Lh7fEpHfFpFvx7+b8biIyL+I4/Y1EXn/yf6CNxci4kXk/4jIC/HzkyLy5Tge/15Einh8ED+/FM8/caIdfxMhVk76N0XkGyLyooh8uJ9P90JE/m5cc18XkX8nIsN+Pj0YTpSAiIgH/iXwF4DngZ8RkedPsk8niBr4e6r6PPAh4GfjWPwi8EVVfRr4YvwMNmZPx9engF9987t8ovg54MXO518CfkVVnwJ2gE/G458EduLxX4nt3i74DPAFVX0OeC82Xv186kBEzgN/B/iAqv4IVprjr9LPpwdDNwfUm/0CPgz8Vufzp4FPn2SfHpYXVqDrJ7EAy3Px2DksZgbgXwE/02nftvthf2FVLr8I/BngBSxk9xaQxfPtvAJ+C/hwfJ/FdnLSv+FNGKMN4LtHf2s/n+4Zp/PAK8BWnB8vAH++n08P9jppFVZ6eAlX47G3NaJY/D7gy8BZXVR0vA6cje/fzmP3z4G/zyKH3mngrqqm9LndsWjHKZ7fje1/2PEkcBP4N1HV969FZIV+Pi1BVa8B/wx4GXgNmx9foZ9PD4STJiA9jkBEVrH68z+vqnvdc2psz9vabU5E/iJwQ1W/ctJ9eciRAe8HflVV3wccslBXAf18Aog2oL+MEdzHgBXgp060U28hnDQBuQZc6Hx+PB57W0JEcox4/Lqqfi4efl1EzsXz54Ab8fjbdew+CvwlEfke8BuYGuszwCmxouawPBbtOMXzG8DtN7PDJ4SrwFVV/XL8/JsYQenn0zL+LPBdVb2pqhXwOWyO9fPpAXDSBOR/A09Hj4cCM159/oT7dCIQSwP8a8CLqvrLnVOfBz4R338Cs42k438jes98CNjtqCZ+aKGqn1bVx1X1CWy+fElV/xrwu8DHY7Oj45TG7+Ox/Q89162q14FXROTZeOhjwB/Sz6ejeBn4kIiM4xpM49TPpwfBSRthgJ8GvgV8B/iHJ92fExyHH8PUCV8DvhpfP43pV78IfBv4HWArthfMg+07wB9gXiQn/jve5DH7CeCF+P4y8L+Al4D/CAzi8WH8/FI8f/mk+/0mjs+fAH4vzqn/DGz28+nYcfonwDeArwP/Fhj08+nBXn0keo8ePXr0eEM4aRVWjx49evR4i6InID169OjR4w2hJyA9evTo0eMNoScgPXr06NHjDaEnID169OjR4w2hJyA9evTo0eMNoScgPXr06NHjDaEnID169OjR4w3h/wF4VXgRpYN6XQAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "stream", "name": "stdout", "text": [ "['01.beer-mug', '02.coffee-mug', '03.teapot', '04.wine-bottle']\n" ] } ], "source": [ "# Optional, only to see few samples\n", "def imshow(inp, title=None):\n", " \"\"\"Imshow for Tensor.\"\"\"\n", " inp = inp.numpy().transpose((1, 2, 0))\n", " mean = np.array([0.485, 0.456, 0.406])\n", " std = np.array([0.229, 0.224, 0.225])\n", " inp = std * inp + mean\n", " inp = np.clip(inp, 0, 1)\n", " plt.imshow(inp)\n", " if title is not None:\n", " plt.title(title)\n", " plt.pause(0.001) # pause a bit so that plots are updated\n", "\n", "\n", "# Get a batch of training data\n", "inputs, classes = next(iter(dataloaders['train']))\n", "\n", "# Make a grid from batch\n", "out = torchvision.utils.make_grid(inputs)\n", "\n", "imshow(out, title=[class_names[x] for x in classes])\n", "\n", "print(class_names)" ] }, { "cell_type": "code", "execution_count": 148, "metadata": {}, "outputs": [], "source": [ "def train_model(model, criterion, optimizer, scheduler, num_epochs=25):\n", " since = time.time()\n", "\n", " best_model_wts = copy.deepcopy(model.state_dict())\n", " best_acc = 0.0\n", "\n", " for epoch in range(num_epochs):\n", " print('Epoch {}/{}'.format(epoch, num_epochs - 1))\n", " print('-' * 10)\n", "\n", " # Each epoch has a training and validation phase\n", " for phase in ['train', 'test']:\n", " if phase == 'train':\n", " model.train() # Set model to training mode\n", " else:\n", " model.eval() # Set model to evaluate mode\n", "\n", " running_loss = 0.0\n", " running_corrects = 0\n", "\n", " # Iterate over data.\n", " for inputs, labels in dataloaders[phase]:\n", " inputs = inputs.to(device)\n", " labels = labels.to(device)\n", "\n", " # zero the parameter gradients\n", " optimizer.zero_grad()\n", "\n", " # forward\n", " # track history if only in train\n", " with torch.set_grad_enabled(phase == 'train'):\n", " outputs = model(inputs)\n", " _, preds = torch.max(outputs, 1)\n", " loss = criterion(outputs, labels)\n", "\n", " # backward + optimize only if in training phase\n", " if phase == 'train':\n", " loss.backward()\n", " optimizer.step()\n", "\n", " # statistics\n", " running_loss += loss.item() * inputs.size(0)\n", " running_corrects += torch.sum(preds == labels.data)\n", " if phase == 'train':\n", " scheduler.step()\n", "\n", " epoch_loss = running_loss / dataset_sizes[phase]\n", " epoch_acc = running_corrects.double() / dataset_sizes[phase]\n", "\n", " print('{} Loss: {:.4f} Acc: {:.4f}'.format(\n", " phase, epoch_loss, epoch_acc))\n", "\n", " # deep copy the model\n", " if phase == 'test' and epoch_acc > best_acc:\n", " best_acc = epoch_acc\n", " best_model_wts = copy.deepcopy(model.state_dict())\n", "\n", " print()\n", "\n", " time_elapsed = time.time() - since\n", " print('Training complete in {:.0f}m {:.0f}s'.format(\n", " time_elapsed // 60, time_elapsed % 60))\n", " print('Best val Acc: {:4f}'.format(best_acc))\n", "\n", " # load best model weights\n", " model.load_state_dict(best_model_wts)\n", " return model" ] }, { "cell_type": "code", "execution_count": 149, "metadata": {}, "outputs": [], "source": [ "def visualize_model(model, num_images=6):\n", " was_training = model.training\n", " model.eval()\n", " images_so_far = 0\n", " fig = plt.figure()\n", "\n", " with torch.no_grad():\n", " for i, (inputs, labels) in enumerate(dataloaders['test']):\n", " inputs = inputs.to(device)\n", " labels = labels.to(device)\n", "\n", " outputs = model(inputs)\n", " _, preds = torch.max(outputs, 1)\n", "\n", " for j in range(inputs.size()[0]):\n", " images_so_far += 1\n", " ax = plt.subplot(num_images//2, 2, images_so_far)\n", " ax.axis('off')\n", " ax.set_title('predicted: {}'.format(class_names[preds[j]]))\n", " imshow(inputs.cpu().data[j])\n", "\n", " if images_so_far == num_images:\n", " model.train(mode=was_training)\n", " return\n", " model.train(mode=was_training)" ] }, { "cell_type": "code", "execution_count": 160, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Downloading: \"https://download.pytorch.org/models/resnet18-f37072fd.pth\" to /Users/egfranco/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth\n", "100.0%\n" ] } ], "source": [ "model_ft = models.resnet18(pretrained=True)\n", "num_ftrs = model_ft.fc.in_features\n", "\n", "model_ft.fc = nn.Sequential(\n", " nn.Linear(num_ftrs, 256),\n", " nn.ReLU(),\n", " nn.Dropout(0.4),\n", " nn.Linear(256, 4), \n", " nn.LogSoftmax(dim=1) # For using NLLLoss()\n", ")\n", "\n", "model_ft = model_ft.to(device)\n", "\n", "criterion = nn.NLLLoss()\n", "\n", "# Observe that all parameters are being optimized\n", "optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)\n", "\n", "# Decay LR by a factor of 0.1 every 7 epochs\n", "exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)" ] }, { "cell_type": "code", "execution_count": 161, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 0/11\n", "----------\n", "train Loss: 1.1855 Acc: 0.4370\n", "test Loss: 0.6345 Acc: 0.8701\n", "\n", "Epoch 1/11\n", "----------\n", "train Loss: 0.7126 Acc: 0.7742\n", "test Loss: 0.3037 Acc: 0.9221\n", "\n", "Epoch 2/11\n", "----------\n", "train Loss: 0.5259 Acc: 0.8182\n", "test Loss: 0.2504 Acc: 0.8831\n", "\n", "Epoch 3/11\n", "----------\n", "train Loss: 0.4555 Acc: 0.8446\n", "test Loss: 0.1787 Acc: 0.9351\n", "\n", "Epoch 4/11\n", "----------\n", "train Loss: 0.4937 Acc: 0.8358\n", "test Loss: 0.2237 Acc: 0.9740\n", "\n", "Epoch 5/11\n", "----------\n", "train Loss: 0.4140 Acc: 0.8475\n", "test Loss: 0.1751 Acc: 0.9481\n", "\n", "Epoch 6/11\n", "----------\n", "train Loss: 0.3172 Acc: 0.8886\n", "test Loss: 0.1864 Acc: 0.9091\n", "\n", "Epoch 7/11\n", "----------\n", "train Loss: 0.2870 Acc: 0.9120\n", "test Loss: 0.2114 Acc: 0.9091\n", "\n", "Epoch 8/11\n", "----------\n", "train Loss: 0.3029 Acc: 0.9120\n", "test Loss: 0.2046 Acc: 0.9221\n", "\n", "Epoch 9/11\n", "----------\n", "train Loss: 0.2704 Acc: 0.9091\n", "test Loss: 0.2000 Acc: 0.9091\n", "\n", "Epoch 10/11\n", "----------\n", "train Loss: 0.3203 Acc: 0.8827\n", "test Loss: 0.1762 Acc: 0.9091\n", "\n", "Epoch 11/11\n", "----------\n", "train Loss: 0.3068 Acc: 0.8886\n", "test Loss: 0.2632 Acc: 0.8831\n", "\n", "Training complete in 23m 38s\n", "Best val Acc: 0.974026\n" ] } ], "source": [ "model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,\n", " num_epochs=12)" ] }, { "cell_type": "code", "execution_count": 162, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-22T13:22:05.924409\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKUAAABeCAYAAABCftQAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAliUlEQVR4nO2daYyl2Vnff88573Lvrbq19TbT09M948HGDjY2AQcHO8FgBxITgYCAlVgICyzLWVGQEjBEISQYhQ+JRALISFFwEpaAQETBwg4hwgt4AWzswWOPxzOe6elturqr6tbd3+WcJx/OeW/dqq7uabDHrrmqv3Sr3n39v895tvMcUVWOcYyjBPPlvoBjHOMgjkl5jCOHY1Ie48jhmJTHOHI4JuUxjhyOSXmMI4cvOylF5CkReX2c/jER+S9fgnO+VkQuP9fn+ctCRN4kIr/3HB37XSLyU8/FsePxv+Bn+2Un5TxU9adV9S3Ptt1z/WAPOd8DIvIHIjIWkUebj+iQ7f6fiKiIJF/I+VT1V1T1W76QYzwXEJH3ichbDixTEfmKL+Z5vqik/EJfxhHGrwF/BpwAfhz4TRE5Nb+BiLwJSL8M17Z4UNU7/oCngLcDnwZ2gF8CWnHda4HLwI8AzwD/g0D0HwWeALaA3wA25o73fcDFuO7H4/FfH9f9G+CX57Z9DfAhoAdcAt4MvBWogBIYAr8Ttz0L/BZwA3gS+Gdzx2kD74rX/2ngXwCXn+3e474vAgqgO7fsg8Db5uZXgceAVwEKJLc51vuB747Tr47bflucfx3wiTj9ZuAP5/ZT4G3A5+Kz+HlA5tb/APCZeH//B7hwh/t5F/BO4P8Cg3hNF+bWfwPwJ8Bu/P8Ncfk7AAdM43P/OeAD8dpGcdkbG07MHe+27+W213iXpPwUcD+wAfwR8FNzpKyBnwHy+PJ/CPgIcC4u+0Xg1+L2fyVe/N+M6/5j3P8WUgIX4kP7+wQJdAJ4xdyD/am5azTAx4B/DWTAC4DPA98a1//7SKSNeB+fOvDgfgH4hdvc/3cCnzmw7OeA/zw3//PAPwce4M6k/LfNfsCPET7cn5lb97N3IOW7gTXgfHzBfzuu+w7gceAlQAL8K+BDz0LKwdw7+NnmXPH57BAERxKf/Q5wIq5/H/CWA8dT4Cvm5l/bPNtney9fKCnnpcIbgCfmLqAkSs647DPA6+bm7yVItiRe3P+cW7cU9z+MlG8HfvsOD3aelF8PPH1gm7cDvxSnP9+8xDj/Vu5eUn4f8JEDy94BvCtOfx3wiXh/z0bK1wEPx+n3Am9pjk2QWN91B1K+Zm7+N4AfjdPvAX7wwAc65jbSMj67+XewTJCA98d7/eMD238YePNfkpR3fC+3+92tDnhpbvoiQSQ3uKGq07n5C8Bvi4ifW+aAM3G/2bFUdSQiW7c55/0ESXI3uACcFZHe3DJLkI4cPG+8h7vFEFg5sGwFGIiIIUjZH1LVWkSe7VgfBl4kImeAVwDfDvykiJwE/hqhObwdnpmbHhPIBOHef1ZE/sPcegHui3ruj8Vlv6yqb4vT8+9gKCLbhGd0llufzUXgvme7sdvg2d7LobhbUt4/N30euDo3fzDN6BLwA6r6RwcPIiLXCM1MM98hNMuH4RLhRR2Gw875pKq+8DbbXyPcwyNx/vxttjsMjwAvEJGuqg7ispcDv0og59cBvx4JaeP6yyLyPaq67+Gr6lhEPkZQcT6lqqWIfAj4YULrc/MvcF0NLgHvUNVfOWTdh4CfPmT57H2KyDKh2b4afxcObHueINXh1ud+N9d2p/dyKO7W+v7HInJORDYIxsmv32HbdwLvEJELACJySkS+I677TeDvishrRCQj6FG3u4ZfAV4vIt8rIomInBCRV8R11wn6SYM/JkiuHxGRtohYEXmpiLwyrv8N4O0isi4i54B/epf3jao+Rmief0JEWiLyncBXE5T3XYJ0eUX8vSHu9rXAR29zyPcD/yT+h9Akzs//RfFOwr19FYCIrIrI9zzLPm+Yewf/jqBCXAJ+lyDJ/0F85m8k2AHvjvsdfO63W9bg2d7L4bhLnbKxvnvAfwM6B/WHAzrNDwOfJSjUTwA/Pbf++4GnuTvr+28QXm6f8NV9f1z+QgJResD/isvOElw3zxCU84/MHbcD/Pe4/S3WN+HFvvMOz+ABAnkm8b5ef4ft9umUBEn7prn5b43bfGOcf2mcf+PcNm/mVp1yXm97F/t16u8D/nzuOf3XO9zLu9izvocEleHBufWvIRgnu/H/vC771wlehh3gP8VlbyO0RD3gew9y4k7v5XY/iTveFiLyFEG5/f07bniMY3yRcKQiOsc4BhyT8hhHEM/afB/jGF9qHEvKYxw5HJPyGEcOC5XV8yP/8od1Oh7xkQ9+kIcf+Sxf8+L7eMkLzvKTP/GDrJ3sMjWKM4Aahr3r+Npj2h1On1wnSQTqEtsv+dxjO/zux3aZTCcMxwX9wQDnHCKC9547RW6a9c02qoqIcFBNOngsY8zsHKqKMebQ/Y0xs1+zvDnfz/38Lz5rSOn5gIUipapSO8+TT1+l8sq1m7u86bu/hUc/e4X6MwZJhFaakCaWh9/3m1x66glk9QJv/UdvY2mphYqSiXL6RMapJc8fX+pRVcUtBGumG2LMk8tau+dvmyMnMCNRs84YMyPb/LGBfcec8/nhvcd7P1s+f9xFwcKR0nvFI6ga6gq2ez0m1WmWlzKyJKeVp+R5yrmHvpLPPf45Xv7QC1lfysnbFvDUtUGWVjh9qof/lAPYJ72a/977fUSYl2SzfTx4UYxXRAAvGBFU9FYSqSJi8NWU6WjIeHeX4XhKu9tl/eRJkizfR9J9/71ijWVRsFCkFBGMFbLUstKy3HtqhUcefZJr129y5tRJNjba3Hu6y8aJU6xsnOKF9y3z8r/6Ysbi6I89u6OC7a0pFy/v8PBnNvHq9zWRzf9GUjVoSNqs894jKCoJaekwgyGUk5AmkWXUq6tgDMqeRDQiuKri6U98nN3rVxBXszV1TDzc99BDvPRrX3mLpJ7dt0nAV1/CJ/3cYqFIqaqkScpLX3QB3ISNtS790YDtfo9rV69S1Q6fGD5/cRvvK976jUu8+4NX0D+t2envMhlN8A6cAgYSI7gD0vAgMRoiNjqhMQZjLd47rE6xn/pzqkcfZzVxfOWDOVuF4bH1r0Je8kKYa8K9gvc1o/5NqKcgNmQ/OIebTPHeY6295SNBBFtN8Fc+92V55s8FFs76VpT11TZ5ZujvbDEd9plMptgswVOz258wntQM+lNWsprxcMK1ZzYZDkY451HxQA3e4XRPd5vX4w7qeCKCcw4Q0KgnquLHBduPP02/KBl5R92qSbMJxY1rSNxGCBKeRp/04EXwqnhVahRDkKTN+ebPL4BLc/TMweSe5y8WSlKKCOo8T128ynjU49TaClVtuNkvuLl9k1IrDAZrBBKh1RYm0zGVZHvSxytRAAG3GhPW2hlBGym3Z6B4BlubDDavM9rt472yXpSIGsa156krjlEJk64h9x6i/okI6j2IxbaW8YNdRJRaPSKG5ZPrswuaN5aCUeVRcdA5mPL5/MVCkRLAec/TmwOsKMOiz7SsMIklTwxZmqMoFkdqUxBFCASbt2AP1dsOWd+Qc9Z8VyWXP/lxisEu08oxLD3LHpbwtFO4cE/Cpa2afH0FYy2KgERpC9jUsrqxxmTrKiIGIwYjnvZSd2bVz3TQmeUepLPR/Xru8xkLRUrvPUpo+gRHkqSstTooSl17hqMpO8MJznvWWgraRr1HTZBIjQRqXD0H0VjWDQ66cFQ1SDwMtYbm34lBFIxCnnhSUUySotFdNG9Jq3Psbt/ECHhAfbCsx6PxTF9t3EzzxpaI4P/C+bdHFwtFSgBE6LRTDDCpKvy0pihrqrLGe3Cq5HmL06e72GTPlzjv8gmHmX/xGkkb51SDMsd+YiICSUKtjtr5mW4ZjgBeQRGU/VIYQKzBTUv8ZIrE9RoP2W539p1nft/mmo/9lEcUIoKoUlSene1dvEKSWJaWljh5eo3Tp09z4sQGnU6H1azGmj/BiyKxGZ23ruf9kIEQgpFAgrp2NIzZ7wy3tFfXKXvbGJHgd0RRAa+G2jscFoy9RR0QD64qcXWBoeGygjFk7dZ+4+aAhF40LBQpVRUxhk5nmXa7w9mzZzl9+hTd7jLW7jm1AayOMGKCYWN11nwfbB5FhCw3nD65zmp3CVBG4ym97SG9wRg/5zT33jHd3QLjQdnT+YjWuDe4GlQPIz3UdU3tHKmw77jGWMqyxBhDkiSH6JWLhYUiJQTJ+PrXvZYsS7FJwmQyoapqRA6ECZH4YhtpM/dyxYBYjMD6aofzF06x3MnAh+Z0tdvm1MYKm1s9nrneoyiCw9zXDlcUqAp1lJDBiW5QA0YTEvEYsz/82JzTFxO8F8aSMTaWum1QET7x8J/Talm6Sx3SLCXLMqxJQVKydpt2q0W3u8yiYKFIKSIkSUJ3pYv3nvF4TFEUMzdOY8E2Ph/vffQVSmyN96xqY+DkxjIXLtxL3kpp5zmpDVJqOi3wfsrJE8ssdXIuX9qkN6xxZYGrqjl+GyYCpYWRCmnVYVAXjI0jO6DDgjItajZpMfEe7wVUUXVMer3ge02EspgwRCmKmu2dEeOiIksTXvrSr/oyPPHnBgtFSjwYMZRVyWg0RtXf1mIODaugGhzujX4YXDGwttLi/PlTLHUy2p0OWZLi69Ckt9ttkiRhOBohueHC/WeQq9tc27mJehf0UwGjwsNrMEkANTxKxrYteFlmWDMya6LDdYGbjjGppR7VILpH7uhI916DlCWuVh9Uhqnj+vXrz/nj/VJhoSI6apSynDAcjmZpYAfDct57vAYHeV252FTvEVJVaeUJ5+8/TWepTSdvY1VwtQs6X/wvIrRbLaw1iFHOnl6nnZro9/SIgqQG6WS4XHHtmqpVUWUVzijGGUQNooIooMJ0Oo0Wju7TJhBBNHxAxoefoIGZEGI+xwkZRxPZ5CZF6TAq8SXN/DYzyRKa6hgdicaJGKKbBmwC9507QaeTkmf5rIl1tbslbcx7T5ZllFWFWk/buOjOCZLSJpZEUnRUBq4tCzoVfOUpygE6rfBFQVWWlOMR453NcK0SjKM9z9OtPtN9nIVbddTnMRaKlK+rHsbkls7pM0xOn+VmoVzfrtgcKL0pDIsgFY2vMSgOQyJBwogxKMrJk2usLLdoZ20SLGUZsm9UPbAnbTVKW1Uhz3LKaoS4KZKkbI0qBir4WimuFzAJ4s0tgdvxPPmpR9l67HHWfEWu9eyDKDFoskRo/wlSXD2IzkjoZtIxRHIOI+zzHQtFym5a4bTgjB1x+uUr2AdOBWIUSn9Qc7NXsHl9yNUnBty8VpK46G+MelqnlXL6RJfc5iQ2iUkWQSo6tz+jvFneON3zLMeNxxibsOl8kNbqKesybgveK6IwLQq0rkmtxxpFG+d8dB95BIuhkwmjCox3+8/bUHSOjwd15+czFoqUZSXsjmtGxXWG7/kwKxsrJKlBkoTEppxODPeI8BV5jxv2Jo9ed9S5osaTGMPZMxvkqSHPs0jEkPkT9NG5WLfzwcgoxlTllN2dHjc3t7l+dRNczYXMIwYqTbhUCUWMr+9uD6grR+ogzz2FF24CXiAXaKV7ZOvk8LqvfTG/96ePMi39XDO+Z5XPQpRf4uf8XGOhSNkbTxmOK4ZTZTguydOt4AbyiqrgomVclZ7+uOBir6I8p0gCq90OK8s5qU2xVvY10cbITFKqaiCl9zxz+Rpbm5vs9Prs9vvcuLFD6WoK5+kXwqicULgYlVaYjkqSxDKuHaUo58+f5YH7X0ArbyHjMZcefRhRJVEoSsMHP/F5JhWI7LmNUEvjO2hwrFMeYZRO8WJRp7hKKb2nSVVQD8451EDtYLes6RcejyOxCSdOraB40jTdy40k7FPXNTCXxkaIuJy8/wInz1/AeWXa3+Vjvev0hsLT/THbhcMfyNwRMaystHHe0R9MuXx9ixP3nePc6fsZbV4PH4ERVMBpzfakjh5Uc7g0nJOUi0TKxVFEAC8GY0FSi7EpisGp4NXgMHgxIIZalXHlKFQwYthYXybPE9I0i+FCnfvtDwd673EevAYr3rkgtaqiovYVF4cVW4VGwwia5l9EwHg63ZTzD5zAJFCOCj75yYfZ3LlJNZ2i3sX9NKbVadNg39KJTBvXER4RxwJxcrFIqaoYG+LD1lqSJCFJktmyLMsxaU6NYVTCckdYWUlZW1tCBLI0uyXZYb5XofcejUQNOZCBMrVzFOMBw2nNxd0qJGEw1+RCYJYV1Agnz3ZJOiH0WA4LPvv5x5lMRvuUw729Zc9fNY+Grc3sArFyoZpv7xXFYBMhzXNSE3UviX2oxTAqSnrTiuvDkoce6pCud1CrJEmCGENd7fXvVg1hSOfcnqEzZ/BU3s2mi/4uNyZTxkV9uOURFcvS1QiGxCSUlOCVm5s3uMdHRz7RpyrBypZ43bccMrqjmvDRsfV9RFH5QMzUKtZ7pl4o65pp6ZjWMJwUbPbGPNUrKbMuX3faoolQAG3bwlWKRCMndIuNuY/eI5iQdBtJaozBqQa9UWE0GDIsQtOu+yg0H1GCsqyYjCqYUzeLyYR+vzdrtrwxbHRy7j+9yiNPPkOj4e7rptH8UQHMLYL0+YzFIqWD2nkGxZTLu7vgHRstoZsKSZLRtYalEyn3nczQpE21ayh3HsaZx+mZFkmew1IX6Z6ktXEPttUizxMmkxJVj/NuFq923iMmEk5hMhxSuJBD2TBOIERoorkCgqugmFazRBABfK1MJxM6kgKC8fBNX/Mg66lwdbPP9nAc2TjfvgedMrQFC8RIFoyUTh3TWtkdVlzeGXFmybJbWHpTpfYlTiEXpVJDtpywbE+QpgbrQd0EkYpcCravXmV76Qov++Zv4pWvfiUfeP9H6fcnVK6kdA7vDblNsUBiDBa499QaKydWONc21M4hGKq6Jk3TWf8wa4U0gY3lFc6dKSinnmri2OqPqOsKsig+DVzdGrB8/gyDosIf2jKHpjtITo0fw2JgoUgJQlkU9CclU6dsDkJ4z0dBkoink0CetzBpG7UJxhha7YxWu4VNLVmWMix6TKdTSlfSWcpotVJ2eoPYP1sp6iok/1pLUsOTjz2OKWFp4yTf/ve+iVYrg7rClQWqnnI6JM8yut02nVzotNoUdcVwOOTytW1+/Xc+Av3enoUt8NFHL/HRz1zEkyFz+mLoJhGs+9uVh3m+Y7FIqYrDM6xrRA3OMCOSSLBkK4XMJFibot7hxaBGqNXjaygqR28woWi1KGqoqymeoK+WXqmcUjuYSIURoXaeyxevsLyUUVWO5eUO7TwFbeNcjfqaZ57u48sRa+tdlla6tPIUUxVMq5p2O8fTJPw0CXXw0L2neODsCu/7+JMo9hbSOe9wGhKJg1tocZrwhSKlGKF2yrQMdqvTJmYcIjOeYLFaY0EsRa1glcQLdeFw3lFVNYOxIzvZpagqppMJznnqaIGrgHcVwyubjMsCjyP3UzLnMbMyLwRXI4KLfs7+cMDqaIW11WXqukLVY43BJhZjQ30h2It8f/3LzrBcCx/PM3aKKfPDPqoqzvt9zvljSXlEIYSSKxMXc76kqYAWVhqiqSCCV0/tlMQnFKVjNJ7gCX1oht5w/vQ91LUy6A9xPhgUTfddNUKy0aVlNlCB0+0Ogyc/i2nsbiM0OoOvg28zzTNcUYL3CCl15ajqGu8UddHokZgdjOPDn7zKg+e6DIoKOeBObgp5aST+cZjxCEPEMnWeSe3JExO6FDQGgfqZv1k1+hdVqGrHeHdMf1zgFSo1dM49QN5dofYwnJRMyhqnitPYt8dastYSJk0QYNLrMRpPcbXGFF9iUiVUlQMR8laL4XiE80HKWZtiRDBYEmOjvd5EcJSnNns8eX0n6IuReIfcMaIC4rH2mJRHEoJlXHhKb8lV50Qjs2a86a/jPGhiqQpHf1JSVJ6qgtaZeznxgoeoVSmdY6c/ZDytQgGq2BcbEbIsxUfpW02L2K/HzuoKlZMprgyun+7aKtYq7VbKtCxwvqKqKoyY2fZNFlDjOhLRmTupuYdb/JQLisXxIwCDuqJfhrqQavYSKGDvhSZA4irUFZjEUNSOoqyYOiU7dR9nX/YykjTHEyqubfUGFFWJk5Bgq0BiU1Y6y+QmBRGK8RivQl3XGFUSERJjSdKUJLXYJMEjpHkLJHSZtdZQO4+fpce5oB7EDjh73XPm09P2+yl1vtfEcfN9NPGBJ3bZGRR0s6aj/3wnsea1aiBCOSbrdunVDp+vcu+Lv5LVe+/F2iQWJwgN6e4g+CYbqSWidLKElaUWWSJcunadGzd6jEoovacsS/B2plsKBmohT5siWqELhgpUrg5WtHMYYpjUKs7VOBcjScaQpemzJ5gvUEhnoUj5Nx9co6w9/dGYa4Oa3Wkd3UEhTCgaiOVRclfSlpoa4eSLXsTqveeQmKroRDEiVE7pD6Z4F8isHlqJZW25Q5IYOiZj89p1Hn3qCp1Wm6kPceqydoFQ3uPqClDSLKEoC3wNrTShmE4ppyVVzG4PcSCF2rPSavEtrzqPAd7z4SfpjdyzcFIQOe44diTx1fcmtHKLzVYonHBtWPPE9TGPXekxmobIiIhSqWPNKGVvm2pkWeom+KqkrjUmNwhpmqEe6iQ0oXVVIc6wvrFBliYoijEW5zxPX99kZWmJpbUlaufotFs4V2OAzGc4X4MJRQiyPCG1gljF4fA9R2ItppHldc23vfYFvOolGzz2+V3e8OqH+OX3fjomiDDnOgrCfF9G+oJgoUj5Wx/fJrWG5VZKkiZUKZS1R33KaFzggJGAw/PM7hTvxpTOsPvu95IvbSB5yMG0WUre7dJaW2NpbY328jJiUqrKU5aeTh66P85qCwHbwxFT7/jQhz7GPWdOstxpI85jEaxRjFXSxJAlQpII08rT6+2y3esznhaszoW2H7hnifGk5Hf+4CLf9s0P0UpTnIt5lodn+87K0iwCFoqUf3ZxsJc9Q5BwIfWrESmC0SaNoQySRgQp+7DVJ80y8k4Xm2UMNm/i1eOKCSpK3u7SWVtnfP99nH/oAiudjERr2NkiJ6FWz25vwnt/7w9J04QsTWepZ8RMoiSz5Knl9JlVrl7bpSxrirLEO2V1JegOtTE8cWXEd736DP/wjS9hcwBlVbFkMmY6sh4kp7JAoe/FIqXaLCTzJqGOkM1T0jQjM0JubeijXTv60zGT6TRki9cVrqrx3lNNJoyLmu7KGmliGI9HFMUEo8pkd5fdzcs88/in+OwHElqppZNbVIVXnU6pgUe2plzrK1UVXD5wwKldKu12RresGE3HFIULRQtmScSKTRLe8+GnsCJsrOb87/c/GaptmKZvztz9Lo5tsw8LRcq/9V1/h7zVQpKEoigZF4oVEO9RpySpIRNDywhaVbiypCqmFFUJpmZUjhlPSvo7YyaDCa6YYuq9ShviQimWypfUtTAcW4wE294giL+VJY20nrkbG+k92yJa6AoVCQZhXHp+9fc/G4onmIROu31LxMYYIbHBbRVKxS6OqFwoUu4WQjmcsN3vodWUE2tLrK6u4BNhdzxl++qISVmSZAZRD74iQUk8LLeC79DblDRLkCxhlAje7B+RQSLDRCQW7W+KEhh0PnN3Dnpg2u8TcY3bSmfZTGIgy7O5TfYTUkRIU0urlVJVjqLcq9yxCFgoUm71epSTEtWSzHjG/QE7Wz1u7vQZDCdURY2r6hAtqWqsegweQ5huEm2W2m1Orq/jNUgimStYOvN4xqyjPX456kMk5WE4rKakaJPhLohGXyZgrMHoYaRM6YihMBV17bD22CV0JPH5Rx4hN4YUpa7rqDPW+Do4qVU9RkM/cA84dE5q7SU4eOtp1Z7d0oNzGBObZ4hdJBqSzPdY5K6VvFkSeSxuJQasERKrKAVF5bj3ZJeiUK7tDGm3cw6+qsQmGJOACuNJMRvSZBGwUKQc37jBJHZ9DRk3OvPlCR6rgYhNGer5RAdt4s2EXtYGEFW8l9BVN24XjudnTbn3OstAuivonKSMPcQUSA2sJw5PiXYsZ1eV5dVV/ugzFTfGNaIpEIydhvomVvO1Ro5JeVRR+djM6h7V5oVXQ85GizNRZIVMHLDxxaZiMN6TiOASs+da0qD3xbyjSNgwZzEo9V1cpTZxz7nrCuSvvEdwGBzXLu/A1R1OAutthbLG+ZzaJLhEcMbgSVA8agR7G332+YiFIqV3s3ZxfynpfUkNZsaJhlxEt4yPZA61URNczDan8W3GrA4Fsiylk+dkaYpYS2ITrmxuw+QOYyRqc3WziwmLJeSB1j5IeNsw1jtAsUYQLUirEisGqUNXXCeWSgwPrsA9/YtflGd4FLBQpDQCYGLGWiwIoHuaX1DjIsmiQ9srONnriCAIqfcUqky8j2llMhO+omCNYXl5hU6WgfeoCN670JTfApk7e5zSvWvbu7DoWFLw4hEJY+9YY7CYoG6Y+BHFPumGihRwlXLl6viL/Ti/bFgoUqZzwxoDcfxDYsWKSAZpxk4M24YcyWbokeia8UpdB5KVvokuR6NEAqFvbG1hkoTUJmRJgtV6VjpwPw4hqkRyRcEuhLLYiTGhQ1jcTT2hRIyE1GGjZqa7ipiZp0hiJvqiYKFImTTNbPOyJMybmDKGkVn2uI+EtcZgJfgokyTUEgpjgmesrnRj35zgB3QuSM5Zc+5KvJaUzobsIncXxIiun0ZSx0U456jq/fsbTCCwghgb9Fnds/2RaOw0lTIWBAtFStWom8X20OieNDJoKAlIkKTLrTbLnSWyLIv6ZKhDFFxHynQ8oZvncRybUA2jiWX72rMz6DMuCnytGBP0V3eXLqE9jbZhZRg4yhIiNY2LadZvBw2Jv3EMx0YpDtJbMU3654JgoUgpRkgQUpphSOJLN8E48YSS0tZaTmys0U6zEPt2LlreHiNQq4YkDpqiVh4HePWkSTITSvvG3b5LPs4bTLPEMxHSRMgTt2+ZNv2KJLirJAlV42b3G8l4m0KBz1ssFCkz43AKTs1csuGezogYkmgobG3fpN1qkaVpHLJOQkldBVFPbg02teT5EsPJmHFRUFUl49GIqhkZzJqZHio+RrFFDoQR90OwqNqg70YyiXiMWExi9vkbjUZfKLF7MCBaY6yJw7NYmiT54zDjEUWNCYQwGnUxxZjYWDYvuKnv6JXheBB9lI30idXZ5kglshUKFehefSCjkJo5KYngrbIsMKgNvsl9PAQHu8cihkRC4kjtNFrdYV9PbJqNiY19SLxQF661iipFjV8klXKxSJkI+wZMUGKRUxVUTXQZhQxuI0GqhfwKF3W0QBZriDmQitGQucP80HWxsJWJaoIn5GyeS4SlxLNdwKhSShfO3Sh8TWnq0WCMeGhbWEmE9balLR5VQ9Nhw8bRKogfklMJ4VETlBKLj9JWgu/ymJRHExUWESWVEAb0QE2OV4NIGJ/RSALoLJQYXEUxHt5UVBMgGjghMViiARKGLWmc7s3YPJZAyiyBTgJn8oRaQ4mXwiulC/qtClhRMlPRWkvIxJPYmJnelBpEKb1Suzp6CgKMMbP0OBNDnE2pQheNuEXBQpGyk9Yxri14ESqTsy0JkuR0u8tMRiWd5RbD4ZA8z0MvQjF4PKPRiE67RVFMSWwCLtShzLOM8XiEcUp3eSkm7wrWGspiyspKN9aWFNqtNopjOi3Jspw0S1gyyloUY3XpqIsi1DAygrMJVV0ACZX30deoaK2hV6WG6hpiQsa8CWlDKIqrfdBSooQ/jn0fVUjMfRShb3O2fUqStWjlOeNpQavTYjgek+ZZKNJvDMYmjAYjWp0VirpEbY63lsFoSN5qMS5KPAabJJRFGFw+TS114TCS4iqw3VU8hoGHzlIb06poLXfI0oS6qqi8IW9ldLOEyXjK1vY242nJcrtDkgUpndiEyXjC0nLGM888w/LSKqiytbUNLsbmjYmSPfTOPGMhVxfCo4sjKBcoXRlQ5xl5w1Xp8EydYtIEY6Aop1ibMBqPsdZSO08xLbA2obe7S5ZlFMUU9aGCRq+3G3yTdU1VlrRaLU6c2KCsSlZWumxsrKOqPHj+fuq6YjCcMhiMWFpusbraYbc/4Iknr3Blc8zUrzDxy2zuej756cf53MVLtJeXuf/cPfQGQ4bjCUvLbYajKafPnGK3P6DVDsfIWi3OPXAvKhaHUCO0ltuoScBm7CiUqggeYxeHlQtFyh2fcbFQNkcF1gg2SRhPJrTaHYajMUma4VQYT6asrW+wvbNDkqVMiynTssRmhv6gT6vVIs8S1NchgqLKzvYW1ghVUXLt8nWyRLh46QqC4eT6OlmaYAihzpVOi/VuC3EjJv0buKKH9VNOrC7RbaWsLrfotFPSJORpLnWWUHWkqSVLcjKbkBrLaDTlxIkNkjTFGBNVE89yJ6PTSpGsjdiE3EKmi9N8y2FZ0M9XnO7mOtG9+LdqM7LDXpSkGUpE4iihNrFh0FABYwVXaxglwvtQQhrIW6Efd5Kk5HnObq/PPfeeZGdnl7IM422vrq1QFCW+dpw5vc7Gxmpw33glycKIt94btm5ucfWZ61S1Y22ty/r6OltbW6x0l6nKivF4ylK3w6VLV1hqr7C01OLq1RtNqJ6lLCPPDePhBG8MLalZqwrw8JHtYiGYuVCkPLHc0krtXPJNU0x0PjY8s2fnls1c0zPbmsPyE28xJvYc4EZmhQAJzigbE3DjB4DgNBAdVSxCq5XNyra0222mRUGW5ogo4/GU5aUOoIzH45CAQfQCiAe1WKNYAyuuYtnVfHhBSLlQho7BxJ59+3sL7sccOTXElOcxy7zc67NwyH6N43tv3+CR2Tuz1zCueO2A+eTfWYgShuPJbHFZDVGBaVHNTt0bDOZ2ix/J7LoczYeUWWWJwzKUnp9YKEl5jMXAQhk6x1gMHJPyGEcOx6Q8xpHDMSmPceRwTMpjHDkck/IYRw7/H1tnAeicbjIfAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-22T13:22:06.031707\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABeCAYAAAAXHzdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAw/0lEQVR4nO29Z7BmyXnf9+vuk94cbr5zw6Q7Mzsz2IAFdhdY7BLAIhEkGEGXJIpFSqJZqnIsW8GkXDJLJarsD1ZZZVtFh2IwRTGINEWTFEBDIAiAu9g8u5NzuHduvm+OJ3S3P5x3FhcbsMMqEXPLdf9Vt+57uvuc0/30/zz9dHyEtZZ97OO7QT7oDOxj72OfJPt4X+yTZB/vi32S7ON9sU+Sfbwv9kmyj/fFAyeJEOK2EOJTo9+/IIT4P78H7/y4EOLuX/V7/v+CB06S3bDW/jNr7c++XzohxK8JIf7p9yJPo/cdFEJ8TQjRF0JcvkfqUdxfE0JcEUK0hBBbQohfF0IUv8tzrBDC+V7l/b3wl5Hhf1CS7IXC/xXht4AzwBjwj4DfE0JMjOKeB5621paAw4ADfM8I/D2Btfa7/gG3gZ8HLgIN4FeBYBT3ceAu8A+BDeA3SIn33wA3gBrwu0B11/N+CrgzivtHo+d/ahT3i8C/2pX2Y8ALQBNYAX4G+DkgBiKgC/zRKO0s8PvANnAL+M93PScD/Noo/xeBvw/cfb+yj+49BoRAYVfYN4G/+y5p88D/Bfy793jWMmBH+e4CHxmF/23g0ih/fwos7rrnX4zK3gZeA57ZFfeLwO8BvwN0gNeBR3bFPwT8+Uh+F4AfGoW/qwzfUwb3SZLzwDxQJf1y/ukukiTA/wD4o8r4L4AXgblR2P8G/NYo/clRpp4dxf3z0f3vIAmwOCr4Xwdc0q/40VHcr93Lw+hajgT4jwGP9Iu+CXx2FP/fjyq2OirH+d0kAf4l8C/fo/w/Clx6W9j/AvzPbyNza0SAHvCZ93jWwVEaZ1fYDwPXRxXqAP8t8MKu+L85KrsD/NekH2OwS14x8MWRjP4e6Qfijv6uA78wksknR/I8/m4y/A9Bkr+76/rzwI1dJInuZXoUdgl4btf1zKggzqgSf3tXXG50/7uR5OeBP3iPPL2dJE8Cy29L8/PAr45+3wQ+tyvu57h/TfJTwItvC/sl4NfeJe2BURmO/SVI8iXg77yN8H12aZO3PaPBSFuM3vXi2+5dB54Z/W0Aclf8bwG/+Jclyf3aECu7ft8hVe33sG2tHe66XgT+QAhhdoVpYGp031vPstb2hBC193jnPGmTdT9YBGaFEM1dYYpUe/D2947KcL/oAm83RIukX+V3wFq7KoT4MvDbwAfv8/mLwL8QQvyPu8IEKeHuCCH+HvB3SMtgR+8e35V2tzzNqNd2r35WrLW76+HO6Ll/KdwvSeZ3/V4A1nZdv30aeQX429ba59/+ECHEOqlavXedJVWl74YV4In3iHu3d96y1i69R/p10jJcGF0vvEe6d8MF4LAQomCtvUeMR4B//R7pHeDIe8S925T7CvBL1trffHuEEOIZ4B8AzwEXRiRokJLoHuZ3pZekzfy9+pkXQshdRFkArn6XvLwr7rd3858IIeaEEFVSY/N3vkvaXwZ+SQixOMr4hBDih0dxvwf8oBDiY0IID/gn3yUPvwl8SgjxHwkhHCHEmBDi0VHcJqndcQ8vAx0hxD8UQmSEEEoIcVoI8eFR/O8CPy+EqAgh5oD/7D7LjbX2KvAG8N8JIQIhxI8CD5MayQghflIIsTD6vUjaFH31PR63DZi35f2XR3k7NXpGSQjxE6O4AqnNtg04Qoh/zDu12uNCiB8b9Sz/S1Ij+0XgJdJm6x8IIVwhxMeBL5BqOXinDL+rEP4yvZsm8OtAdpdNcvdt6SXwXwFXSFXyDeCf7Yr/aVIr/356N8+MCtsm/eJ+ehS+RFpxTeDfjsJmSdvcDdJ2+8Vdz82S9jqavEvvhrSifvm7yOAgaS9hMCrXp95mn9wlNVjvAv87MPY2m+MXdl3/E9JKbwJP7bJ7zu0q56+MwhXwK6PwdVKt8nZ57e7dnAE+uOtdp4CvkxrVF4Ef3RX3Dhm+158Y3fCeEELcBn7WWvvvv2vCfXzPIYT4ReCotfZv/lW+Z0+NuO5jb2KfJPt4X7xvc7OPfexrkn28L/ZJso/3xZ6ctf3Ew4etcByiJEZrg6MkjiNAukSJZjCMcVwXx3GwOsYajTEGa8D3HCJtiCJwnARXCVwlUVISJpZmdwhI+mECUlLOB3QGQ7r9GK0FjtDMTRepFnMoadEW2t0hjnLwfMAakkTQ6gzoRwmFTAbXdREk5DIOjrDU2xFbrQEZ38eTAsdVjBU9lHKQSqG1ZjBMGMYGoQSu5yIxoBN81+ErL14W7yej7yX2JElCHERiMNoipcJKQAkkFk9KZJBmWwqNERaNBSxCSIQFJSRKChCSxGissQS+RUnIei6O45LJCnSiKfgOUvgIHFyl8IOAbFbhuC4kGmkgcH2UkihhsCgQklIOygULQmKlQaDAOlgBgS+YKDpIDLV2GxlmyAc+gS8QQqATi9UWhcV1JY6yOCiEBEftKX4Ae5Qk3XBA4Pt4jkQIMAiMTomAEAhHg/FRQqCtxloQQiFdB6PEW0SJbYIwDi4ahQsqAWkw0uJg8H2JchyKrs/SsXmOHF3iM5/7HFFiuHbxPK9+65usr67gADYxGARSaaS0+NIBJdFYhLVgJYkRxIlFSIds1gVrKAsLVjCMYjrDHqUgi9YJQiqkdBBW4ViLIyVCgrX6QYv/HdiTJGm0ukyNu3i+IkksYWSIBAgZI6XBERZPJThCYh0HO5rNllIihAUp0XGCMUOSRJEkmkgbPF+BHRliViKF5PChozz9yed45IOPE2TzzM0vYKXLxMQ0x4+f5MqVC5x59Vtcv3oZhcQYC0iENQhjkYC1EOsYYwVKCpQDxqTNZOC5WOMyHGjqrT6CGCUTAgHCkuYT0K5FWAdjvAcq+3fDniRJIROgrAYDOrIMhwnWAa01URhRzudw8xJtJUIIlFLEcYwjBVIBFvpxQqebYKRAYdBSEg8MjrT4HkgEEli7e5OVO4s8/vijDHoNbt5sMQw1DoZub4dKJc/4+Bi3bkgQBmstSWxJrMFTLo4QWBuhACEFQoBNNFIIhJVE2mKMQUuIjWGj1SbrOpQCRaR1ml/hIrQGNL4fPFDZvxv2JEmqhQwCgzEWYzXKJgzChEZvyHCgMcYj5wuU6yK0oN2PwSb4gYvRBikkxgq63ZBEJDhSM4wUgVIUswKFQEpAQmwN58+c4emPfISZQ4tIY2l3t2n1OyS6xYWzZ3n95dfSZg4LUiAdgw4TeqEhcB0CTyFEqqEMgBDE2tAahHS6AxJjsEJgjSZKLHEUo4RLkmiMSRAiT+BKAs/BUXtv3GpPdoGVkiDASoFQAqUEIImTdMIpMRH9YUKrF7PZGrLZ6NEexIRxMlpJBdpaYkDrmIKn8CSEYYQQCsdxUUohFCAsg26bL//JHxH1eyQ6JooiBsOYa1ducunsBZTVSDQChbQSR0ryQUAm8NDWEGpNjMUI0BYQAkdJhBR4rsKREkc6lAoF8pkMga/wPUul5FEtZ0ZNkCUTeLj7huv9wVqLUBKExAjD0MQ0eiFRLMj6Hp7nsdkaMIg1SQy+55LLZlGOi1IWjMDzXHIZnySOCTyHXDZgoznESGdUgZJCeYLJ8XnCYZ9MvsDO+gpT02XajWV2dna4ce06Ao8gkHT6TawxSClgZHsIT5Dg0BmEQAJCoJQk5wp8R1LKeJQyAcMwptnpEsUhSsFYKUsp4+E6LkIKojhGGwPCIOXe+273JEmGwwHSdZEShJAo5RAnPax1SGJNszUg1DEWjcCh4gWUMi6eSm0CKQS+oyj4Eu1nwFEox8F1025msVLm6We+j8c++H2EPYf12hrHT88jBy22bjRZOV9jmHT58GNP4mUq3Ly5zIWzr6H7bfqDHhaNMZa+NQyGmt4g1Wxaa8bKeXKej7UGZTVCWlxHUMwGaARGQD5QBJ5DJpPHcRyGYZ9uOEQbgzbvL5/vNfYkSXq9mH40REqJ5/sk2mKMBCyJtjjEBErgeQFKKjxXkCQaISXGgNWWXhQTW4kjwFMSJRWlrMN0ZZxHH/0oj33kacbGy9TWG3z4+KP0+j3iMOTQyQ+Tzx/k5qVLNLo1xhcn+MwHTuP7DncuX6BT36bVa6IthCFIC2MlH8eTDPtDFCHggJRp11gYHE/huhm01ggJY+MVnvv0czz25NMEfpZb169w/sI5zrz2Js361oMW/zuwJ0mCzNAbthkmEVJGIMAgUUpQDjzK+QDPSzWDoxh1cWNM5NLpxQxjA1IjkGQzHmPFLEpBLpPl+PxDfPRDH2N8fAptBkxMByRRi4Jbpab7dJtbzB6bojRVYGNzg/agx1985Rs0ay2MEGSzPlCiNuyRsTHScfE9QdZXxFkXYy0SS6INSZLguhIlFJMHZvn8D3wBz1ccPnyAhUOH8fPjGO1SHZ/EzWY4ffoR/vzPv/ygpf8O7EmSJEaTzXq41ieO4tT4zGVwgIKnMEiGUYK2hlzGJZcLUEIgrEBYj26tReAllAs+uYxDebzC0vFTfOL7nuMrf/AlytU8s7OThFGX+s4y3c4QBhrPy9LvdYm216jdXmfn1jatZpuNlTvsdBooZ4CrBE89+3Gurtzmzs3LmEijSfcvOBmPfhjTGQ4JE4MxUMh4eIml10/Q1ueDH36C7Z016vU2qpOwvb1FEg4II83y3WWe+uiTD1j678SeJIlQCmyE77i4SuFYj1zeQxuwSUyz06efaEoln3zexXUtjnAQVpDJCHIZl1Lep1rMoqxkaekon/+RH4LEUhivMDZ3ECssta0b1LY3mV88Tbs1YNhvkyv6bDdWKZV8CjMHaDh5HOVya3WdS3deQ5mIUnGGn/1Pv8j1axf4g9/4dZqNbaR0ATFaopx2t11fkWjDIInZ2Vzl9Rf/nGpV8ejjz9LqNvnaV/+UN195CRMZlk6d5tSjH+DurfvdIPC9w54kifIlOgYdDgkcD89x0JZ01FQIilkX3dMIrVFWpf1OGWNwEEDeU2Q8H6TE2oS1O7f57V/5P7BacvzEElvbtwhKi8zMnWB29iQ6jhDWIZuJKRRLZMseng7oZJoIz8G4DnECtf4CCwuL5CY83nj966yvrhEELp7rpfwQgqKQ5D0fq006GWg1Qkgc1xKFLYaDFsNBn9r2Nudefo1bV28yHCZcvnSVRqPJJz/zhQct/ndgT5Ik50q0HxAOhyhpUI7CCEWsNa4jkZ5CRJZhZGh0DbERZAOFxSKEIassaIO2FgM0N0Ki2oADU1M0r97gJdPg9VcLzB48RLE4STmXI4oGbKzfpba9zdZ2m0Eo8ByX8WKZsdkJDs1PM/6oJOnHLK+cZWqsxFgBbtkQKUDbtHlRjsRxJEmkSeLULlLKwXEt0k2Ikh6dboswDtGJptHqsdMdMp73OPvqC4yPT/LJ577/QVfBd2BPkkQnCdZqlFQYBIkVSBQIhRWCKNQMQ0uSJCS6jbIBroJhovENKAdQFp0kjJenmcwcZro8xZEDC0h7l83WLWrDIQtHTrB+5zZhZZLusMP1K+fptlq0On1m5peYHp8gcH02t+4yPlkkMg0qU2Uqs6fwPJ/hICK4eB1db2FM2i3WVhK4LuVCmVqrhdYxSsXMzM1y7MQSWMXG6jIbOzvpXBMCIQ2u76GHIS9//Wvw93/xQVfBd2BPksRYhe9CEKQDS2Fi6Q+G6exrxkNIEL0ESUQh51LIeigk0jEU8lWKXolECwr5Io8ff5h+Y8hjz36QsbEKN67VufHmGkk2y8rKKv36Dpsbq2QKZSqlSapj82ijObp0msnZOaIwZuXODcaqRQ6oYyRESKlo1utYBKdOn6K53aHVbCHEEAfFx77vM5xcOsUrX/4KO8MtgokqH/nEMyzOL7K1sc3Fs+d4/oW/IGz3yDqKasYnqyzSGFq1+gOW/juxJ0ny41/8EYqVIis3L3H14mVa3QhXDUk0aKPRwiId8KWH57i0h5p81uHHfuKHmarOs3x1g1iHHDt8ENXXOEHMS1e+gfI0d+/eIlMp88lPfIaZ6YP02k2UI8nkqvRaLUrVKhvrK8wdmMdVWcK1HcL1GK9cJIqGbNXXyZYE07NHuXLpClMzczz5xNOcP3sNy5AwrpMtWbxcyIeeeYTy7DzjR5ZIdJfzb5wj7g955fkXGLRaGGtQrqToZMBowtgwNMmDFv87sCcXQr/+4h/ZTDFLHIecfflNfv+3/g3dbosokjR6Axq9kOHQ4AgHLQxow0/8+Gf53A88Q9jTZIMyVsY0NtaoBhMI32F8YZL/50u/ydhYkdMPfYC5xYeoTh3B9XySMCaxin67Qa/fwfNhrDRO2BPE7YjVuxsEXoak3SM0O/ScLY4/9iTNRov1O7exkeXauVU63R6VqQxPPf0UW1tb9IZN3EyeyuQsYavOxsYGL3/jeVau3cQKQywABMJYrDF0+0M2WxHXV1b31ATOntQkw7BLtN1hfPYQH3jsSV7/1uucP/cmkJDzFRiPUFl6g5hM4EEckvElpWIeWZB0ai1Wr6+wtdJHTM2gAsuBhSl+6qd/jus3XqQzqJEtVsgEBbRu0+61yGXK9NubaBLc4gSuV8L2ErZrLdqNOlvDDS6/epETh46y9MQYWdeii3mGkxOEwy4PP7VEHGqkA/limcnpWa5ffYOVjTV6gx6t7Q5vnnmDlWu3wGgsBisdlOPiyARr0slAdw/WyB7MErx55g2OHl7AcSSdXovOcA3HcWl3Iqw0ZD3IeB6OBGsEPW351ouv8dCx0xT8EvWNbZKhIOvkKZZzTB8ZZ3I+h8j4PHL6B4j7EVk1wbDVBrFNMZdFiIRKJUO718BzBMNBi3arRb/XZu3WTTqDm2gnYXOnzmKrQNKr4QdVStUqOvTROmJnY4d2o8vNK28y7HQ5f/4KZHxqrRYbK2t0m02E1RhPIFAkCQjSyUxrDQ6KidL+epL7Qr/box9a9FaXuN/h9PGjOOYu4XATLSKM1QxCg0bQHoSECdRrA/70T77E8YeO8/BjHyKXL1AueVhbIztWQnqKdq1Fa71Lbz3CyW/QN1skSYdCpcTSw0+TL0/jqHxqGySbJF7M3Kky4zNPU984TLeziZN16XuKYaRwlCXuDyCMuH7zGq2dIWs3NpC2x+bOKlfvbBAbEA6o0UCb7ypcaTFCYIRA63RBkjUWz3H2Ncn94swbFzm0dBQ3yFFfbyH6JaZzWaKZMtut64R6SBhFaGMxWPKBRy7I4GYDulGfK9cuMxi2yXo+UxMBvlqlXLrKRGWSCI9c0Wdg6wReyMbGDtvrW9y8uUWrs82g02MYG+J+G4GlUJrEC7IUikXyxSI5BGYYUr9ynWazTb1ep99pEHVDrPTpmxARRdxc3qLR6eMHGfJKYIVEI0nQ+OlyalwBWgisVVgGCKnJ5koPWvzvwJ4kydULy7w0d5bnPvscmWKVSjFAddsUjkxy4caQtdoyxkQIAa50caTEd0EpS7aQ5dEnPsyd5VWa9Qb1ZpdKEHPx5mVamy/jBiUqYwFHPniQra0trp29weZajVq3QbGkcRzodlzijmS6UmFQASdveW1nhWZvQJCR+BlFLueRz1Y5dfJxxipTbGzv0Oz0OLi4xJ3L1wEnXSKpwHUV2gp0koAEYwXagrEW5TooIZDCwXMDvvDjP/G+8vleY0+SJJtxuPDaBWamq2T9Ap4cw2Q0Y4Ucs805VrZWsUaSCQKEjBCJQRgYL0yRkRmuX7nM+PQcgZfl/JvforSU58SHH2X79jZSZKmtbfDGt+5w8eIVuo0WnWEf6cJEtUin12Nru0fBKVMuznPo8BHcMtyp7dAZ1olQeEagfIdTS0epTE5w+9YqxbExImvJZRy0GdKPIhIpyUgwViOkwncEUioAtLYIJcgV8wBMVg7yiU99mqc+/tkHKPl3x54kSeA7JP0e165e5xPPfQYROhx+5BQ765sczh7l6s4N6r0hmdHywEBC1nVIBob6RgMn8Dh18gTGOly69ApXb55na2eTo8cfRfQD4lYT2evy8OGjhP2QVy9cIEKzsjwkiQwz44uMl8aZXjxIcbbC8s5VJqbHaLQ3mZ6d4diJJU4sHSdXzeKgkCuAhoX5RUwyQNsBQhriUDMkQQQBQdbBcywkEQaBsoqlh47zY3/tbyBFwPj4OLlinnNnX+PA/KEHXQXfgT1JkmEMnpHsbDXQakhpIk+mKJgvHmA6HLLePsrKzgpJCMoqXE9iAxBZiENNvx2xvLJKNlcgiQ13bt2mN7jC8p0an3zsk+go5swbbzAYaKYq0yxOzXBgYYHEhdfeOEOv0WY8UyHsdfn6S29wY+sC//Hf+lmeevJpfJGDRJBzA0rZPEHOwwvuptvDbKohrBW4jsMwjOgOI6ra4rkuxvPTVfRCoRPLlSs36fUjTp8+ydbmKn/4+7/B9XNn+dwPfPFBV8F3YE+SZG27je9I6lGfy+cvsrlziw889ASHpk8T97rYQciRgzPcvrWFNRasSzk7xqFDC7zy/MvMLsyxsb1B58YtZmYOcOXia/gmz7HpU2ze2ebypUtstdaZmKpwt3aNfDDGyfwHWHriOJlyjovfeJVqPgfDDqUMfOLJj5LUDbdvrsPAgUQycaBMruQzdqiEMZYkiak31xirlGk3+0Rxki6MUg6RSRjEAitdPJku6jYCNtZ2+L//zb+llC/w27/zG6zfukpjp/+gxf8O7EmSICCWGqUFOtLUtvqs5+pMErN2fZWpyiGOPHeKl155kfXNOkcnH+LIwSWCCcv8wSmarR0+cOBxuoUBd2/f5NHHnuD04Q+So8rZV87QavUpj2XJlBIcv8Cd69ss311h8dHDLM7P0TuwxoHZGVq6Rb1R45nHnuP6qxtMFme4ePsSB6YPYLrQ7fcpVfLYGNzAI7CGsNelXe+gY0EmI4lMQqcREYVDqhVDOZCEUUhnYAkHEcPhEK0T+t0Wdze32dre38F3X6gWPLI5D5lIZCL52GNfIGpZ/vTLf8bOzk2OHTnKafckn//8ZxibPojoePT7fTa7dzh++gQ79T4LcwcZDIc8/81vcPrkEYpjZTydJV8p0I8SWi1IohzD7pDpsQNUqhM0WwPu3F0mPz1GeWGS+to2QoZYk2BtzJvnXqXT7XH79dvMVGY5fewh1i9vUTNNpo7kmJ6eYuPmLcJBiFKKcpBBa0vOBjhKk3E9lElAKhJH8oEPHuNnfuZvIMUAa/oMBgbH2XsrofckSYQ1eErgCo9uo8ehmRKvvf4q69vXGZuSrG2ucOTIQSozJ1k4voSIIIlDSnWf1eWAjZ2L3Lpxg0arRbVaJYxCrAwZRoLjj55kZfMOZ85coNOKOXHoEPMHDnHw+DEKU2XG54vEcQ3lCB4+chp12ZLLZ1k4PsUrZ7/GMO5TGp9hbLxKkA0YhG2G8QClFFEUpcsq0XiuJeO6oASFMUk2n6U6NsHUzAwzBw8ze+gohw/O0a1v8PU/+xKtehNhIPD21LQNsEdJ0uyFOBmHgiuod7YpTuYxCsZKk3S3tzh46ADHvu8h5pceQjkeQ93G2phMIUuuVMRxXS5fvsyJk6fQizGt+irzB2dpbEbEQ8Hp049TzFV489wb1BptPH+dzW6N6c1pjBLMnygTRxHzh+Z46qmP40nFoBqSGXcpJXnkUGCNIREhhx5bpHO9TbvVxvM9hFSMT03Sbm5RrpSZWphn8dBRZg4sUq6W8IMMaEtjZ5M//r1vUtvaZnNti+b2gFJO0eruk+S+4DkKYSWYmGa9ST+MyOeKzE/O0GzN8OynnuLwiRNoExMOQm5cfpWxsQmUk0fodOP4Jz79KW5cv4lNLPW1HQyWYbfH+u0a7VYP38syO36AY0eXQEIv7JIMYXJ6nCgZMDM7gw5D+r0uiZelWq3y7LNPU1/ZIWpmKPjThGGfibkq4ralWCxidcKw36EyVuLo6aMcPLqE6zjUthq8+vK36HabmDBEJgm9fo/NrRpRaOn2hnjKkPUUA39/c9Z9YbKaw3Ukrky/qk6tRiaX4+DDx5icrTI+lcXzPbS2tLab3L5+mWZzh6PHHsdxHDKZDNlcjgNzc/zh8y/j9lzifkypmmdYjyn5Fey0ZGJ2nJmFcfxchmG3S2ung8o7aEdQq60zNTWNwcXP+lgJhw6fYG5S0KtrMAm9fotae51+v0ulUgGjuXP9ElOzJYrjJfq9Hi9/7QXqWzUygUAqQRSGSEw62goErkRkfTq9Pq7vEQT7muS+kPV8pE03WwkhaLXv8tizj5Gv5ilmHTbrdygUx1m+uYMaxDiNWXLlCcLuAGvTrZKXLlwiThIOHVukvd4iE2RQYy7CV9TW2gSZPAfHqwyTGoHvsLq6DeU2hYkZpMhjjYPjBew0ttnc3uTQsYdwvRyZcR/pd7h4/gpHjx/l6vU36XbbhGFIEsVkcllqtU1aO21Wl+us3l1jrFIiiQYY0rO6E2FAW4QFxxEoRzKIoT3QIPaPnrgvWNIDY9AWieb8uTdZOHEQz0i6nR6+E3D50lVWb9S5/sYFejvrPPb0E4TkCHIZhCNZ31rl2NJxTDQk6g4gSNfH5ioZMrkAYwyGPtlMgONkmFs4zLlzL+A5UC1Pc/7cBVqNFocOzXPj1mUa2xvMTB8Eq3DyHuXxMaRyOH78YaLwAu1ul1xQIBoKttfbODJBJB7dTh+UpphzcJSblk+DTjQyPeELVyrKuSK312s0eu/wa/DAsSdJ4rqSODHpanNrqNXr/Mkf/jHV6QInl+bI5ip0dmDjcpfrNy+SDQzbW+v42SzSEziqwJPPfJI7N+9Qq+0wOV3Ew2Vt7RbrWyskGjL9Mtkgx+zDk0hhiZKI2QMHKVcmefPNC4yPV9FaoxyXg4eW6HTbaJPgKYmHwPFgY/MupeIESuQpFitgE1xP4kufOBzS7kRoKehEEV7gEmAwWn/7SG4BrpUYLNbRIC2J3nvLF/ckSaS0OJ5DYi2JTg+Eae606HaaVPIC112j33EpFo5RKU1Qa61QnpwgDhOWbywzeaKA7/sUinkuXDjL5z/7CYQTsbp8jfU7mxTEJO1Gi3arQ8Z7htlTcxTyFXL5MWo7DWIjmJiZJhP4gMQlwM0U0o3iRDjKYXH+KJtby4yPj7N2d4dcNgc2QkiN5ybEvR5b29tUynmkJ3GVxBqTajBj0pMJlMJaAQgcCdViBmn3x0nuC1FsEY5AKIW0BiUk0oIeGG5eXuWRRxfQWUE0iBirjjMxWyV2Bvh+ie3GkKPlKpevXEAZWJibI18sYZ2ApWMfZtoPeeErL3Nl5WUsCcHLk8i8R+jsMDG5QBB4HD1ylGwmS6/TJEkSdGzJ+QPMoEGr26fXU1Tn5wijNS5cuIK1VTY21ynmC2QzVWq1S3TqEUoIfGUJoxjjGBzXxZBu8rNWIJ10Y7nFIo0lpyROZX9l2n2h1gzx/IRsxsNVTrpQ2Fqwhkatx6XLaxw7fQKRGVKYyDB3YIHN7du0+glD08UaTTyMGJ+ZRiiFn8sirSSbKTP0WjTaLXQikSpgdW2bRxLBZn2banWWYjFPLpvFcSS1+iqXzl3kQGGRkhqiEo+tjYiV1S0K8zV2uEhQrDA3OU8/ShBCUizk0Upwp9ZDSUnSTk9IGK9kcT0PKSVSSpSwKJUOHIZhQqcfIa1CuO6DFv87sCdJMhiEWKvIuA5WGIw26cYsLEIoVlc7rG++SK6cZWp+hrHZCosHF7lxcQ3H8Rgfn2LpVHoonkkSPMdhfeUqylbY2qxzYH6BeqPG0pGjHDp+nLHJCaaPfwwlXKKoT7tdp1wZY3xsnoPzHqVomktnXuDm6lV2mn0SLXhIzRM5cHzpCEJ5TJQqFPNFBu0tCuUckY7JuBkcV+FLUEphzLcPqTGkp0YmMTSafTabHbJ+QDGzP05yXxgrFd46KEYIi7AGIxQmPbIMaSSmZxlYS2a+yOrtLey0RJosByYPUxqbQAvIKoeM8HCtRMdN8sUyxUqWfEXx1MeeoFnv0ujsMIynkImD43s40kFg6baalEpjRDOKpO6RSJdabZWJ+SwbmxFXr1xmupylEmVISopIJziuQ65UolTOMVHJIrFkfEtOBukZKaOjroyxdKOEQahJIotAkctmcYUl66gHLP13Yu/RFpASuoOQtXqH9jAlSJgktIcxcaIBg3QV8TDhjRfP8s0/+ybXb6yQLRdYevg4RsS88M1v4mVcXDdLIjzGZ4+iMgE2u0XTnEWONfjQcw+z9PBhmp1bvPL8V4mjkMjERFHClSuXGAx6lIo5YgbMH1vixCNPMIglwzghmymyMH2Ufi1CWMv2+hobq2uUq1VczyOOIhrtLo1mj3AQoc1oiYARhKGm2ezRbHSx2uJITdFXVAsBnr8/TnJfEEKgrWC72aPZj5gs5xBYkjgikB7KcbFGgxEobYkHA1rtGplTJ+glHTxHUcoGaCuwUuFlsgT5gLAzIFdOCMo9mu1z+PlFBknAuXPfpFSo0u13aPcs4dAjXzxIbatLMSPYXFulWw/JedPQW2e2MM3C9AzHHjtFbjZDW7TwgohiPoOrFP1eSBxrBoOYsB/TaodI2UI5AsdxkcJBOQ7VgpfaW1FCPp/B8xzE/sF69weLRQlLIRfQjzTNTp9sLkMum0VKDcYgbLrZ2i0VmJ6bxs84BL7ED3IUixMsHHR545WXaW03iXsRmUyGC29+Ca23Obp4jIJniQa3uLst2FhvMD15iEKuyO3b11hZXqVSqBDMTpCvVHnokQy19Tq9JmRyLklomDk4w/hDkzgFQ3dlG4mlUBlHOpY41kjpQDoAD8akR2ckCZYh6TnoAqkM0oLj+ERALvHI7muS+4N0LPlCQJAPGMSQJAbPhUI2QJoEmxikkVjpcPChUyTRkGwuz9BqPvrkU1y+fB0vq6iOT9HbHpDLOWjT5/bqGrWtNVw3oDrmotyEdsswN3eYucXTKBNQyuVIZidxpGYQt4iUJTeZxTptKnMBsycfobFZx9iYrdZtWqsdxktVxqYL1Bt1xsoFjh1f4sqlq7RaPcS9cQ9rGZ0fnRrgWKxOV8wP4wGDQZ86o+NJ9xj2JEmwAt8R+AIyriBOBHFiiMMI33VxpQQHgnKFAwsHWFu+xsHD8xTzZbqtFlnfEIYDbl27ykMnF+iZda69eZ7VnRWEdbhz4y7OiiWbDZDS5wd/5Ieojh+l09+gVrvLwuFjRIMu//7Lf0i/3WF6aoZ2e51suUIuO8bYoYB8YZqNjWWq4xNk/Cy9vqbZ6RBGMeVKhaWlJTbu7mB0erasEGLkp1VgR95WBelcjhD2LQesSbK/Mu2+YBNIHBBKIIzBE+B5Dr1hTCcakvFdAgcymSyeG+C6ismJGdY3W7juGkeOHCKTLfDSV7/OlTfaVEpPUzIHULpIv9ckn8+yvrnD1uaQ7//8DzM9dZBWc4Vzr3yNK9dvIR2FTRLCQZfBoIPyFlhZ36AaJvSDIUEhoJiToDWNZpPZkwtcvfQawnXZHra5fv06pVKJcrlMo76ZlmnXxvx7pLkXJoR4R5q9hD1JEhxFgkbHGmkZ+awR5HI+g2GExpBYg7GG+flDZDMJYRzxxEc+wtzcHMNhSBQnLJ08zu3z53nzhStEHcGHTjzDS2e+ziCsUygU6Xb6nD3zOguLiwQ5RThIyAYujdoOh44e56GHP4xyPDqdNjMz09y6cQ3XyTA2mWU8Z5mePUyzMWDQ69Nst/n0Zz9LZ9Dm2Y99jD/7f7/KrdvL9IYton4/PeEakTpLeMv1yncS5R5Z9hr2JEkGcYwREiskngNWCBAuSggygSKxFmtj+oOQjY11fKXYuLvJx56dIdEGIRX5fMDi4eOMVXPkgyqvfOMMvfaQE4unCOMWVnZoNBpEQ8uF119i6fSjHHvoMXIrt1hcPMGgp3FVlma9TjFboJAtsDC7xMz0IYwNGZ9cwAny5DLQbO4wOVNFOAopXYTyKVbGmJyZplavsXrrDmZEDACEwBqLtWbPao/d2JMkibXB853UvY0WJNoS64gkSRgMBgyiEB0nFMYMt+7cZn52gsXFJcDBdVx8T2ItnH7kw2hxMl0NloNXXnyJE6dO4WVLGGFAwNT4FFJYXnrpdc7fusVwWKcTXqJcKvGBhx+l0+qyvLzMjVt36PYa3F5eJdGWc5ev8IOfe45ytYyhwmMfWiSbKyFdDyEgWyhSKFdHp0BLjLWIdAFE2tzAOzTHXiXMniRJr9MnHg6Jw5hokB5Ql5g4nT0l7UEq6WEMHJg/wIG5OY6dPIUVFtdxkUJhhSEMI8JY0K71uXx1nU9//1+nMjlBFMdINMpJu6lhGPPpz/0QUmhiYxG4OEogHIHWmg8+9SxGWxIdY7EYC3EcEUiD0ZJyKYfn59OtnEFAksQcO36Cjc1N3nzjDPd2bqXH/KWbuIDRiDIjp04i1TZ7kCd7kiTtWmsk113t9eh/OtFn0VYTDgc4wmFh4SBxHKFGZ9ELqegPOmxtrnDnxi3u3LrFzNwBbty8ys5LL9Jqt/AzAXMHDjC/uEhlbAw/6wMCl/RdxhjavTabG+vUtraJoxjX9cgVC5QqFarVcTSGq5cvcfLUB/AEOMp5y6VJLpdjYnKSQ4cPcfPCZYy2o85virTx+TYprNl7SwTuYU+S5J47knRL5Oh6l2pWKWUwiSbWBm0FMwcWCLyAWCe023WaWyvcunaZIMgzNT3D88+/wOuvvM7W2hZhGIEUFItFTp4+xSc/9xkeeeRhCoUiUgr6gwGbGxtcuniBN157nds3btLvdUEI8qUSR5aO8uQTH+XwkUMMw5C19bvMzy0SyQjX9XAch0qlwuOPP87O9iYvfeMvaDQaYOWouQFrzVtlfXsvZ69hT5LkLc0x+qqtENiR/AT3yJP62rt26TyT4xV02OPg3Dyx0TQ6NW5ePIufK7O+U+fffemrnHnhRQb9IQiJJj2OqtPvs765yYvf+hbHjx/j+PHjZDIBtVqNu6t32dqss762gYlisBZjDYZlzp25wDe+8g2e+OgTfPbzn8VU81x482VWllf56NPPMn1gAWsNjXqNufkDBJkA2wDMrq7uLj4IRr7W9qhNsicP1lsaG3srU29pEu5pk3QqWEkXL5fjC1/8YZ559hmUlGhjiJI+MzPTbKxv0Wh1+Nf/6nc5e+YiSRxi7vUmrL1HPyD1XXNvnce99/m+j3Rdev0BOowQVmBG3VcpJFIIHEdw8NAiP/23fpInn30ax3Gob2xz9Pgxtms7XDx7lp3GNi988wVe+MbzWP1tkqTnNKUz2sKCGfV/AJYbrT2lUvakJpGkPY/dTYwQ6cp5BAhpUQIC32NzY5tOe0C1WiFXyCGcMe6urrK8vM6f/PGXOHvmPDpK15WakWoXFtJRC7ACYpM6MxJWADFSSqwURNpghcSIdJ7onh1hU7deGG25dfM2/9M//1/5yUaXT/3A91Oemafe6rKxtc7QDjBS0G118IwiFno0wpqSw5o0A7G2hHpEnj1om+xJkjgSkGLkz46RcTea0xCpqxBHQsZ36fc7nDt/hsmJSXwvoNtucePGNc6fv8LKnRUywoJzzw4QGGvRZmRCjkgoLMiUOUjp4DgOjgFsjEeSniti08wIIdP7hEBIUhtm2OO3fvXXuX39Oo89+SFcYWi3WnQGXTburnPn5jIGiTWCRGu01midetnQVhCbdGBwr2JPNjcnJ8ZGn7sd1aP4jhFJIcFVLrlqmYcefYxCMYdJLL6TodmsU6ttEoURnXaPbqdDEkboOEEn6ZmvGp0q9xERpbjnjDo9iUjItDlJFz4ZrB6NlEqQQiGVRLjpmfeu65AJcpQKRTKZDMKTxDqh2+6xvV2n12rT7w9I4oQksSPnk2njYiFtwgRv9XuEEPTCwX5z874QEiHMW93e7ySIHDlvVFhrcZXDxFgVoRTWKoJSQH4sn7p670dsrm/QaTaJ+kOSMMKOtjQYwCqROnFWDlLItzxNvKX2TerYKPUFDHLkXMB1HfxMFt/3KRaLVCt5HOXRbPZYvbvOxsYmnU6PYRgR25gkGTmQ3K0spMTcm+yzqW0Ee9N23ZMk2T0ucu9PjnbzCSHSL320yrzbbCMWZhibLOFlckghCYcx6+ubJLEmkwlo1Op0Oy3iMMLESXoikQWUxPE8PD/Add30mTZ1bBDH8Uj7xFgSlBK4jovr+CjpkmhDq9nk9q1lzr7RpNvtEw51SioM1shUU2CwNm2mrBqNldwbGwHMPW15L2wPsmRPkkRKma5lFekX9hZJZEoQpSRSKVzl0O91GQz6eN4M+WwOrMBzLMNSSBTGZFyXrOfRLueIw5h4GBEnBqREuQo/45PPl8jlsjhO6sQoDEMGwwFRf8Cw12MwHDDodWk2WjRqPdrtPoOwRxyno8AmGdlLFqxIN1mlNrbEsemaVWMMibLfMcl3r4m51yMWpJpyr2FPksQRqWvVe02MkikpGLlqdR2JVC6u4xImQ3ZqdWa6cwQZcP0A14HxqWnajTo9EorlHEExdSwdDxKixIAUuJ4im8tQKpbIZPJYI+m022x2e2yvbbB+d43tzR06nT7D4YDYJBhtMeZtLQcaKeTIlnHTAbIRBbQYTe2J0a49RLrnBoHAjIxgMKPx+X1Ncp9Qo8/qngaRSiGUTDdrOWlTIx0nvRaK4SCk3elRrBoca1FK4fsemZwPNovvCYRwkVIRRglhlO6gcxyXJEm4e2eZleVNVu9usrO1TafdZhgO0SM/esYINJpYaKRwkFKNKvnewJgdjXKYbzcbo7Lot1V6OnA2unfU0zdYYqtHM8N7jyR7snezj72FvdcA7mPPYZ8k+3hf7JNkH++LfZLs432xT5J9vC/2SbKP98X/Bxej4yMknNJgAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-22T13:22:06.122600\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABeCAYAAAAXHzdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAARiElEQVR4nO2deZAcV33HP7/unu65VjOzh3ZX3l3JEuIwtjAE2/gQMcYVAglxmdwxFClDUVSlclRCIIYUcVFAJX84KSopilApMIkJR5kihQkEl5xgDlk2PoSRV5a0u1pptNpz9p6zZ/rlj34z6l3valaUvDtr9aeqS939Xr9+x3d+7/eOXolSipCQi2FsdQZCWp9QJCFNCUUS0pRQJCFNCUUS0pRQJCFN2XKRiMioiNypzz8uIv+2Ce+8XUTOvdzveaWw5SIJopT6rFLqg83iiciDIvLpzciTft8eEfk/ESmIyIt1UeuwPxCREyKyICJTIvIVEdlxkXSUiFiblff1uJQ6vKwiaYXCv0x8DXgO6AA+ATwsIl067KfArUqpFLAXsIBNE/CmoJS66AGMAvcBg8Ac8GUgqsNuB84BHwMmgP/AF97fAMNADvgm0B5I733AGR32CZ3+nTrsfuChQNzbgMPAPJAF/hj4EOACFWAZeETH3QV8C5gGTgN/FkgnBjyo8z8I/DVwrlnZ9bOvBspAW+Dej4EPrxE3Cfw78L110joLKJ3vZeBmff9e4LjO3w+A3YFnPqfLvgg8AxwMhN0PPAx8A1gCngXeEAh/HfBDXX8vAL+l769Zh+vWwQZFcgzoB9rxfzmfDoikCvwD4OjG+HPgCNCn7/0r8DUd/xqdqbfqsH/Uz79EJMBuXfA/BCL4v+LrddiD9Tzoa0NX4CcBG/8XPQK8Q4f/vW7Ydl2OY0GRAJ8HPr9O+e8Gjq+69y/AP68S84IWQB74tXXS2qPjWIF7dwFDukEt4G+Bw4Hw9+qyW8Bf4f8Yo4H6coHf0XX0EfwfSEQfQ8DHdZ3coevzNWvV4eUQyYcD1+8ChgMiqdQzre8dB94euO7VBbF0I349EJbQz68lkvuAb6+Tp9UiuQk4uyrOfcCX9fkI8OuBsA+xcUvyPuDIqnufAR5cI+5VugyvvgSRfB/4wCrBFwhYk1VpzKGthX7XkVXPjgMH9TEBGIHwrwH3X6pINupDZAPnZ/BNe51ppVQpcL0b+LaIeIF7NaBbP9dISymVF5HcOu/sx++yNsJuYJeIzAfumfjWg9Xv1WXYKMvAakd0B/6vcgVKqTER+R/g68CbNpj+buBzIvJA4J7gC+6MiHwE+AB+GZR+d2cgbrA+PT1qq7dPVikVbIczOt1LYqMi6Q+cDwDnA9erl5GzwL1KqZ+uTkRExvHNav06jm9K1yIL3LhO2FrvPK2U2r9O/HH8MrygrwfWibcWLwB7RaRNKVUXxhuA/1wnvgXsWydsrSX3LPAZpdRXVweIyEHgo8DbgRe0CObwRVSnPxDfwO/m6+3TLyJGQCgDwMmL5GVNNjq6+RMR6RORdnxn8xsXifsF4DMisltnvEtE7tJhDwO/KSK3iYgNfOoiefgqcKeI/J6IWCLSISLX67BJfL+jzlPAkoh8TERiImKKyLUicoMO/yZwn4hkRKQP+NMNlhul1EngKPB3IhIVkbuBA/hOMiJyj4gM6PPd+F3RY+skNw14q/L+BZ231+s0UiLyuzqsDd9nmwYsEfkkL7VqvyIi79Ejy7/Ad7KPAE/id1sfFZGIiNwOvBvfysFL6/CilXApo5t54CtAPOCTnFsV3wD+EjiBb5KHgc8Gwt+P7+VvZHRzUBd2Ef8X9359fz9+w80D/6Xv7cLvcyfw++0jgXTj+KOOedYY3eA31BcuUgd78EcJRV2uO1f5J+fwHdZzwBeBjlU+x8cD15/Cb/R54C0Bv+cXgXJ+Sd83gS/p++P4VmV1fQVHN88Bbwq86/XA4/hO9SBwdyDsJXW43iH6gXURkVHgg0qpQxeNGLLpiMj9wKuUUu99Od/TUjOuIa1JKJKQpjTtbkJCQksS0pRQJCFNaclV2ze/+Yu/VB+o8GeZRGntSw0QFMIlzB1tOU8//SFpHmvzaEmRXAqiFIiAUhiGB6aLJYJSUKuZKGVoieh6V7JyvjKkKdtaJKK05TAr7OxaprenQltKcBwTgFLZYDpnMjoUp1SyLggl5JLYhiLRnYcCRFDAddcJt79tgGTcwTAsTNMiErFw7ChiGDzyyCkef9wNWB2dkvjp+Ugj/ZXXIa0pkrpPgbeyrZSAKESB72uAEYGuzjhvve1m2ts7EBEMw8Qw/G5m9GwWyznKrW/tobBcY36uxvxchXy+gltVeI01UvHfKx7byX/ZDFpTJLJWIwkYFQxDyKRsrr46yeuuaWf/qzqZnT3NAw/8E3fddRf79u3DcRyKxSKDg4M89NBDXNV3FW9/2x6SyTYcJ45BlKXlEqdHlnj++RlePFFgbqmM4dVAWdpKbXahW5eWnEx7y80PKJSJV7NQng0iJBJw3fUpbru1n717k+SXc4ydP8fY2Dhj58Y5fnwQEcUdd9xBX18f5XKZI0eOMDIyQn//AI4TxTAMTAErYpGIJWjvaqe7Zxe2nWboVIkf/2SGmSmFv7DuK0VtgVjC0c0GuPu3HYr5Gst5xcxkkV27erjltj5Elhk69RRP/yxLqVRGxACBWrVKf/9VFItFDhw4wIEDBzAMg+7ubh599FEAHMchYtuYholh+H7J7Owc58+PU6mUSSbauOXmLk6esDhxIkLNM9Y2aFcgLWlJRs+MqlJxibHzEywvF5iammN46ASVcgnbcbBtG9P0RzC+D2IQj8e57rrrOHjwII7jAOC6LoODgwwPD7O4uIjrutRqtcYSuOd51Go1yuUyi4tLjJ0bw1NCobCXM2cyoCJb4p2ElmQDPHboSXZd1cHo6SEGjw8CQiaToT2TIWJHsCwL0zSJRCI4jkNbWxudnZ309fU1Gh+gVqvR0dGBUorFxUXy+TyVSqUhluCRTqeJJ+I8+8zTpFPnaUvYLC6nt7QeWoWWFIllRfj+937A2ewp9l69l97eXhKJBLZtE4lEGodt28RiMeLxOMlkklqtxtzcHLZto5TCdV1c18W2bRKJBJZlUalUqFarDXF4ntewKMlkktxMDjEUu8oLLJ2Io4hwpXuxLSmSRFKRzZ6io72LgYEBMplMQyCWZWFZVkMk9UNEcF2XQqFAqVRCRPA8j2q1CkAkEkFEiEQiK8QR7G6LxSJdXZ309vYSMYcZGZmi7O7CUAYKdcVqpSVFcurkSTKZdtLpHezcuZNkMtkQR72rMU1zxT3D8OdWgg1f/9c0TUQE0zRXbsvT/kz9+fHxcfbv308qlWJ2dpZMxxATEz3+CEcJV6pKWlIkCwsL3HDDDWSzWdra2mhvb8c09QSZbtj6df3f4CEiiKzfoPXn6hZJRFheXiadTtPX10cul6Ozs5M9A2fJ5eaoul3rzN1cGbSkSBzHob+/n0wmg+u6pNNpksnkCgtRF0FdNMF/V5/XrUhdRPXzWq1GtVqlUqnQ2el3M8vLyxSLRTKZDP19XYycnmB6uh1/T/KVSUuKJJlMAHDgwAHA70LqjqfjOIhIcCd7QzB1YdTvrbYonuc1HFfXdTFNk3g8TltbWyOO4zgkEglSqRSdO7sZ2DXFbG6RmpdeuZp8BdGSIkkkkjiOg2VZ9Pb2EovFEJFGA3uet8JCKKUaoxOlFIVCAdu2KZfLmKbZcF6Dcyp1H6aB3m5g23ZjtJROZ+jpS5EYmWJpMQPiIWprZmG3kpYUSSwWx7bthkNZnziLRqMrRiP1c8/zsKwLRamPguoOa31ybYWfso7PYpom0WiUeDzOjh1tdHbupHvnIMvLBZSKAgrRKvEXotfwVRQoubDRSQIr1tuRFhVJtDHkrQuEQDdSp35mmBf8BRHBroviUl8csCaxWExbkxQ9PQlOZ+epVnZdSFPAMKpk0iX27U/y2tdcjROLMTO1zOjwAqPZRRYXoOoJBp4/hN6mXVVLisRxnIZAXtItbAKRSIRoNEosFvNnc7tSJBMzLJSvAhRKwI4WOHhrjHe98yacqJDOZOje2UWtVkPEZG6uwuHDWb77nZOMjhY3vQyXk5YUSdCKbIVIDMPAcZzGbO6OVIr2zBgLc0UUDpbl8s53tHPvvXfStbMDz1O4tQqFfJmZ6Rksy2ByIkcqPcOd70jx1YeKFPKbXozLRkuKJDhhJiLr+g8vFyKCbdsNoSSTCTJph1EjD16E111T5Y/uuY3e3p7GSKtcKjN0cpijz51hYdFkcc5jYmqJ8YkahcL27WqghUUSdDw3Fe2X1BcQbdsmHk2Q2pHAsoqYlsV73vNGdg8M+AJBMT01xcPfeoz//m6WmVwMz4sCoDCQFTvetictKZK6ODZdIAHq0/W2bRNxIjhxA1FLXHttB7fcfH3DoV6eX+JbDx/iG9+cpFjIBOZRFIKnr7bvyAZa9OMsQ4wVE2NbkgctEsuyiFgRlGchMs+7f+Na0uk0AK5b5YmnnuQ73z9NodCGWjGB4q/1qC3a3XY5aUlLgrClAgEaq8onT57k+PFBXnzxF7z2mk5uesv1GIaJwmNifIJDjx0lN7OjsbSznS3GerSkJQHY6h1zxWKR06dPMzk5yfj4BK7rcs89v08mkwGgUnb5+S+e5fixZTwvhhLjFSkQaFFLUt/r4Xlb5+xVq1WSySQ9PT0sLS1x8OBBbrzxxoaFm5yY4ugzJ5mdTWrzUdv0Udhm0ZIiCe4c03+OadMbIJlM0tfXh4jQ39/P/v37icfjAJRKJQYHX+DYC/O41YFtPLjdGC0pkuAWQ8/zNn9CTS8EptNpEolEY0cbgKc8zmazPPOzY5wbS/nRUa/o1eGW9EnqWxDL5TKu625NJkQQw2jM/gIoFLmZHE898SxPPbVAubzjitiL1JIiWVxaIp+/IBSllP7492Wm/p7gEQiam5vjyJHDfO/RE5yf7kJUxB/ivoKtCLRodzMxPkV7Jk0qlSKZTBKP+1sH2ATfpFarAeguTqGUR7nsMjk5yeEnfsZ3H3mR4eF28Bz8P3T9yqclRfLkkWkcW0i27SAej+E4DqlU6sK2gctNwGJMT08zOjqqNzoZFApFstkxnnluhOeerTA324HyoiBVvWfklU9LiuTc+V4O/e8piqUqt9x6E5GI7xckk0nfsF/OxtEfc3lelVLJZXxiikcP/ZDjx+bwvBTForC0aFEoxvDUDj3VXoUraIdaS4oEkkxNvZpHfzBIreZi/apJfS4zkUhcGO380mJRjanR+hd9s7M5Tg2d5PBPjnH4p0Vys3vwMBt/5sJoPGls5wXdX4qWFImpTDxJkC++kUOHRigsP84NN76efftfRU9vL+2pFBHbDuwS22CrBboVT9WolCvkcrOcPZPl+Z8P8sSRUU6MJKiV+hAlGIGhyxUwiFmXlhSJaqyeWpQKr+VHP5pjaOgYBw6Mcs21e9izZzfd3d2kUilisRiWZTVd66l/I1ypVMjn80zncoydPcOJwRGefX6M4ZEI+XwXSsX88YooPf9R5wozHwFaUyS+4wEInlHFraXJZts4P7HAk08/z+6rj7J/Xw8DAz107+z2v8tJJHCiUSJWBMPUX/Mpj1q1SrlcIZ8vsLAwz/T0FNlzkwwPzTAymmd6Mkal1Auy8ptfvYV508veirSkSC6gEOX7BQoT180wPZlmarLK0ecW2dF2nkxG0dFh056J0taWIBqzsCxfJLWah+u65JcqzC/kyS2UmZ81yM3EKJcSqFoXSjzqG9tX7PoI9dGgxUXi0xhF1EcUIlQqGWZmupmZqTJ8qoohZQwzj2HW8Dx//sIyLWKxGOViBLfaietF8JSBKBX4fkZLIxTFumwLkTTQDSkqohvZ/+hKYeF5ETwvCe4FUbkuFEvB/aV6t5iqfxOjwr/rugG2l0iAC7/8lZuL15+zWL1bLBg3FMhGaMm1m5DWIhRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0JRRJSFNCkYQ0pSX/X+CQ1iK0JCFNCUUS0pRQJCFNCUUS0pRQJCFNCUUS0pT/By3QH0UOWAKJAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-22T13:22:06.207600\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKUAAABeCAYAAABCftQAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAArwklEQVR4nO29eYztW3bf9Vl7+A3nnDqnqm7d8c3dr912u2M3wbEdY8DClgNmiAJxLGNZMcFYlhgiglBsB0EA28JCIBmcqJEQaSCmsQkyEiZhFAkkthNjx9392j281++9++5869Z0pt+wJ/7Yv6pXfftNTrvdt49qXZXubx7273vWXmvttb5bUkpcyIU8SaK+2g9wIRfyuFyA8kKeOLkA5YU8cXIBygt54uQClBfyxMkFKC/kiZOvOihF5HUR+Z5h+adE5L/8A7jnd4nI7a/0ff5BRUR+SET+96/QtT8mIj/9lbj2cP0vu22/6qA8Lymln00p/ei7HfeVbti3uN/zIvJ/i8haRD57+iN6i+P+LxFJImK+nPullH4xpfS9X841vhIiIn9TRH70sW1JRF78/bzP7ysov9yP8QTLx4G/D1wC/gLw10Tk8vkDROSHAPtVeLbNk5TSO/4BrwM/CfwucAT8FaAa9n0XcBv488B94L8lA/0ngC8AB8AvA7vnrvfDwM1h318Yrv89w76/CPzVc8d+J/BrwDFwC/gR4McAB/TAEvifh2NvAP8jsA+8Bvwb565TAx8bnv93gX8buP1u7z6c+3VAB2yd2/b/Aj9+bn0GfB74diAB5m2u9beAf2FY/keGY//pYf27gd8Zln8E+NvnzkvAjwMvD23xlwA5t//PAJ8Z3u9/A557h/f5GPBR4P8AFsMzPXdu/3cAvwmcDP9/x7D9Z4AAtEO7/wLw/wzPthq2/cApJs5d722/y9s+43sE5UvAM8Au8HeAnz4HSg/8HFAOH//PAr8BPD1s+y+Ajw/Hf2h4+H9s2PefDud/CSiB54ZG+0GyBroEfORcw/70uWdUwG8B/y5QAO8DXgX+2LD/PxqAtDu8x0uPNdxfBv7y27z/nwA+89i2XwD+83Prfwn4N4HneWdQ/gen5wE/Rf7h/ty5fT//DqD8VWAbeHb4wP/ksO+PA68A3wAY4N8Bfu1dQLk49w1+/vReQ/sckRWHGdr+CLg07P+bwI8+dr0EvHhu/btO2/bdvsuXC8rzWuH7gC+ce4CeQXMO2z4DfPe59etkzWaGh/vvz+0bD+e/FSh/EviVd2jY86D8NuCNx475SeCvDMuvnn7EYf3HeO+a8oeB33hs288AHxuWvwX4neH93g2U3w18clj+X4EfPb02WWP98+8Ayu88t/7LwE8My38D+Jcf+4GueRttObTd+W8wIWvAZ4Z3/XuPHf/rwI/8A4LyHb/L2/29Vxvw1rnlm2SVfCr7KaX23PpzwK+ISDy3LQBXh/POrpVSWonIwdvc8xmyJnkv8hxwQ0SOz23TZO3I4/cd3uG9yhKYPrZtCixERJG17J9NKXkRebdr/TrwdSJyFfgI8M8B/76I7AHfSu4O307un1tek8EE+d1/XkT+k3P7BXhqsHN/atj2V1NKPz4sn/8GSxE5JLfRDb60bW4CT73bi72NvNt3eUt5r6B85tzys8Ddc+uPpxndAv5MSunvPH4REblH7mZO10fkbvmt5Bb5Q72VvNU9X0spfeBtjr9HfodPD+vPvs1xbyWfBt4nIlsppcWw7ZuB/44Mzm8BfmkApB723xaR708pfVHjp5TWIvJbZBPnpZRSLyK/Bvw5cu/z6PfwXKdyC/iZlNIvvsW+XwN+9i22n31PEZmQu+27w99zjx37LFmrw5e2+3t5tnf6Lm8p79X7/ldF5GkR2SU7J7/0Dsd+FPgZEXkOQEQui8gfH/b9NeCfEZHvFJGCbEe93TP8IvA9IvKnRMSIyCUR+ciw7wHZPjmVv0fWXH9eRGoR0SLyYRH5I8P+XwZ+UkR2RORp4F9/j+9NSunz5O753xORSkT+BPBNZOP9hKxdPjL8fd9w2j8M/N23ueTfAv614X/IXeL59d+rfJT8bt8IICIzEfn+dznn+859g/+QbELcAv46WZP/i0Ob/wDZD/jV4bzH2/3ttp3Ku32Xt5b3aFOeet/HwH8NjB63Hx6zaf4c8DmyQf0F4GfP7f/TwBu8N+/7HyV/3Dn5V/enh+0fIAPlGPifhm03yKGb+2Tj/DfOXXcE/DfD8V/ifZM/7EffoQ2eJ4OnGd7re97huC+yKcma9ofOrf+x4Zh/fFj/8LD+A+eO+RG+1KY8b7d9jC+2qX8Y+NS5dvqv3uFdPsab3veSbDK8cG7/d5Kdk5Ph//O27B8lRxmOgP9s2Pbj5J7oGPhTj2Pinb7L2/3JcOLbioi8TjZu/893PPBCLuT3SZ6oEZ0LuRC4AOWFPIHyrt33hVzIH7RcaMoLeeLkApQX8sTJRmX1/Fv/0p9MSimiViyXDa8deoKuKLWw1z9kq1sAie26hHrEw3nL3UVHi2ZcFcxmE/auXmE0ndJGhZ3scOn6dd7/4ot884f/EM9duYJSw6hNStx88JBPfvrT/Pb/95s0x484vnsTVsdorfDeE2OirCpMYbFFQfAe5xwhBBjMJu8Tr7+6T9QjmuMF3eKIorDsbu9x9ZkXufb8C3T7d5HxClNplNEUVYXShqKuKWyJiND3jp/4i//xuw4pfS3IRmlKrRWQEBFEEvkLJUiKKAoRISYhAERAZDhWEKUQUWdDFolEjBk8KUZCiJw3vxNATCQfIEYgkhQopQBBaYOo3LwiMlwv5jicCGm4RiIRSEQ8qDCcIyQlRPGAJ6WEthalDUZbJAopgfeBtm0QAa0251NuzpuQAaGUQpTA+XFoAZImdwxCSomYEiIZMPkfnI6iJTgN/BJTIoRAjOFsmwxB3pgiKcUv2nd639Nn8d4TfCCEfIw6B54zkMfI9sgyrTS1TUwqxVYpXB4b9kY2g06bs2vGFDHaUBQFxpqcxGA2J5Vzo0B5qolADWDL2jKJkESRVFaQCUVEQBJCzDiSDJI3RyIk6y/XD6CMX3SvRDoDZAbnm7pPqax9Ga6iRUghYa39ouuIEhIKJRFdJGwlmEpT1oaiFnauai5dKlBagWi00aAEHzwhegSFIr+TMppNkY0C5SmgQghZYwqnag8AOTuOs2708fNJ546L8ax7TzHxePgsxECIgTiA9hSXMUa01sMzCCnldX9OY+brKpTAeGKoraCTo9SJ2iomlcGgqAzcuFyhdcL5kN9DhDg8j/Oesqq/Ym361ZCNcnRskTWRIPSSkJRAAiKKoASUEEUTU0KnrLFEgJiISfBJsiZNEUkgCYLric4RfSCRtwFn4IsxEmIiRiElIUk2BbwPGGNxrgcRtCj60BMjZ2ZDtjPheOlZhMB6HojrSBsTwSTK+0KQhvn+nOJyQTj9tQgopYkhkBL0bUdhN6f73ihQamPwXUc8BRwJUkRIJBEQRZJ05sxIRkfubpU6U6oCZ46SEiEN4IvnNGUiQUpnwExpcKwG7axEnTlHznlS6tDaoHX8YocnCQerBpLmwf37JNdh5gvkwUM+t3+P5194Ae9avu36h1CDhkfADKZAPRqTUsJ7/wfa1l9J2ShQxhgpioK27TOAUiCJyTYfEBNZI0aQmLJHrjQkOdfVJmICEHyMdH3Pqm1YrFfZadGK4COHqyW3Huxz/9ERBycNBAjRUKUMZFFC8gERCMGjtEIloSwL2rYj30GIRBwRt17Tdx0helJs6PuIF8fupR3QnpACKQa00igRXO+yrUnKPUGI79AyX1uyUaB8005MzFcdB8drenFYa5n7JfPumM5FRkYxtpYlwolL9CgmQaObHi+Go2VLG6BNGl0ccvPektduH3Nte4+n9nZxMXDz/iGv3Dri3v6aZa+wKIwUZDM9e+sZkOHMKQre4c45UtpoUvKQoGs7iAEtCk8iSQRRRBKKhPc9hTH5h1dWQwhLcM5R2OpL7OOvZdkoUJ6GW1ICJSC+oTAO5RV4R4gJk7LPKkpnIKlAGOxMKwYtmsKUFIVhYmq2di9z9akb7F65wu2DAzpRpBhZNz2hmLASix5PwfcYPNIfAPHMuYqD95NSOotNggwx1fywAkiIFErRxzTETxW6tKDVmWmhlc0eOHLmSKXBhBC1OaDcKO/7NI5XFgXaFngMLho8CqUVgiYqRY/QICSrKcdjZrMZ5WSCVDVeKZxSoARblUx2L1FtzThctrz0yi1QlrIsqWqLaw4oQsfebIerzzyHKgyIziBDcihpGL2RlL35bBNmeMYY8MFR1BX1dMRWqbBWM5lMqOsRk+0d9q7cAFUQBltSjMFUFaINKI2IIqasmTdFNgqUp/FEMRoJCR+zdjJRMBGMaIzSlNqgtaZPgvPCqvX4pNl76v0UxZhV62l8HnVp2jXH8yN2tydsjSreuHmL1bzh4GhOu/Zsj6d86EMvkto1KbzpRJ2VswzhpDy0CP4sfJQD+It1RzXeIgRoek/nPDFGRqOab/32b+N7f/BfoVc1bdcTY8j2qRKKojjrGZRSOOf+4Bv8KyQb1X0jkoPTCrTWVCphSwMRxAkhRcqqpKgKVi6SbMmlrRmr5Qofex4+vM/7XvwgO1bhmpbCWiQE2uWC2y+/zLVr17myu81hO2flHDduXKF46jqihct7OyweWtJjQfjToUQhksjdMkNX653n4aMj4tYescvWo7EKokMnxeHRAXcXh0Qz4ejohN3xGGJCaY2yFjcE7o3Wv+eKridZNgqUprCEEPOHspZxafHdCrQh4YlG00UhJcNoZ4vQt9A2jEYTlNJIPeaNW6/xjd/wES7deIFOsm3YB4f2jroynCyOuDG6xlgJKy/Y7RGvfOFVfIwE5866HhGF1hBJxJC73gzRDMjeR27fO+ToeElpx2gLZlRjtaasSuqq5MHLL/Orv/BzBDR3+pLdnW12tKFrO7QtcpJH9BhrcV3/VWv332/ZqO5bVNYYuRw74UNg3Qd6H3FJwBhIntCtaI4O8Z1n7Rzz9ZKTzvP+r/8QeztTPve5T3D30W20imiVUClS1SOqrUtc3r1K13issdQm8dInP8Ebd+7x23//Jbx3OXYJnHbfRpts98WYM4xSxAfPG3cfcuv+I5qu5/DBfZxbY+qKsi6x1qA0WC2UKRDaJUdHJ7z82uucrFekFPF9TwqBFLMuPnOcNkA2SlNKEqy2BO+GkZqAVolSDyM2ncN3PbbQVKUGCy54Oh+pLbz0id+msIbpbIvl0QFd0zDZ3mW2vY0tLZNxxXQyZmdccrxccPuNWyQXOTpZUtcTTARZ5jinUqCVxnmP1gZJAaU0oe+48/CQe/tHLNsGJ6BFIAXUEOxPKZEipBDRxlBbQ+s89x6cENNr2A9ZLilD0pF6a4L3fqNAuTlvAmdZOMZkR8YoRQrCSTT0URhJQBWGdec5Xq44nK9wQRAtrNdLjo4OaVZr+nXLcu04WbQc7u/Tr5fUeK6UgVoixrcY37I4OWA5P6ZZLPng13+Qqq5B3gzCQ7Ztc8hGEWPg8GjFw0cr5qseh2Ln2g12r14nDcOWfFFSSDY/i9IgyuCj4tHRis++/Bqr1YpEdu5CCIR0ERJ6IkVplR0NSWhJGAOVilQpokUN7oYQRdGFSOs981XLfNmw6npan2hFc9J2QETh6V3PYr6EkEgxURjBGA0orNJ0vcf1LYcnxySlSKLOJfDmXEilNUnBctVw72DO4XJJVJrnP/RNXH76WeYHB0TXD2PoiZAiPkII2UPvvND1Dgv4mHh0uOTVN97AeU8M8WwcfVNko7pvbSwheJLk4DJa4yVShJ6kC1JZMdaGtGwIMSBGg9GIrYhiiFrjXYcWWK8bZtslz924gQsOVZTMm569mPitz72G1YK1lqqucoJHaHn/+17g87c/mXM1GTQ3OUvI+cidgyWH8xVJlWxduYota1791Eu0R4/QEokiJK0w0WaNGRN90nSuYVTWbO9dZxE1fn3A3Qcn7F3e5/2zKSEENmhAZ7NACWCMxbuEKDBK46XCKUWpBKkrBGEysxzuPwI0zjtSIHuzYqilYCKCqMjV3W2UVhQYqqLEWMvRfM39ew+ZbVV0IdH2jrqoENEEPwTGUw7vaK3pgyfFyHzV8eh4SReF3RvPsHv1Op/7nd+kPzpE2o6oFdEqnI+opkeZHlWWROXY26rZvXKNb//+H+R4rfjbH/8oxiVu3X3AjRs3qIoyx0E3RDaq+wY5SxkjJYzRmNBTKphMx7jlgma9HpJmBZIg2pBU7v58gnnnOO49DkNZjbi8t0c9GnPrzm1OlguUtWxvb1NOdjCl5Q99+Bv4p773n+DS5T0Oj44QXZyFf0IIpBAIIXK86DhZtxSTKc9/4Os4PDikXa/QyVNoEK3wgEuBpDXRKJwPtE2LmU75Z3/sx/iTP/j9fOgjH6beeYqu75kvGo6PT87yPjdFNkpTnjoVp05CIqElohW0XYONEZGENpbdvT1MWdN2AVuVKGOY7lwCMfQpEvuedn7M3b5nsrONsgYpSpauowuefr5mvlgwf3TCYtWwOD7k2at7HCVNRNApkpKgRGh94mjZ0IVEWdWcLJccPtpHeY+OCdGCixEXAyokQpmHSwtTENeOk+M5/f5Nnq7g6d2Kre0t7u8H+j7ycP+Aq3t7G6UpNwqUMCRlpKw5tC1xpsCmSImgxxOMKVAiTLYmRIHx1ha6KNG2JIhQWE2MGpfg6tPP4okczU+o6pqbt+9zsmgYiWJ7NuH1h/DSy69ycnxMrRXf8uGv55brc1ocnOVhNr1j2azxIWG04eGdW7TzI1Tf55Q6yZ55rpQQbGkpqwrRCuciy2XL//LX/wYf/OYP803f+K08de0GD175FH3fM1+sCCmi9eZ8ys15Ezgr2kokjDEYLaAMjQvE6NgaW6LrOFnMMdYy2ppQ1DV37t0hiMbFRFmUqLJmZzbj5s2bFFXBeGvCpCrZqir6tufpZ68DEEPA9Q6RROc77j46woeAHfallLOEnPO0XU/vI8uTI7xzGO8wSjBFRUqBaBTdypMkO0eVrdk/noOxBFF87pXb/MrHf4n2W28Sjm6jUsD3PV3X4r2nsJtTo7NRoCzLEm8Mfdvm6j+jmdSGdt5CNEAukdAqh21SgsX8hBQDSiu0CIrEtLKMCyFJIAj0Puc57u5ss727x7PX9pgvF4wnI7a3Z9SV5ejRPvfu3c+ZPOnNAI1SgkuR1kUIgguJrnVYv0aURvDUowrxkcXaZ42NpZjOMMsVy9WKYBQxtHz+Ey+R7t9n0Q8/iOjw3tP1PbI5vfdmgVJpjQGStbTtuVJXEbxK9N4NWsvnzBofSFrRRwGdEGOHEtZE0wdi01GqEqyQbIkdjQhKc/dkjYjmD/9DH+GP/NHv4JVXX+fjv/Q/EFyLUoPGGhJ5T0siQgzEmB2x2e4llo/WnKxWFFZoYk/bB5QM1YkJ7t16na53xOiRYAldomldBnXvCTEiaigec45CXdToPJkyODjGaIzNeY1GKWxdUk0mbE9GXL68l9PDUGhtwRhc0iRbMtqaMdvZYWu2zXgyYba9gxOBaHnm+lUuX97l/smCw6ZFi+HFp66wNxvz4OCQ65cvUQnYyYTu6IQ41JcrJSgY4pUeQ0RXBVpXRN3Q+kQKjj7mMooMQkXfOWJUCKAlcml3B62EYu8q+mgF8Ta2snn0CsGHi9S1J1LycHcgpYBSObtbKYUpCvSQ3jXZGjPWGtEFkYK2VxRFia7HFKMJO9dvcPnqFa5euYQSxZ2Hh3zji89xeXuK1YpyNOZoueZ4ueazd+/xh0fPobRGUmI6m6HdGHeSGS5CSChRZ+wVIrlSUhuFNhZVGGLriEBRWLz3+BAJTZeJBoCYDNoq6rqkd7D/aE7bdKQYUUphrc3LGzT2vVGgNNaijCEFRyRSFBatFKPZDOfdAFRNUpqm8yybhhc+8CLjnR2qrRmegtt395kvljRtByny4vteYGtSgQhWCzujgrowbFUFr933pJAwWiEKtrdnzPcDWrKDE0NOyuWMgYMzbW7rirIr6VzIpAkatC5omy4zdgjUdZEPV4q2c5RR8+jOLexpOW2MWJtHsWSDKB03CpRNu0ZrTXA9EnMJbd/1iFZMJjWltZkUIGmWyyXXrl+lLguMMVijGY9GJH2d19+4xxe+8Dof+uAH2J6Oc5A9ZWiVGqzRTMoRPm0PNTYJnwJVYdlvG4w2JJNzKbXWpKXnNN1XBAi5psYag7OKFOKQZpmD+kkixiqKwmKsJSRNVAZnNaEqs8YFSBFjDF3XUugL7/uJlMNHDzPbWe8IIXvaLgXCYoXRUBiTiaFcHvorSgMSh2pDQGBvb4d12/Pg4RHa6C8aU44xkQQUmfHi6Z0pTYj0IWf3VHXJvFliXMy5lSKElOj6nkx6lU2IGDMTBwLGGGLyBHKW0CmFzGlhmFKKcjRh1Tm8iyzbjllZDSNGcWDLiHR999Vo8q+IbI4hAmxNdyirUc40F8EoMANDgBoqFmNMrFYNMSa6PtB2EUm5Tnu9bgm959rlS2ijCaFHUsokABFOOsf94wUSA0YSRoQQIEahKGveeOM+vk+4lPM3Q0h0LoLWQ/aSEIWzykOlFLYoEGuG1DUPSuX8S1GINkTyyE5ZlmhjGdcjbGVPGROQGJht77I13f4qtvzvr2wUKKc7u+xdvc7l6ze4dPVyHhoUqOqKdbPOZAIx0jQNfd9zfHzM8cnJwG4htG3LzZs3qcoCJPDwwcHAbpEIKbHuPUZZjH2zg8lgCugY+fxrnyf4hkJplKiBbSNRWkVlNQbBoFAyFHxJzv0sqwozhKOUVlRVhVI5oYOB/WI226aebjHemqCHsJPWmt45rDFUG8QntFHdt3OZeKCejLCVQR7uI8YSJWFsiTUaiPTRY2zJ9mzK9qXdMzrAvd1drl8vmYxrtsY1D/cfsr//iHnTcmm6zaXpiKowrHuPCwGrCxrnWDc9oiIfeP+LPPzkbcAjQxltihFrLNuzGcVYqOsRth5Bs6a3hugD2hjSoEHFBSbjUR6315qYAoGIKQxP3bhOv1ygiGzv7nLtymW0Fk4OD2iKizjlEyneO4zRKK3RyWTfIUI9qgic46PUCgRGoxqjNb3rKIOnlITRmqos2J7NuHXzDp/6zMv0aF58/nm+7Zs/SPIeoufe4YKru9v0LqCSYND4rsPYAvxA0xIjcShvVEqxM615/vnnuf7s8xzefI3l4pB15wkh0HlH7xMheqqqIiUYjcaIKKY7u1x/9nmeev+LTOoxKsLde/dpDu9xeO9VvHMbRUawUaDs2hatNVYs1lgKa/B9R9dqUBDrIjsrIdH1HW3bIUXH/oMjpsvAM89n2ua2687IA04OD7ny1NNMpxPuH51glbC3PebGpWnWcLGjNJr1co0Xjzpl1U0aY8isbypnkIekSGJwMVKVBbqvGFmPMgZlK/oESmfG3qos0dZS1GOuPfU01595lmduXGM6mXG8bFm2HrfYpywLytJSjibv2j5fK7JRNqXv+lyCEHOurbWG8bgixNwlitK0bU/wHh8C88WCg6NjRuMRO7tTetez//AQ7zJfT1mV+BQoC4O1mpdfv5npWqIwKku0Utnz1kJInnZ1TBjGyU9tQhlIVAtbUlmLVQpp2wzSGBhXJZO6xopGp0RdGPa2t9jeGlEWJUlZViHnevZeODxasJ6vMKHLycWZF/AcLfDXvmyUpmyaBlVYlNIkk4FRVRXiAkVRnIVPrLEEl4Pak8kEjKKqLNWopKzGjEYV/oGnKCyCcO/ePUxZEZXi0eExu9MRs7pgvu44OFoTSPS9w4RAITn0o1JCW02MiRg7rCkpiiKPVTdrjCRiYVm5QGkhKahVMXBbZsL+8fYlnBhGlaUW4ejhXcpqxIP9I7p+NbCtBVzf5yHTDZGN0pRds6Rr1vRdjw8xEwxIwliNdzkc5H1gNK7wwXHnzj18H9iZzSiNpSpLjLYcHB5y87XXkYHWr+069h8+5MblPcZbI05WLY9OWj796l0ePHqE1YoYPAGVVbTWKJW5hIzRKKPoosOFSAgOW1T0LiJiqaoRbecwRYkZVZiiwDmHD575/JjgHWC5t39A8B3HR0ckpbDliJTyBADBdXi/OXHKjdKU3XpNYSt6W2dHQ+k8whMS6/WayaQmxkQ9rgBhsVjyuc9+lj5CEI1pHA8eHhOi53ixYjQaEWJEmYLZ9ozFYkFZlTTrjgeHJ9y9/5DpbJcHD/fzWHUCnTTGmIF6OtP2ap2priOeGB0uOKpxTXPSklqH1orlYklZVYzHowHMinFdEiRxfPCI7a0amRZMRmNWj05IfU/OVxsqJy+4hJ5QcR7XNrTWIEoyWWrMcb6qqvMoDzmJ1moN4livG+7cusXJYoWYAmNHbO9OSMHTdT1lWeG84+GDB4zLkr3dHVJKHMwXFKXh9oMHFIPjq7WmKCuMTqRkqKylaxqCD5TGUltL8J7jgwdcno3ZmY3wMXMMJTRIYmfLElVFXZaYoqbxwrVrU2azGU/fuMatu4/wziMMM1LEQAqQ9AVp6hMpIfQ06wUYjdYlpEwJrZRmsVyyd2nvLJ3MGovQYaxhujUZsolK6tGYvmvpu47e5zIDUxV0rufuwwc0fc/zzzzD+55+mlXT8j5luHPzFcqypDZg1BqtAmIUvuuJMQ3c6R41ghgiQQzzVcN0VJ5lBymE0bhmd3tKE6AuCqIqSFYzHo/Y3p5SFJa+7+lcT12qzFEUIzFCchf00k+kJDzOJWS9QusCZTJtdF0WtJ1Da6EsS4yxOdnBaKq64saNGyRlmTctd+/dYTQp8N4RAyxXK7asAR1zLDF4jC2YjSr2piOWbc96MkaLQrQGbbCFIXgh+oDSmU9daUXf94xGI5Q2oGTgYc/JyZniGojCetVBAG0hiGXVNIzWK0ZVecZUXBTFGd+lkHnZN0U2CpRIQgOh72ibBbos0EbhQ6AoC7quIcqM+WpNUZUYbSDk0My9+/fZPzqm6wPaXObUB2y7FttYZsUMk6BQgtWZKcO1a373U5/l7/76r9OtVxwfdVyuWkxVo4cg+irFPN+NCIWxlLZAKajrEtFC7+OZV16PCkIaaFhiInhPNa5w3tM7j4+R7dmMB4cnaBFi8APvIAgXoHwyJaWc8eMD/brBDtwAMhDjiwjHjx6xe+kq2hguX5qBsjSrJYvFgrquKStNXdeMbIXokul0zKVLu8y2ttjZ2WZrPMG4jlc+9xlef/VVfuO3PsHq5JiuWTI/OODa0zOsrRE8fbPGFhbIbGxGFOvFkmpcsV4njFKEBEUPoCCtGY2EdZ9oXMPOpV0moxGjyYgkij4qSFAXhhgDfe/Oyi42STYKlBIionxmzu3yzGMJhdEaayJlVUDwLI8f4gO5pLYsObjXMbYVxiqUaHaqArTgQk86adk/esi+JC5du8F0NqM0KheppYS1BZO65Pj4kNb1RMnety4KimZNYUtSWg2zL2YuSSFRaYPre0TJUI1oWK5bVm0gSiZCCK5DGX02QVQfI41zFEUJJHzfIxJBNieXEjYMlEDuymSYdKlPJDs6YzIbj0doYo5jrloIkW7VovuOkISkLKKgTHOSKWldxEVNQhiPauzhIc9dvcRoVOVMo65jOp1BqVk2HUYiQUAVBltV2GqMbbucMxkjvXNsTadYq/HBYW0GbxTN1rhCCSRtWa5bkB6tQ57eRIStssKiuH9ywmLdUBWGvu8ZJuTbKIaMjQqehwAp5m5aEZEQkOgRAecCbZsD2EfrNX0AURatNL2D1geSLijqCYWxw8xgGaRCou0jJydzlvM5Xbuib1aIb6kLhVMWJeDbFmMUylhignoyRltLVVpKa5CUsFrjXaTtPE3nWC5WEDzeBzoPhbUURpPLzRJKTick1SgFfdfn4cphNjP1+OSoGyAbpSnjEIcUBUZrfDh1BiJVVdE2PX2fcMHQr3u2ZgVWKSpKzHSPND8gekhqRueEajJC+1yzrfAYO+b20YplNKwXa7qgiEl4cPcO6+WS9XqNyC7GGKrRhE4pqvEEU5xgbU6wKKsRq8UJ1hhSjIzKAqslg19rRALGJBBDu/LErYDYgC5AG6GwJjtO2tD1HaNzM+9uimwUKGEoKQjD+PNQPRhCIIrQ+cDWVs1IazRgi5IYEzolVHNCqrbQZcmRs4jVuGgQo5lsTSC0JG1oXeD45JBxYUi+4+a9u3TzOU3T0HTtQHKQ0EVFpVQm1LIFIQkqx39QypCCZ2trhBVF9J75fE4SQ3AjXIjYqmS97lEnS6ZSMOsSKkJd14SY6L3H9T0UOez1+Cy7X8uycaDMkx3lWJ5SoEnDcJ/ClhWFNRQChQKdHOsI86ZH0VNuW4ITIobt7RmagKZFLRt6MajCok3k8u4eo7pitdYYlV38VdcAnNl2fe+YjGq0tSQteO8o64KmWWOsZndcMJqMadaBdt0RSNlW7QKRCN6BMngfWS2XrJuWGBNN12U6V+8J3oPdrHkZYcNAmbWFAKfsttm+DCGgbS7aCt5TFhZdWGJMzErFqNKkqOhSQwqBK9sVl6YBlwRFgcRID4zHI5LKoRnV51lttVZoIuO6RpMnASjLkqIs6F1PYbPd6r3H9Y6+77GVRqmKo+M1Wlt0KVyezZiMpyy6zI3etB3LpiWFiqt7VxltjfAhh39E8ntkMA4zjm2QXblRjk5ChklBs/Y4JSYIweF9xDUdMRryb1GBKIqioiwLilJT6URo1nRdR9d5JCYIgYiCJKzXDUmE6bhmNqnQRKwWzGhCNd0j82lZqq1tQnTElAl+rNWkYZZFYwylsbQelDJYDZXWXN6Zsj0dsTWpMxtxyk6bUhptDNYUiFIYDdG3eBdJvoWkSFFIcXNAuVGashjV9M4RvUdixAdgsLdc12GMpWlaIM+mkBJEG/Nk8CrT9GmVaIckXEIgkSeFUqKZzsaU45o+JNom8mje0Ill68oNVg8fMN3aQimF9yHbeT5kqmlRVGVBVQhVkcn1m6YhxERl87DkunXoUrF/OMeHhGiFLguavqPvevq+pyqrPN2zErque5OHc4MSfGHDQDnd3qV3jm69wruOFNMwJqwoCoP3nuP5CfsHHpUSlS2Y7e5QjUu0yvlDPgQWq4bR8RJT1qhqlB0ipVh6BUxpO0vnWtJ4m7JuOLjzAOUjR8dz9LN7FEWJ8w3W5GmQjTEUhaUuC2bjmr7tGFWWEKHrHSoa7h/OiVSkkAGnbEFRllhtODic00eFMZa284hWtF070LXowWzZHGBuFCiLuqYcjajGI7zr6boO1zbIOifNQiKpiLIQusC6c8SjOZUbUdUVCk3vEkRhFQ1VUVHoksnu04y2Jxw8vI9fHFFqoZrtcLR2LFdL+uWcxWoJJjAalfRdQ1EZYt+feePOObwLw8T25DLelLAqoTVsjTOQqyKhdZ43RwUhiHB4vGTeujzzri4wRtN1PUqGSURVZvDYFNkoUIaUKxaVzTPNluMJrl1zvLrPcrFkazqlsiWL+ZKyHucAuVL0faB36zwdsxams12SWKrdG2zv7rB/+yb3b7VcufYUo+mYnb2rhJAwVcvRwYxUHBLmS/plg1E5OUISBB85OT7GOz8kWWRzAKUIMdI2fWZ/QyjWgaR6ogy2pgg70wmHa48LERUhhEjoG8Zmi75zKANFUQ5To1yEhJ5Iic4NaWJ64PhRGFsCEZWgbTtMSFhT0HctKQqmqpEUMDoX9HfOU29dRunE0asv8/CVmmsvPMXO3iUO7j2g66YkMVy9fg1tDeNySrPu6FZHCC6zYJBYLdas5ye4tsH5kIvItCKkRO8SdVWys73F0XxOFGHlPeAzs68PiFbMW48UJZe2CuqqQlIkCQQfcM6htMFYC0rhwwUon0gJvUMpTVRh4OHJXm9lLXpLo2xBEqFrO5QxeJ+dBG0NUYQ25GzuB3dep56MiclRFiPmhxXO73D9hRfZ3d6iKDVd49h/cMDBnVcYxTmtONxg161WK9rFknYxxxaWKOSJn1IuMFuvW4xYLu2MsNbiUqDrW7anU+pRDUlonWNUWmxp2NnJ22OyLNcd6/WaGENO7rB5djU2KFa5UaD03qGUzxPBK4WQ61ZEhNG4ZDLdxhQVi8WCddPSrBtS6Im9IilD8HkSZAkNrYLxdEIxKsH3SN+yenSAdI7JdIvS9uzOYHVpi8X+Kfm/wveRdrHK8ypWNeV4jH20om17ClvQ9bm892Q1x1gzZAEpRvWYwggx5FirUpZll6iJHM4XvH9nh8YJi3ZJqROESFmXFEWdJ7PfoPS1jQIlsScGyAPJaqBjGRJgk6eqC3b39tiajc44KJOPEBOdj4g2NKuG9XrB9u6Y9z//FIUtCClnhxUlbE8U47HBloblsiOmiAs5gB1DxLVrXCowhSWncmQ6wjzpfCTESNf1VGUeLkzeMxmPWXY9KwxFDYSAcy3YkkULSTQheE5OGq5sT7h7/z5KCaPRCF1UqJiGmXs3QzYKlMn7XJwvcWCDzFpSDZNxCoI2iul0i/FkjHOB6HOX3fV9rnoclbTrluff9wxPPXWZmDKwlDFYW1BUFqs9sfd439J1HX0f8CHhg+fk8IAT11LVE0xVIfMli8UJZigqy/H4iHOO9bpnMtYot8ZKwWrd4V0aeIU01RASGtUGZRRKwpAVpDBWU46mVOMtQOjXm5NTuVGgJMlAJvrm5E6JU2a00yG6XO4qCFYb0NkmK8syDxuKotCa0ahiPBkRAe/ikMommVQ/BJx3eNfjvKNpW5q2I/ieR4/2kb5Fq8Nhfp6C+fGcpuvRyxV1YRmPRzjncS4ynV5iVOVJnMRarErMFw2IYmdSsjOrwBqiF7av3mDdVujyBGM0ZV1TjUaZiuYiIePJlZTS2dTGiQQql0LEGM9mek2P2V/nR0RSyrM59L0j+JCLvAZ66BgCKQZ8iDjnISRIic45nHO4rmWxWGBDjxKFrNeI1izma5QeoUTouhYVEsYWKCWsm55161is1ti6xIzGRBqSUhz1gqSKUVky7yui32a5ukP0DmWEuq5z6XCMbBC/FbJpQ1QX8rUvm2MdX8jGyAUoL+SJkwtQXsgTJxegvJAnTi5AeSFPnFyA8kKeOPn/ATCxRuyAARGOAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-22T13:22:06.532092\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKYAAABeCAYAAACpSW8DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuvElEQVR4nO29ebBlyV3f+fllnu1ub19qX7qrV6nVaoQkCySEURPCIEBgRvYYGMaYRRGsATgYDDazCMw4zMTgYTw4YECsshlAyAiEGAkjtNBCLXW3eil1V1VXde2v3v7udpbM/M0f57xWuenqrhgXruoX7xt16917Mu85mXm+95f5W/J3RFXZxS5uNZib3YBd7OLFsEvMXdyS2CXmLm5J7BJzF7ckdom5i1sSu8TcxS2Jm05METkjIg827/+ZiPzKf4VrfqWInP/bvs6NhIi8R0RWRORy8/mbROSciAxE5IGb3b4bjZtOzKuhqj+rqt/1cvVE5L0i8p7/Gm1qrndERP6TiIxE5AvbP6Sm7DtE5LMisiUi50XkX4lIdIOvfwj4UeBeVd3THP7XwPeraldVH7mR17sVcEOJeaNvyC2E9wGPALPATwK/JyLzTVkb+GFgDngj8Dbgx27w9Q8Bq6p65apjh4Enb/B1bh2o6ku+gDPATwBPAevArwFZU/aVwHngx4HLwG9Sk/1/AE4Bq8DvAjNXne/bgeeasp9szv9gU/Y/Ar91Vd03A58CNoBzwH8PfA9QASUwAP6oqbsP+H1gGTgN/OBV52kB723a/xTwT4HzL9f35rt3AgXQu+rYx4F3X6P+j2y36Rrlf6NPzfFJ4Dea9j8H/FQzlg8CYyA0/X1f81eBIXDqOvr/kvfkRdr4F8B7mnYOgD+i/lH+NrAFfAY40tQ90rQlesH3v6t5b4GfB1aadn3/C+u/aBuuk5hPAAeBGeCTwHuuIqYD/lcgbQjwQ8BDwIHm2L8D3tfUv7fp6Fc0Zf9b8/2/QUxqidAH/lsgbgbmtU3Ze7fbcNXAfxb4F0AC3AY8C7y9Kf+5hkwzTT+e4CpiAv8W+LfX6P83AcdfcOwXgf/jGvX/EPi5a5S9VJ9+A/gA0Gtu9jPAP7laALzgXAocu87+X/OevAQxTwK3U/9gnmra8yAQNW39tesk5rub7x8ApoGPvLD+fwkx333V56/li7/Sr6SWXNlV5ceBt131eS+1hIuagfv3V5V1mu+/GDF/Anj/Ndr0Xv5zYr4ROPuCOj9x1eA9C3zNVWXf88Ib/RL9/3bgoRcc+xngvS9S9zupZ5C5a5zrRftELVVK6jXk9rHvBf7iOon5cv2/5j15CWL+5FWffx740FWfvx549DqJ+efA915V9uD1EPN614Tnrnr/HPW0sY1lVc2v+nwYeL+IhKuOeWCx+d7z51LVoYisXuOaB6mnnuvBYWCfiGxcdcxSS0leeN2mD9eLATDxgmMT1JLveYjIO4F/Sf0jW7nGua7VpzlqCXp1u54D9l9nG1+u/9e8JyLyz4Fva479rKr+bPN+6aq64xf53L3Otr1w7M9dq+LVuF5iHrzq/SHg4lWfXxiedA74TlX95AtPIiKXgHuu+tymns5eDOeAN1yj7MWueVpV77hG/UvUfdhWFg5do96L4UngNhHpqeo2Ge8Hfme7goh8DfDLwNep6uMvca5r9WmFWoIdpp72ttt44Trb+HL9v+Y9oZ5q332d13kxDJu/ber1J8Ceq8ovUU/j27iaS9fE9Wrl3yciB0Rkhlph+Q8vUfeXgJ8RkcMAIjIvIt/YlP0e8A4RebOIJMD//BJt+G3gQRF5l4hEIjIrIq9typao11Hb+GugLyI/LiItEbEi8moReX1T/rvAT4jItIgcAH7gOvuNqj4DPAr8tIhkIvJNwGuoFQ1E5Kuatv59Vf3rlzndi/ZJVX3Txp8RkV4zdj8C/NZ1NvPl+v9S9+S/CKq6TP0D+rbmut9JvTbdxu8CPyQi+0VkilpRfllcLzF/B/gz6rXaKWqN7Vr4BeA/An8mIn3qRfcbm048CXxfc75L1Fryixq6VfUs9Xr2R4E1anLc3xT/38C9IrIhIn/Y3Nh3AK+l1vxWgF+hXrgD/E/UU+Ppph+/efW1ROSXROSXXqJP/xD40qa9Pwd8S3NDAP55c50/aYzdAxH50FXn/pCI/LPr6NMPUEufZ4FPNGP0qy/RpudxHf2/5j25QfhuakvHKvAqam1+G79MPeafpza5/Qm1wutf6oTSLEivXUHkDPVC9iP/f1u9i11sQ0T+HvBLqnr4perdUp6fXew8NEuLr22WLvuBnwbe/3Lf2yXmLv62IdRLqXXqqfw4tdnwpb/0clP5LnZxM7ArMXdxS2KXmLu4JbGjooGePf4+DaLESYLKF5coKoCBKs/ZXF6h2ByQxglZp0PSbpPEGf3BBmefPc3C/H5sbMjzAaKWP/r9P+Ub3/WtLBzoQnDYyOC9I3iPiWNCVfLYpz7FwQNHIAScdzjvCMGwsTHGVTGTU20gkGYJvV5Kp2UxNsErlJUHFdqtlI31ZTY2N+l2u2RxzDgvuHT5EleWVzl/4Sydbsbe/XvYu/cAVSmcPnOShfk5Wq0OW5ubfOsPvFdu1tjfaOwoYoooBvDeAQEBMIIBNpdXGa73aU/MMHVoniRNCMGz7URKey2IoaQESfG2TbHRZ3H/Pp49+TiSHmRydoaUNmoEdYqrHCZrsXDsGCYIWxsDympMCA4NFjGByg8Y5YpoTD72lPmYeLFHkijGGFqxBYTgC1xVYY1hPB4TgidNEvbt3UuSRiSJsLS8xJlnz3P+3EUOHjrKwsJCXVdhYmryWsPyisSOImYQhwAaQDC1PhiEpUsXIRgWDx0ligzO5YSQo0FRFUajIRvra6hTqtGQ6VaEtCNcNsH+wX5WlyuefnyNjc0TTM/dTRQl+LKk9BVx1kJ9mytXLrC2epmqGkAoiCUAnk43Zc+eRfbOL9BKLWliCAqIEDAMhhXDcU4UW7JWj0o9ZV4yGoxwsSNtZ0Rxyt59++n2ptja2qAoKi5dOk8SJ8wvLqIoayvXCjl4ZWJHEbMaC4EcI54oTojimJWlJdKkw8SeOXAl3teEUVU0KEsXllBV5ufmETGcPH2CT3/+UVauDDl3fsDUxAHuuuO1HDxyH/c9sI92b45OL8bGEVmWYYxgI1ufzwWqqqQsC6qiZHVllbNnT/Pss89w+pHzxKZgdibh8NE9dNsxH//Uo1iNUHUsrSwzLAr2H5zl9kMz7FvoUhiPy3MmJqcY9DeYnpkgbcUMh0NaHUtQ4bnTF5iYmqI3ubMk5o4yF33sQz+lzpUQhCztEiUxpXccuO0YBAVx4BWRQL/fZ/nyMvOzNSFPXbjAx//yCf7yLx/Hu4z7X/N6vvrtb+f1b3gDc4tzZK0OYgKKr1+ao6FCJRCgCely+FChocSaCCttRFOMyShLz+ryGk8/eZzPPvwQDz/8aRYXFnjH17ye/QtdehPCaLPic4+d4tOffZKVjQFZS7jt9r3ceWw/t+2fZWt9GURABe8cl9dXWV4ecPrkcyRZxi/++qd3zBpzRxHz9BfeqyIWr57xaMSlc5dot1rkVU6n22NieoIszVhdvsxoMGZydobPP3GaD/zBJ3j0yedYmD3CO9/5LXzj3/9GDh7aR5wYVB1eC1QDQR2BMSFUQCCoB63JWq9rPaplXa6K4kArRAxiJrCmhzUtDB3W1wb89Sf+mo9+9MN0Wpav+apXc3TfFIjH+UB/0/H4kyd47uwVHn/mFHNz87z1La9mbj7BjQOXl/tcWVqn28pJYrh04Rz/y//5uV1i3oo49dSvKsaCNayvr5DaSTpzE6wtXWTl4kWCDyBClkxi0x5/8IGP8ccf/CQH9h/j277t23n7O76WmflJRHKc9nmefFwdxqioeoJW+FBSK09NvRAIWoI6CL4mdCgJIaC1XAW1iLSIbBdrO1TjwKMPP84Hfu/P8H7AV3zZMQ4sdjAeXAhsDDbwKgz7wmPHn2NiZpbFntLptdg7P4HzBUU+ZmlpmR/86Q/vEvNWxMnP/7JW3tMf9Flduky310ODUlUVeTGmGhckScZTp67we+9/hPOX1/mO/+47+K7v/m727J8jhJygAzwF29p6TaiaVBq0PqIe1Qrnq6bME9RjVAlaoqEC9YRQoVqhGsAr6gPqK3AOgkWtRWxClPYoi4xPffQx3v8HH+Kue/fwtrfcy77ZaYajnKWVJfJyiLUxf/XJZ5meydgY5Bw9OsPcbItYArFN+bpv+6VdYt6K+JP3/ZCO8zFVVdFtZ3WIfpZibUQ1LoiThI984gv8/gceZXpmHz/yYz/C133912DjEq+DeurFw3agt1pAURQ0EIIjhIKgrtkCQF1fC0IIiCpKiYaylqqhJrB6D86DC+A9wTkkBNQHvPeoCCQpcXuKjc2IX/l3f8Kps6f54e/5BvZOx6xtXGHYX+fcucscf2KTN375XZy/sM5Tx88yKMckrZhur8WvvPeTO4aYO0orn57oMN3rsL6xwcFjd9KZnqIsSzYuXSGdTPi9D3+W3/4Pn2bvngP8+q//GrfduQenW3gtCIxRNUhtcKpfCqqguOeJhoaGlI201ADBNdN4IFChWn9W9UhoJKXzqGsIWlYE7/G+tqMG52GrT19WSXvT/PAPfT0f/ONHeM+//n2+9588yF0HJ1hbucyZ0xc4cOggE5Mxh23EvXfdzTivuHBxjaJ4yfDGVxx2FDG7vUkUZWvcJ5uaosiF0Wofq4E//djnee9vfZgjh47yHd/57Rw8MknhLxJwbO8HE6htn+qbKXlbWoJqTbT6L4iWDWG1kaQelaombwgQGiKGWmKK84j34D0meJyrUO/wzuODJ6hSuYrhYIskW+YbvvoI3c6D/MK/eT/vePs9/J0v3UtsMqbneoyGawR1jAtlcnqKyekeG2vrN3XsbzR2FDE7vWmWLj9LJDHVIGE4uAL5GmeWHb/623/OsSO38b//m1/g9nsOU4UVhApFoHkF9YgqUOFDQdCqPnHYtn0GVAMiFmV7qq4VoaAefKi18eCfn7KNc+A96lxNTlVCqKfwWmo6KudwweOcI4TA5sYao9GIN7/+Nsb9r+YXf+UPmZ57K3sPHCZODUmWEnxMHMX4EJjodem02jdv4P8WsKOIGXxOf1Ay0TtMf/UC1o5Iu5P8zv/1H7Fe+Ymf+nHufNUhyrCMmhzUoiiCEELtNQqEWgkih+AQoXa2N2ahEBwKCNJM6R4NtRZOCDU5Q6ilpPeIc4j3aOUIVU3GEBzOOXxDTFdVVA0xfQh4r+TjdcryOH/3zUc5fe6N/MZvfoo3veFO7u8ukKYtooaUVVlgbUJv8oUbOV/Z2FHEHBdCoMtgcIG9iwsk6SRPn77C5z57nH/wLd/C33nzm6jCCkELAJRG0kHtotSAYKExoIsGQlAEU0/Z6p6fttlWGhsyqq/XmuoDGmolh1CvKYP3hMo1yo7WZHQVzjV/vcM1UrR0DlcFnPcMRldQEd71ztfx6MNPMso9Jmnx2c+dZnJqkm4vIQTLxUsXSdJ17nvLTRr4vwXsKGJeuXCRK5dPMTk9Qdo+DHg+9bkvkMYx3/DN7yCYDVzogxpEaIiWN1O0AxGMBmhsl7X2HWpvTvNevNb1vSIKGrRWcBqNW5vX9nsfAiHU07oGJQRtCLlNzqqZyuv1pguBqgo456mcY+nyZfbZlG9555t43+/+Jf/Nux7k1ffdxYVzq5SF0ulmxKnQ6exO5bcsFhan6HTv4PSZk1y+dJaZhQW+cPI8hw8tcvjYIpVfqZUZpFkLVog6BFcfDxZVRwhlPW1rQ8jQrC1r9QhRqV2cPiAhIMHXErOq15Pi6ql8W/P2oWxC5SAEj/ehkZrN9O0dVVVQOYdX8F5wLuDK2hZ65dIS9955G7O9hM89copveOeXcs/MNJcuLpEmadO2nYUdRcwkSUniaVa6E5w/d5b1wRarKxscXDhE2hIqXyDSuJs1oKHCACKW4AuUolFotj01NBq4ImFbM6/NP7VNsta+QzNlq6una3xo1pKhWTc6nCv/MyL6bdI2tsyqqqiqChcgqCE0jgHvAz5sMTXdZ2FxlqefPksUfwVpYjlw6CCqihFBZGdRc0cRMygYibj92N2cOn2CldU18nyM8w7vRkhU1SZKEVSr2iSEoEHQMMb7ilpDN9AoRbVkrKfm2mwkqDpMCBD0eSVHfUArjwZPaMjmvce5gqD+eUXH+4qyLK9aY/pGS1e8c5QuELyC2Ob7Dh88W1urTE23efj4MnHaQqwnjqP6R6P6N1KTvNKxo4g5Hhd0u21iE3Pnna9hdnODyd5jXLh0heFgnWyiaoI1LapF49euJY33ZW00kqi2m6uiUrsSn9e0gyJqal+4V6Sed1Hv6mm98QbV2nrtKXL+i2tJ56qGbLV0LMuGnFXAO1MTNJQ45zBRjG/Wo2IM49GIwXCT0bhABcQ2u2IaJUx22GS+o4ipqoQmrE0EJnptjh3dzx//2ROcPvkMd792f22rhMaA7mqiAYY6gFfC9loy1P6f0GjXwddkDB7vK9QBvqqncl8RfIEEg6ppvEUelYCR2qzkvKNyJWVZ4t0Xp+5tgpala3zxQtBGSpsI5yuMRlRVxfpGnziJMTbGGFf3GXneCbCTsKOImaQJw9GAXqeDiIJ33HN0ng9Uhg998GPc+apvBuNQrzXRlC8qQ8EAtZLz/NHg0WKTKu8TXEVwgaoCrbqUriLPT2H8iKrYYjRcRdRj45Qo6RBnU8RxF2MTMAYxtZtTQ/giKcuilqRVRVHUklLE1utFsdhYnleYVjc2OH78Mnd/yf0kSfy8tUoEhIAP4Zrj8krEjiLmmeeusDDXpao84Cl9xeJsxt65hA/+6RM8+PbXce/9e9HS1dOvWLZnQBVBGt+3VkPK4RXy5WfZWj/NYGsZXwWqvMC5mFZnP2V/xObKc2hZ7/1xRUCNIJEisRC3IrJugul0afcmaXVmMHaK2MaUIoTnCVrW2rj3FEXBthdKbEQqBu8CxkScObfF8tqQd959jDTt4MK2xKz/MztMZO4oYv6rn/9t/vE//mbuvWOWNLIUZUXk4SsfmOD3P3KFX/yFD/Ken/2HTLYDooKxLYLxqCjBKLYqKDfOsn7pEdaXTjC6sspgzVENDb6EchzwQ4MrV3Clok4JXmqFKIC3ARUwVrFJiY1LTKdP3Fsi7iV0ZieYnJ0jas1hrYDUpK5KT1XVClEItlkGO2yU4YPQH4/5q0cucceeNm+5/9UYO4NlhHeBPC9ZWx1w/twKB29I/rZbAzsq7O3ew5OadBb4R+96C2+4bw9lOeLSxfOcf+ZxHj+d8+efHfG2t93Dj37/W5ia6GFMDBaMQDXeZPXCp1k9+xhb59cYLgfyDSXvgxuBLxRXCd4pYTuoaPul9TpPtVZCggiYWiAbq5gMJIO4B+1ZYXKhw9TiXkin2NwaM+iPGedVs/6s16iI0p3o4IPl049t8fQzG/zUO7qciR5g5s43cvHsBU6eeJYLl5ZYXlmhyHPOL23sGA1oR0nMXk+5tFHxq7/5EAvf/2VkacEgH2JUONIL3LsPPvzhz+OHI37w+7+avXtmEPUM++dZOvVRlk6eoX++ZHRFqLaUagxVIbhKcB6CF4IXfFBCELwKqrWapKp4pFacRFHxiEAcDGoDRIpE0L8grE8N6Cw+y/ThKab37KEqEwajguAVFzzqBWMcznuOP53zmcfX+NJ9MflKxUNnPs3oocfAwHiklN7TzjzxDntgyI7qzbHbe6w+0Wd5fcxfPnSGB+6zbKxtMju7wMWTJ7htOmJrMOIjnzzOhaUhP/Dur+LuIwMuP/MXXH7qApsXAvmqUA0CVS5UFVTOUHrBByGoENTiNeDV4GmsNU3E0LbEBN22QmEURASRUBN2EJBNSFYc60trzB4ZMntollZLKcceDYEQDFWlPPX4kIef6LOnJXz1fkuVRbzxDRP05hbo9iZBM547v8mnHz7JyvpuPOYtC1Uh+MBwVPKph0+wb/EgviyIS8fcnkmmdECnF7NwznP82XP803/x73n7m3q8anoLf8GQL0M1FIpKKSqDU1MTUw0OCEFQMQQ1OK33S6oCwaChMYlq7bJUtU2jakLSmHXEKFEhyCiwsSWsrZasXLrEwh2zJFnEuF+w3jc8fbLi1MUxU7Hn3fdnzISK9Zk5Dh86RK/XJcu6pFnC4YMT9DqrtFoHrj0wr0DsKGJ+/ukxF5cGBBIuXlnnzIVJZiccV86MuW1/Ag6sKHfvgQM94YkLOR/8aMEnehH3z0+yz1eQl1QVFD6hCgGvSolALKRdQ9quCTYYesb9ZlpXA2LqkLmrIt/Rmsi1YR5MLVKxoqgz2ApGeWBroKwP1pi9fYbT5wKPnyoYDir2tT3/6F7lqBmxHreZO7oXl0YMR5v0h1sYY0iTFt2sx4WLT9/s4b+h2FHEvHih4MjiBGVVcmUzcPwL67z2rpS11REH5g1JapHI4CtlouN5/X7l6IzhmZXAx86UdGLhcLfNbMtg8wpXBSoCadswMZ3QnoiJuxbnHPHIYtcdV5YKyhDV03ntea+nbK2n84ASNKABtoNHbENesYKRGCkjLlyC1XN9+iPDrHX8g9fA2w4preBZWhHymQ779h/BphkhBMrKURYFW1sbpFHM1kZ5k0f/xmJHEfPA/i4zk4a1Vc/a0HPuUp8904Yq9/T7Yxa6GVFi6lQwrsJFMN9V9rUDY2c5se54dq3gqWCZzjImM8tkDFNzEXFbiWJDCIKowcSQTcSYDaXy2zsqm+BhFIygGLyCiqmnc63Dkiur2Cwh6yWMjaOKUs5e3mAmgm+8Dd5xVDm2oJQjx/qaIWCY2D+HTVKgdl1GEmETSzydMjUZmJ6dubmDf4Oxo4h54lxFetmTJAoqDMYVZy+PmYgM/UHFvLe025aBC0hlkdhjPBQukMbKA9PC/V3lwijwzPqIC2PlOQxPjyMmu4aFCWGyG5NGgsVAosRTMepy1Eeor6WkUpuLlAASE8eWpJ3S6naYmpthamEfaiIuL1/gylMnyYqcbz6gvPN1wr17AmHTU7pAp2VhKjBuQznXQUxECAFjDJWr3ZhePVFkmZy63sfuvDKwo4hZuYrKCYwAPEZgo6+0pyPW1sfMr0fYRMgyQ5HXmq9B6u26BgoXId5yoFVxR9cwzIUlB5fHOSsbcGLFUIYCawNxHBHHFVYsUWqYmso4sG+KVqtDmk4iNiXJ2mStI0RJi6CG85fPc/7CGY4/9Hnc1jKHewXfenfMm++aoLU1phMpg4FixZIkhsm9ynwX2kXMSi/GhoLKKz7AYDik3x+CBJIkJklbN3n0byx2FDEtvk5NYAyCJagyGJfkE5bSRfS3HK0utDKDSyxJgFD6Ov7RCVjBGKXMBZtAGsHhquDVk4KdFbwoG3jODuBC37E5DAzKwEawrK6PuLhUksQxIpcpfQVaYTWiZSs6UrKvFXjthLLvAByeFvbMgjBivFwwUiXOwFYRWaJMzUHnIJgeHKoK9owexq88ibddxlHGks84M/Asj6BKUiYmrvUcr1cmdhQxH7i3R+kMRSGUpW82moFKoJ9XDAaWdi+hdAVeA5V3GDE4FRIbkVdKKwYVpXIQx4ZBP6IsHd04EAHzHeHonGAXFC9CqUpeePpFwIWcJAITKUlk6MRCKwrMdC2RDXXGDIRxZZEEylARvLA1rteumXG0Y6W1CHJoEhZHIA6/UhIFh7UF2E0y55ltCXccSFgfJBxf6/Lc8tbLDc8rCjuKmIf2ZCwtFxRDh8vr/TVpVCdIddYwHlVYm2CMRaOAyRKqJlFAGQyFL1GjxNYSpI7HbGeWcgDDSiAEhi6QlzA5IZjYk8XQMjCXAV6IDURGUKNgAlEEcfD4oFQIrp2hviKKHJUK3knj4lRElG7i6M5PEt/95bjlj2O2NpEAkkqdZkaABCSCSArmugVvnR2zOdol5i0Mh+Brq4woAa0lYxXIVRkXgiug3bZgPCEOoIYoChjjqUTIIqUcGdCSkFhaU5ZyWBKcpR3VoXFFARv9QNY2TMaKRAFjDVEE4uoAkfWRoZtZgvcUpWIiaCcRea5YDeCFqAyYypD6QBwpJg70JiwyHmJO/QVhY4RWdbQSk0Iw9ZpYUtCs9ihRKWorWrqzwt521MMBktgSR4Y4+uIemBCgckrhlMIZxoMKaw3GxNjYoKaOLIpi6LUAgSQVnBMoQZ3DdhJGwVM1AS9BBeNAjGGoQuEjBt5SRErIoIqEVtuA9dgECgFNLD7y2DLHjbXOKCxK4T2V1vmSEiyb60IxgNGlIWGrzs+uavBDi+YGX3gI4CoIISJgkUzYdjTtFOwsiRksSSwkNmAj8N7WrkQF9YFhFdjaqJiajlEpEU0weNIkJokCwXrwhlbPsOXBxBaPYCLFA0VQElGGXgjWYIBxpXRbtWS0lUACwRoiG4hSJaiQiRBFHkwgTg3VhpAXllZLcLnHOHAJnF4WigomCiU4SASmUmWqZUhTQ3sSOrMKSS1RQtzDtCw+2iKLdn3lty4UWqkhTQNxUXt4nELQ0GSt8OQjQ55XtDqGMq94ftNZ82gLRXCuwkbm+aihdqZo27A5VHwQpmLBGCGOI4wGtArEseI8mCCIKM4HrFcia58/j6KUQVmrDNORkCYZeZnT9tAfBU5sWUbE6LjE5ylxZulm0EkNM1nJvonAwaFlftERTVrM3jeR3Pt9VKt/hL/4Oy83Oq8o7Chi9qZKdFNpt2KyQvFFIFQGRfHBMPaKc0rRd7Q7CUka8C6iLD3eQxQnlK5CMRhxGIFWJuAqWr2IUNRbeEdBSR0UeUka11k6ci/kXpmPayePiQxlUJwKJqqTvGXGEhmh1wlEUYSJLFURqLAMRkLuDb4j2CxlYn+Po/fdxaFjhzHGUA4Kti5f5DPPPsfc0hJ3HC6Y0U9TdF9HduyHKAa7SbVuWSRJRNYuaOeeidxQ5koZQL0QUMbBkHvIxx5fGYI4jDEYWye7ihIhOCGO633ko35FK4sRa2l1QAuPH1l88MSi2CBoBcEoHkO3ecxKlAZUavuomHpznKolYPHOARGDfkWaOzpxqCVxljC/t0XfAqnQnUlZOLSH7swUPgR6s/NMH96Df+0DrJ4/x0MPf5YDa+e4o//z+OXPYHs7a5G5o5SflSsDrE1pdxOyrqGTBZKmhwGlCLBVGJyLGA0KDKZWhKwgJmAjwXvFeYuS4JxhPIYqgGSW1pRBcEhQsEqFpwgBFCJjkBhKqxAM1lhCUIYjKEqLqqXM61DimIosCuSlZ1haxsaQHJhh6EbkRUlQodubYmp6GkVJ0zZiIozEmCRm4bY7uPObvpkrs2/hk48lVE98BL7w4Zs7+DcYO4qYcStlXMBEN2KqK0x2E9oti7WK1frJ7RtloCwNoy2HkXorbhzDdpKD4OsErKWATQ25MxhRqtJhkoho0uAjwCrG1FsnKiLE1Elfy1IpPJSlIsGCGPJgqQIQRXgbMLEgUUQ5VpwTgsIwX6ciEGWGbq/N1PQsNkmIoxSvEEQJQr0PxChxmnLsy99I9poH+asnMwaXd84WGdhhxJybn6AYC51uRHfS0J0Quj1I09q0gwpD5xgWDhFDPgIbNVJTwJiKOBasrXcfJpliQkAxqFeKoiTrGCZmI2xCHSgshlVvWCk9ztdpC51XvFjKAGnsaUkJ3pOkEZVElBWQU2fJVsUYAeOJIqHVatPp9Fhc3IdIRAhgTLP33ViiKEJEsEkM1rDvNXegd/5d/vrJ9GYO/Q3HjiLm/j3TiDhiGzPRsUxOWqYnIybaEbExoLWH50rfUKpQ5oJWJbiSOBHE1uFsqpZ2y9PqxHW2Nw8VdSS7T4TQVkJanyN3galEmUohasXYLGZcCKK1UV0N2DTCWiUfjVEneGPY3KoIpVKUwihAZS0SxUSpZWJmhs7kNMZGqDEYa5pkX3ViV4DgSoQ6y/GBL72HwexdN3n0byx2lPKzuDDL3MIKrjJ0uxlB6+xpZRko8orSK16Vy0XJgWHM1GRCUXi0MsSpwxpDZC35ONCKAlrVrj8fDJiATQQTK2oV62oXohFDKEui2GIsSKR02nUcZmQCIoaqrKfhxFqMjRmNC0KI8CjBCLYteBEkTkhbGYv79mNsDHxRWqoqxtY/LucdsYmwNiGWQDDKkS97w80c+huOHSUxexOTHDu2yGhYMdFrMzWZMTOTMjebMDtjaWUGEWGkcGHd4YqSNI3wTcLWEAJpZjFGAYMVsJHggidtWaLMUNGYghDGlTSxl4aidBTjQKgEbyG0EjRAUQVypxgTMSgs/VGFjSJcgH6hbJZQmjqyPslipubmmJicrZceeEy99CWOYqwYrDEkUYyq4D0U6nCVY2Ju+uYO/g3GjpKYB/YfZmNjnUf752mli1iJMWIxKqh3lIWjKoVRYbi8payuOboThtnFhOHQkw8d4gKurP3dSSx0e0orswT1zR6genOZaB2sYa1SOrAmwvmA5kpsgeEIjUFt/WMwNmBxTcJYgwlQ5mCcxyIEa2l12yzs34+J0mYbsGAkavJz1tk74tiAFXyTecM5xViBaGeZi3YUMdOsx8EDRzl8ZIM46tHKFGO3ar+5OoIPFIWjWjGMSuW5Zc/sjJC0Aq1OTLeXUvRzspYiYohjoaoCQeqU161OivoSqYRgHbQN/TzQMUpQCGJIkwgNrk6RrQJisEYJWi8jrKm3AVdOybGMrZIkQiuNmdu7h6npeTDS2FgTAkocx1RlSZZlVFVVR0cRSOIYF4QoinZYgpgdRsxSU2b37OP2O6+wtZ4zPzeDRIIYizEGkZjgoSrHLK/B6b6y54Iha3tmF2LUCu1ehq8s3tdJV01saldjbPESEGPJXUTh620Zsaml4sgLGRDGgVKENIrpZha8o/Shzs5hE7x6fOnxZQDnqbwhSmJavSkmpmdRDyZWLBFVVRKhOPVgLa55jDUi2Dii8I44yaicq81IOwg7ipjdhSmk6nDoyAEeWznJ7OwMJgVrI6IoIorqCPWqUopyzNqW8PjSmOmJmF7Xk/QMSkWd1CKAqaOQYq2n9jqXuiffGBKVdepCjZRKoJVIbWOyllY3ohrm5IXSSm395AsDha/IbITPIfiIvPI4AiMX89SZPltylje9YZYkzfAe4jghjmO897XUrBwiUqcrtJYoslRlhRiL3Z3Kb12YOIU4Zn7vIu32eZKkxeLMAq04YzNLSWKIrCDUzy0/8cyI1aHhiTOeTjZmz21KZ7JVrxU1rUPOQsAXBa4s8YWSrwf8WDGR4AXSJCGxAY0U8eC1YrhR0E0NYh25D2RpbXZKraEslOGmUo08+Rj6UcLWcsLJ5RHnVp5j79693HWsRRSliG3yfZo6uzAqiDEE3Q48ASsGjHk++9tOwY4iZi0zPN3paQ4c3c/WqOLQgVmSNCFrpbSzjCxpk0QxkVkHf4nipHJi4MhOBlJbEd8W6Ey2QBJCgDzPgTqwd7TpyDcCcWzJTagv2OS9jH2oE2tZoZVYpJMQKLBqKQkkcURwntEI8hyC83gbMf+qvbz1793P//uxMzxx/CQPfeYJ9ixOMTs1S3ARVajXuCIGYxIwSe1lauJNxVo0BKTcDXu7ZVEO1zFekVaLw3fdxmOffYo7p45g04i0ldJpd+h0OnQ6KXFiMLYksMzjzyiPrTvs0xVf4ivmDkCr1zzKzwWqIawuBbbWodc2xGnA+PqRLMb7WjlKLaiv/e6pAanXp0ZsnVWYOknXeL3CjgIxlkKAUU5SFrz9bcc4e3GVZ55e4XN7nuLNb/4SWmJQsdg4xZg6DU3Ao16Jk6R+dmVQQlFw8rETPPDgzb4DNw47ipgmbSEmwlqDuJIL5y/iozeQzLYxeYfWOKfTm2Ci16PT6dJK28QmQmSJTzweeHhVqFzgztWS+ZkCTQyVA0QQIxy4rYtzI1zhsV7r9R5AFFOKEkcxSbs2wqdZgo0jNBg0BMrxmPUNoewr3biFRpasLOmsb3Dm//k4rdvmectd+/nEY0M+/+gF5vdM8+p77iBJJ+r96qbeZmyNwTuHVuCKipXLlzj11LM88qdP8q4fu8k34AZiRxEz6kzVW3dFaAflrlcdY7OfM3dggShpIe0xUjnSbp3lt9edptWKiWPDuZXLPHFmxCObtT/9ASxzi565OYsKVD7gdYQxYLMYK3W6bDGCietYziSLSLKYJEuw1hA04EpHPqoYb1m2VkomrUWcZ2HfDO1oQLE5IAyEwecuEUWX+cpuxKgyXHnoac72YWrPIlG3TZwmteR1nn6/z9rlK5w/eZGli6tsnB7jhrspYm5ZiG0RiooiL+l0p7j9rttZurTFvsNH8cbj4xibKtJymF4PO9ml3UlopxlnlpRnzp6n8CVPDWH5rOM1I8vRsTI3ZxHjSSODtzRTqcFYizVCnFrSLMNmKXG7RWIt6qHMx4z9mNEocOVMRaSGKih75mDvTJ9ikNNtBQojRGNHngeKjYo46dC/sMrjT3wCkhRiU/8woghnoCgqxn2lzD3BCW0bWJjfWZbMHUXMpWcvIAE605NgM9q9SfLTS2hI6mBgiaDxZ4ekRFot4jQlyVp8VZXyp/9pieXVHAdcLqF/KXB2U7ltRTm8aJmbCkgaaGUWZ+q9PTaOsK0Em6YkSYoxFl85RqMxrijRMZw/OSYQMdWDuShweA7icoiqEMf1MsFYT5rUfv1x1SeKDHkVKEYjSqM4LzhMbaRH6Drq5F2poTULtr1rLrplMTU7R6vbwSYJiBCnXTq9jMFmweRCBw3NzkkjGPGYKMPZmHaU8ECacN99j/Kxj281SVphS+HEKLCcey6uVRyZsiwsQHdCaXUtNqljNUNRkVeeyhZ1JhAPTiv6m4HPP5Vz/Gzg4HRMGikZhpNLShZFxEboGk8mniiNMJESx4GOSRiNHVXVeIiCoawUF8CFbee5oqngWgEmErJ9Uzdz6G84dhQxu7PzjfuxfhxJlPaYXVzgyqVLzOy5nyB1yNjzkSuSIVGM7ya0YuWtX/UaHvvcSUZ5oKxqF2NQWA2e4VBZygPz68qetmeqa+m0Da22qeM2I48aQ+UE7yxbQ8+5FceJtcBmBZdXRjy9ZdnXNuzrZRxqK4c7dQKDwkB/DDOdFlYK1AcEJU2ELIO21nuGgoOt3BBsQFpC3jbE820W772D+77sTTdt3P82sKOIaSQC9Xg3wrsxRMLE7B7OnHwS4y00oWQI29nSsRLjiCAOvPFN93LPsY+ytjJiOA5sjuun4PqgeBVWFLYK4XJhmezDZKJMxEoWCXFqKK1Q+kCUWuKuZWp/wv37KpbXPVeuGLaGjlOl4/RGxedsykwK+yYsBycjFnoBpSKJFDWK70QYCdgoovKByteBHNGs4LodWntmOHzn7cwdOcT07AJJsvv03VsW5eAyVTWsn55rAza0SNN5oljob27QnZlHpM7+K1CbgYiIxIJRDhw+wGsfmOPc6UsMtjx5aRmPCvIK8lKpnOJ9LW/HqjhR+kZpx9BuWTodSzsVJiZTehMwMzVJp5uRF4ETz65y6swGS5cC/TEMg2OQw3PjwCMrhj2TEYcXIvbNZ6SpYgi0YsHahCsXHRJ7ZvZm3PMl9zC37yBpq0PW7qBEEExt599B2FHELMpVxBiiNEGiHlHUQXzJ2uVnOJfO8Or5g80Tm7YzdUj9T2KQQGdykXtfcxfi+uS5p8w9eSGghqp0WGOpmi281taBwlEcEceQtgztTszkRJcsS5mbmaHb7ZJlGSEYDh/a4t6L5zl1ao0Tp0esrORsbDlKJ5Qezm84NnNlvRD27rVMTkWYyZQ4bnP+iufMqSUOFMrsXTkzRkmzFq6ssJElSZPnn5S2U7CjiBm15ohtlzhuo9aCxogtue91r+XUiSVEYzCKNCmpBYMQocYhBEI8xb2vfh3a32Jza4s8H2PEULmSoiwIPmBCHeVex2tY2u2MIJ52q0W326PdbmNNRJpkJEkC4omjlFbWYXFxkcOHNzl65gwnTyxx5syQK6slW0OldIGtofLc+ZzBKGbf/pgQSroTlrvv7LK03OH86oDPPHya+bkeaZzRyrrEUUxVVfXzJ3cQdtQDqHaxc7CjtlbsYudgl5i7uCWxS8xd3JLYJeYubknsEnMXtyR2ibmLWxL/H5aoJmp1TASVAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-22T13:22:06.624728\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABeCAYAAAAXHzdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAftUlEQVR4nO2deZRdR33nP3W3t79epd7UkixbEhJGMrYJGGHsBA94soEJMFnIZCbJkJyZM5MZJhvJnIRJQraTISs5TDIEshACwxqCh5gQ4gQb22BLtrUv3epWq7fX3W+/+62aP+59T0+tlloC23qW+3vO6/duVd26tXzvr371q19VC6UUG9jAlaBd7wJsoPuxQZINrIsNkmxgXWyQZAPrYoMkG1gXGyTZwLq47iQRQpwVQtyX/P4FIcT/eQGeea8QYub5fs6NgutOkk4opX5dKfXj66UTQnxECPFrL0SZkudtF0J8RQhhCyGOt0idxH2/EOKEEKIqhFgUQvy5EKJ4hXyUEMJ4ocp+OVxLGz6nJOmGyj9P+BhwEBgAfhH4pBBiUxL3CHBAKdUD7AAM4AUj8AsCpdQVP8BZ4D3AUaAMfBhIJ3H3AjPAzwHzwF8SE+/ngTPAMvAJoL8jvx8GppK4X0zyvy+Jey/wVx1pXwc8ClSAc8C/A94FBIAPNIDPJ2lHgU8BJWAS+C8d+WSAjyTlPwr8DDCzXt2Te3cBHlDoCPsX4CfXSJsH/gJ48DJ5TQMqKXcDuCsJ/1HgWFK+vwe2ddzz+0nda8CTwN0dce8FPgl8HKgDTwH7O+L3AP+UtN8R4HuT8DXb8LJtcJUkOQyMA/3Eb86vdZAkBH4LSCWd8VPAY8CWJOx/Ax9L0u9NCvX6JO79yf2XkATYllT8BwCT+C2+LYn7SKsMybWWNOAvARbxGz0BvCmJ/82kY/uTehzuJAnwx8AfX6b+DwDHVoX9EfCHq8hcTQjQBN54mby2J2mMjrA3A6eTDjWA/wE82hH/zqTuBvDfiV/GdEd7BcDbkjb6aeIXxEw+p4FfSNrkO5L23L1WGz4XJPnJjuvvBM50kMRvFToJOwa8oeN6JKmIkXTi33TE5ZL71yLJe4DPXKZMq0nyamB6VZr3AB9Ofk8A93fEvYurlyQ/DDy2Kux9wEfWSDuW1GHXNZDk/wE/torwNh3SZFUeZRJpkTzrsVX3zgF3J595QOuI/xjw3mslydXqEOc6fk8Ri/YWSkopt+N6G/AZIYTsCIuAoeS+dl5KqaYQYvkyzxwnHrKuBtuAUSFEpSNMJ5YerH5uUoerRQNYrYgWid/Ki6CUOi+E+CLwN8DtV5n/NuD3hRD/qyNMEBNuSgjx08CPEddBJc8e7Ejb2Z4ymbW1+uecUqqzH6aSfK8JV0uS8Y7fW4HZjuvVy8jngB9VSj2yOhMhxByxWG1dZ4lF6Vo4B3zbZeLWeuakUmrnZdLPEdfhSHK99TLp1sIRYIcQoqCUahFjP/DXl0lvADdfJm6tJfdzwPuUUh9dHSGEuBv4WeANwJGEBGViErUw3pFeIx7mW/0zLoTQOoiyFTh5hbKsiaud3fwnIcQWIUQ/sbL58Suk/SDwPiHEtqTgm4QQb07iPgl8txDidUIIC/iVK5Tho8B9Qoh3CCEMIcSAEOK2JG6BWO9o4QmgLoT4OSFERgihCyFuFUK8Kon/BPAeIUSfEGIL8J+vst4opU4Ch4BfFkKkhRAPAPuIlWSEED8khNia/N5GPBR9+TLZlQC5quwfTMr28iSPHiHE25O4ArHOVgIMIcQvcalUu0MI8dZkZvlfiZXsx4DHiYetnxVCmEKIe4HvIZZycGkbXrERrmV2UwH+HMh26CQzq9JrwLuBE8Qi+Qzw6x3xP0Ks5V/N7ObupLI14jfuR5LwncQdVwE+m4SNEo+588Tj9mMd+WaJZx0V1pjdEHfUB6/QBtuJZwlOUq/7VuknM8QK6wzwJ8DAKp3jFzquf4W40yvAazr0nmc76vlnSbgO/FkSPkcsVVa3V+fs5iBwe8ezXg48TKxUHwUe6Ii7pA0v9xHJDZeFEOIs8ONKqX+4YsINvOAQQrwXuEUp9c7n8zldZXHdQHdigyQbWBfrDjcb2MCGJNnAutggyQbWRVeu2uq6cYOPgZ3VE5fERlF4aeB1xIYkuSwUQoD4lrpLJfev5rzo+HQ/NkiygXWxQZINrIuu1EmuLxRCxEPBt24daOXx4hhWLocNSbKBdbFBkmuG4oJC+tLAxnBzCb65YeYCaRQXDS/qoq8XJTZI8hzCsiyKvb3ohoFCYTebONU6UqkNkrx40FJK+RaU0kvvb8mNB976Vr7nbW+nGUQ06jWUXeeDf/BHTEyceVGLkpcYSWInK/E8KRS+DEnnMhTTWaoZk+mTC4Sh97w864XES44kzzViq6xAKcU3nnySW+/YhxISp2lz6vAxFhbmEJpAa+9MuN4lvnbcICRR7Y66sk3i8kOFEMm8ZZ1ObBvURUtFFRiGQa5YYHzrVnp6iwTSQ6kIoetkCkWiah0iiVQghLqq53QTutKf5NoX+K6WJBdw0YgjBOlMGhVJPM9rD0mrm6Z1j6ZA0zUM06S3r483/Kv7uO877+eWnTtJF3K4gc/K0jKVxSVmZ2c5eugZvvbIo0ydPUsURUh5YZfDWs3fbQt8NwBJ4qTfDEmEEGTyOV57z928+S1vYeHceT70J3/K/Pw8l2sXwzDYsm0rd732tbzilfvZsfMWbtq+g1w2g2EYRBpEKAI/wKs3sZtNao06CwsLHHzyKU4+c4TDh5+lXK4gowglVUctYmyQ5CpwrSS51hmLSP6Mjm/hx/7jT3DvG+9jZHiEeq3Oo48+wh+8/3eZPnkGEUqUgEhKBKCZBve+8T5+9Cd/HClNisVeRkaHSFkZdCNEofB9H6HpKCnxfY8wDPBcH7tpU683OD8zj6ZLvvzgF/nHBx8i8Dwk3U2Sl7TFNZvL4QUBc/PzLK0sU+gt8vpvv5df/a3f4K577kazTBACTdMQmkY6neEd3/9vGNs6Tv/AIMdPTXNyco6y3cAPNJS0ODMxTbVaJYwkSsXbo3XNQkWShbkSx06cZXTLDv7Du36CV95x+/M203oucQMortduIVWAUHD61Ek+8dG/RqGIwhClFMPDw+zbfxvvee97+csPfZgHP/NZmvV6LCVCn6mzU9y6bz8DfUUOHBhgpVZjfq5MWati202UEMzOV5CyTGmxiuO4RDKi0WzQU8xz//33UCxmcKv1WDoJgRRAF898boDh5puDAFSil2zbsZ3v+8HvZ98dt7N121a2bNmKwGCpVOLxh7/Chz/0IY4dO4YfBGwZG+PdP/Nz7Nu/n0JfD7plIoSGrqeIIgkC/DAkDEPKK+V4w7WuYxoGmgAZ2Jw/P8ODn/s8X/j0ZwlclwiQUrZJ0m3DzQ0gSb45qNYfpTh3ZpJP/OVHCWSEaZlomsHY6FZGRkd5w3d/J3tu388//+NX+MrfP0T/wCBB5PDQQ39H/+ZBiv299Pb2UsgXyeVypPQ0QmpoSlE0NXzfo96ocL6yzPzcPOenZ5iYmGRpfiGZLgkuKN/Xrz2uhJesJGkhUXlBCMZv2s473vmDHLj3Xsa2bGNgYIB02sK2HVyvSWlhkX9++HF6Nw9RSJs0a8ssLJ6nVl/Cc1zCMIRIokKFlJIoVIRhiC9DQhVhmiky6V4MPcOZqbN4zRqnnn2aWqXaLo9SiiAIuoouL1lJ0kLyDiOAualz/O3//RT9g5vI5oqkUimEyJPJZAhCl/6BAQ687h6+8vjTrGQibh6/mdFtN6FEQLXSwPM8TM3AdRyCIKBaraCURDNSCM0gCAKWSstMT82x9aab2bltlCcKWb70xYdi24kQXeme9JIiyeoOWC2upJRMnDrNFz7zWTaPjJAtZDAsDaliHUMqSf9Anrd+12uYK1U5dfI8Mw2HzcMDKL2XvqEC2VQGTQmCMOCJbzxJtVbF9W2CMETXNEYGhtn7ij1k0xl8x+bO19zF0WePMDMzg9AN0un0C9UcV40bniStcb5tSxGxPUWgEOqCbUUpkCiIIp564gl237qH4dEhego5qk4T13XRdR3DMNCExpahHsY29xJGEhlJvGZAJp3BTKcJooggCHjFK15GGEbohsI0dTQBuooIfJ8wDElZJvk9e3nz27+Pubk5dt7yMl7+8luvU0tdHjc8SSC2ku7avZvxbdvxkLiuzeTxEyzMzl+UrmWvDXyfhx/6B+68807SKYtISjRNI5vNYRgx4aSUCKUwUaAJrEKO3t5eLMNEoQiDAJ0Qz3WJIkkURbieRxBFCCHQNY1Ng4Nks2l277kFwzDQIw3Pdtesw/XEDUKSTtP8hdCWFNmzZw+/8wcfYK7mMLNYYud4P6cOHeJXf/l/4nmXLuULJZiZPsepEycZ2boFqRSFQoHZmWVu2bmD+Ji3+DSa+FuilIsvHTQhUBICJQmikFBKwiggkhIlVHtdKGXp5LMW2YzFuelJTpw4wez5BaRSvGr/bzyPbXXtuEFIcnkIIag36pw7f4a+8c3cku+hPHuOUyeOE0URmnax0VkpRSQjZKg4deoU+151B9lcFscLOD09T2FggKHBHEEQLwRKKduSxXUddN1ESUEko7YeE8lYkkRRHBaGIUHkMz01xcpSiae+9jUeeeQRpqdmUFLx/l/dIMnzis6lf4FAE4LllSWOH3+G3pUebMfGb7hMTJ5B03VQisTgSXv3Q+zrzML5WaqVCrl8Ds8LMS2Ds2fPks9sR0YhhmHEREhIEAQBtVqdKIqlhW07RFFEs94kZVkxYZJ0UeDh2k3OnJ7gyNHj2LZL6AXtBb9uwg1CEnHB+UcDK5VibGyMvXv3snPnTobHhxnYPECjUUcFOiJt8r1vextv/4F3Ul5e5sSx4zx96BDTZ6dwHKe9Ajw/M8tSqcTApkEi6VNenodogEa9QTptEQQBvh8PPVEUtd0MpJRIqZCRRhRFHHrmJH39fQxuyqMLkZDEj9MDfQOD1Js2C3OLRDK4ju24Nm4IkrQMl9lclm87cBff9ZbvZfeul5Er5jEMEyudQug6tWqVyuIylXIFn5BUJsPOfXv57rc9gJKKU4eP8vG//hj/8KUvYdsOS6US52dm2HbTdnp6e9m8uZ+Z6TKFnMH4+Aidk+gWOVrfUSRRUqFQjGwb5tHHniWfKbDrpn4KhSxREBCGIZlsls1DQ6ysrHS4O3QXXvQkaSmnQyMj/Ld3v5t9r7qNUAiKxQGyuRTpTBpd1wnDkJ6eIoObBqlWqzSbTXzfx3Fd5kqLWJbFjn17+ZVX/iZ3fvrV/PZv/TZ2tUZjpUrk+ERpj9APaLoeU5OLmIZB/0ABIWJp0epcpVTbsUhGsT6yUlrg7IlJxsZGmLMkYmwQjXgajCbQ8xmslJUs8nUfSW4IVwHLsnjXu36CO++8k0Y9IJ3upa+/j0KxQCaTIZPJkMvlUErF2x6KRfr6+ujp6SGXyyGEwPd9jh49hu04vOWBB3jT/feDgmq1imPb2Lbd9hcZGRlB0zRc18XzvPaw43le++P7Pn7gE4YBm/sK7N+zg62jfaQzOidPTGA3vViRjUKCMCAMo9ji2oULOC96SQKQz+d59V2vxgt8rEwPk9PLbB4bJJ/OkUql0TSB49iEykcqha7ppIwUwhTowsDVfOo1l5m5ZUY2byZraYxuHkIpRbNWp9qoI9ImmtAI3CWe+EaFTDrDvv0vo1CIm7AlATQhkGHUliZKKTSh2L//ZqIoJIoCCpkUQeASeLEzkuM4hEHQtY6vN4QkcVyXs2en2LRpE9u2D6NpOv/4pW8wOTWH60WEMiKUAaapk7MssoaBUhBJqFRtJieXmZ5e4pbdu0ll0kyfneZf/ulhAMrlFSrVKpVGHVTEK2/bQ99AEc0wOX16si01WtIk8Hx818Nz3Asf18MPbILAxXcdosDGd20C38dPJI/tOERSrlPT64OulCSd09hOdHqwttxZhRB4nsfv/e77+bX3vY99d+7j9XftwbZt5harPHv0BKFUuK6H0ARKCGrVKsulKulUlkIhx8jIAD29GcLI5cjTh/mrP/0wzz77LApYWVqmWqlgZtMIqUil0vT15Th1cor+beOUyxUKhQICkDIiVBAFYSxJoggpFZGKktlOhAxCPN8jCEOUlARBgOd6uLbNxcfAdw+6kiQaIHSNVCqFZVlYloVhmERR2H5jfd+/6M2bPHWGX/zZn+ftP/QODtxzgLEt4+y6aYxUKkUgwQt8ojACAUEQYttNDMMkCBxWVmb5xuNf5+tffZQnv/4k0xNTbbN7rVKldH6OXD4P8TI+mgb16gqGtp2Z6Tm2jOsYIvZU1YQW30tMFqUUgYoIZEQYBEReEOsxno+SEs9xka6PU2tAF9pIoEtJ8gP//t9y8+5djG3ZwuDAAD09PaQzaQSCpm3TbDSYnZ3l8KGnefThf+H06dN4nkcmk+HpQ4d45ugzjI6N0T+wid6+Pjb195PPZBCaRhgEuK7L8soKCwsLzM7NMj8/T2mphNt0GB4epl6pUZorAeB7PlNTU+QH++gT8cxFJNa3p59+mt6+ArPnZ+kpZNA1LfaHbS0mhvGsx5MhgUwW9lw/GWZ8dC12SnJdh2azGesw17HdL4eudDr6i09+VClBW4pYpolpmliWhabrZNJpMtks6XSWIIh48Atf4IO/94e87sAB9t2xn4OHDzE9NU0UxnVLp0wECiUlSsrYLO5HuK6H4zqEkaTY08PW8VHy+TwHnzzIqaOn2uXZNLSZfXfczvD4GMViAdOyEMKgXK1QqdaYnVnk1lv30tdfQGixNAFQQYRSMnZnjEJkFBH4sSSM/IC0ZVGtVpk8fYrDh54mDGIXxiDccDpaF7OzM+RyOTKZDGEqhafr6LreJorvOriOTTpfoNDbz5vf9n1s2bKFmXMzDI0Occ9gL6XSEnMz88zPzVMp13FslyCUqEihayapVIb+gc0Ui0WyhTyWZaGLiDAMGB4a4szxM+1NVLVKleWFRbL5HESSTC6HaZkYOpimgaYbTExOMR4N0ddfjE38SkEYk3L1uo3neUg/QFPguy5LCwtEMkTpOlYqdZ1b/1J0JUl830PKCNdx0HQNgUA3dAzdwDRNMpkMlmVR6PPwgpBcLsdtd9xOsa8Xz3PRTAPQyFoFduzYge97BGFAlLgXAgiht5XfMArjBTnfxXVsij09GIbRNrkHQcDs7CzZ3iKarhEhMTwDzdBxbYeUaTIyMoymawR+mKwFSVQQtRf3wiAgCAJc38N1XaQfIvKCRrPJSrlMrlhk962v4PX33nu9mv2y6EqS1CplNE1D1/X2Kq0QAqFpkBjEMpkM2ZVlBoeGGB4ZIZvPIUWW6ZkFdu/ajmGVqVTOUuxJYwXptqjXaJkjFGEYIWVEEDr4foQMW8Ysha7r7fJIKSkvr7A4v4AyNPoJSKcsLCNDzkzTkFUmJk7G+oiSjG8ZxbKseP9va/EvDAkCHzt08HwPIkFaZWm6Lgfu+XZe8/rXMTw0xFJp6Xo0+RXRlSSxbRugTRS4YKwSyWYpXddJZWoEUjIyMsLExATnZ1a46aab2LJlDDfoIVcs8vSh4+RSAssw0ZOddTKSiV+HRhRBJLVkuT/C9wOaTbtjP3BsKvd9n6WlJaxCFsNQhJkMmVSEoRtsHupjZn4ZTddZWSphmTp9fX1YunHRCrHne7ihi+M6pI00fX197N+/n97eXpZm5/n8xz/Fwaee4j0/9e7r1vZroStJEskIQ2iI+B/yxMTQDZTQ2ls08/k8Y2PjbB4a4ksPfpGTJ49TKBTYPDzKicP9FHsKSDIYCvqKPTTqVTRNoDSJQBGEIZEMkCp+2z3Pw/ciHNujvFKN11UStGYrzUqV2nwJU0hEr0JIFbszahpDg0Wmz50DJSnXGvihor9QRCofpSLCIMQLfDwvIPAChreOsnV8nMWZWR763N9x/MhRatVqV67ddCVJdu/ej+M2iaIQXdfRDYO0ZZFNpykUCuQLWXzf5/TpM/zt5/6WiYkJenp6sUyLXK6AYehEUUAoBaZhomQO3/MQAjRdXnD8CYLYrTBZg6lUqpw7d55SqRR7kil1waKnFL7rUV0pY2Z0SFwU0+l07HqoBwz291FrepRWqjTqTRorFTYN9RJFQWLfCXC8kEKhwM4dN3Pw8a/z8Je+TK1ebz2iK9GVJBke3UQqvR0rZbX2oeDaTVZKJaaOHGby7CRnp87iOi5KQd/AAJsGhpiYmOTUqTOMbRklnU5hptM4jsPE6ZMYukU+l6fYmwfkRYa5ZrNJrVZnfm6R6akpKivlxFtatHuuNew0G03MsglCi62pUYRpmmharD+Zpk6xkMVzPJr1JkU3SxB4eJ6L6/lohsWunTt55smDfO2f/hnPcUF0L0GgS0nygQ/8MZaRij3Hoogokvi+i+3ZhGGIMHRy2SxDo2MUigUEAsswyOQtZs5PI5Ck02msTLq9wnvT9p08+8xxpArZvfsmFPG01Pd9bNumVqtxbvY85ZUVAse9SOx3nicShiF2xUbXU4RSEgQ+qVQKM7HlKCEwdUWohZiWRr3eIApCfM/D9TyGR3qYOHWaJ776NTzXfVGcA9yVJLntztupN5rxeosfIJRAMzSsVGwn0S2zrdDqiQ3FadgUCgVKC4uUSiVMy0I3jbZrgJQS0zQ4d26WgYEimk5bmjQaDWq1WmzoCgKCIPbzWOuwGSESotg2kRYho9h5yLIsdF1HCYFUCiljXarZbBIFAYEf4Ng2xxZKsXU1ii7Kt5vRlSTZ+bLduG5A4PuIpBWjKHYJRICuGx2qgsJxHAI3wjKzNOpNspkMwnUxdB3Lshjo78f1mpw4dRhTz7KwsIJlgVQxSex6g0qlgl1u4DWdeP9N63CZ1Z2oYmV1ZHSUxaVFHBn/8/QolOiG3ra/yKS8QRAQ+j6+4+E6DpEXIJM1pM4ZVDeLlK4kyejoGK4Tr7G0vL5avhmqTZqo/UZLGR/b4PsBTduhXC7T09ODkhLTNNm9ezeHjxwhm00RBiGzs9O4XpN8PoehG7iJU5FdbyRHUFyhcMmqs6Hr3HHnq1gqlSiXy9h2AAToemKSV6rtJK3pGulinlxPgdLMHAoV7xJ7kaArSWKZJkjByZMzZDNpRkZ7kTIiimJFMfQ9VBQS+h6+6+A4No7v0Ww2CYOQlZUKppkin8/z2gN3o+sG56bPYegapiEQmGiaYmlxmZ6eHpymQ6Nu47jOVZVPKcWp4yeQSrJ378vJ3JolkiLxRvMIQ7+9XcM0TaSUlBZLnD5xEsexn+fWe+7RlSRx7CZhELGwUKNZP08uvxOBCYBUPpHn4Puxs45r13EadZwwNuMTgeeHRCF8xxveyJYtW/nc5z5FrVK5yIIrA4Vr++jYeK6H3XCJQnnVQj/yA04ePsbc1AzDoyMMDG9mcHATKctEB7zIo1FrsFJeYWV+kfLSctub/sWGriRJtVoDJentNzk/XePJJ85QKTv09Jrs3jtC5LsEyazEcRyadhM3UJimCQJ27drFA299K739fXzq059mavIMpqGj6RqtjTUyjI/WbDYbyEiiaxoBCnUVw0BrQ5YO2LU6E9Uap44dT+wlejuNlJIwcRdo6SAx2m5Vl/yrky50ce1Okvi2A0oy2p9l03fsxfMEjz16EF0fZHpqnsjzyOdTeF4Tp2nTqNRQkYbnuhy4+27e9K/vZ3l5ia8+8giNRoMwVDjNZnvvRcuCapomfX19KBTnJ6fiDeRJGTo7q/Plv2A+UUgSa6wmEIr2aq9KZjcd59Os+X9v1nrGhiP0VcJPZjWRjAhEhOcrPL/J/IJHKiVYmJ3nllu2ogkZ76Upl7GMDHtftod9r9jHwce/zpe//GVM02TX7t0MDw/hhiEqijCUiN92U8cPA0qLJaYnJpMV39WduPY+mBZRpFIIJO1TRRLjm4LYVfIK/3igtZkszu/i/Tvdhq4kSbNZB6mQShKokDAS7Nt3M0Ho4NhNyiUT3/Ow7RqVcoVqtcbQpixDm4f4/Gc/x6GnDhLJ2A7xWGmJXC5HLp8jncmgG/FhMk4zNqA5bjLlVWtPQoUQbckBV7BrJB0uOrZFxMPS2slbM7VWeiG6kyDQpSSpVFYQSsRTW00QRrJ9psfKSpnF+Vmq5RK1eoVcLovneeQLeR756ld55uChC42tQAlFrVajVqtdZBzrhOj40dmnSqmLNpSv7sROQrTTxAnb8VdCextGhztENxKlS0lSaZ/rEClFEF7w6vI9l4HBAk4zIvAVTdUkm83iOA5HDh+OXRQ7M+u40LTYSXn1SQKr0WmPWeu605DXJtIandt61iVE6pAgreu1ntMt6EqSNOvN9nEOrU8QhkRhvNtN0ySO28CuN4lCn6E9w5x89mi8WLYOWgS52g5pSZ+WHtJ5clLnsNJCZ/iVyNithFgLXUkS13UvIUlr5hBvZIo9y/P5PHajzsy5mfjIS668FiIEa67HdELTxEXORqvTtKRRp06haVr790UPa+fREdehu8RlUO081xq+ugFdSRLHtlHJVLV1jEMYBu2lfcf28dwA13VwHYfq0krsU7qOKexqXtyrebtX6w6dazBX1ckJgdZK243SpStJ0mjYsZsAF8Ry56Ysp+Hj2E68EhuECKlQz+EbuF5HdXZui8gX6yziIuW1vSe4Q3dZTZBuVVqhS0mytFgmlYndAZQiGW7irQiu62I3PMIwIpNO0/QDLlgjvnWidLoEtL47+641XK3WPVrHfremsmt1eOve1vDUiWuSRC8wupIkN2/bwdnz5yiXq0R+4iKARBJhGAb9AwMITWN5YTHeLvlNtOvV9MUFXeHS8NbK9DeD1fe1FNz1Zl3XC11JksmJSca2byWbzSQ77gIiwPF9qpUqy7PzrCwvEwYBQtExJ72251xOUeyUBJ2zodY9nd+d97S+YwmoLonvzOOS53ahBGmhK7d5bqC70J3ybQNdhQ2SbGBdbJBkA+tigyQbWBcbJNnAutggyQbWxf8Huy/8jzI0PwgAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "visualize_model(model_ft)" ] }, { "source": [ "## 3 - Export Model" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 163, "metadata": {}, "outputs": [], "source": [ "def save_model(model, model_dir):\n", " path = os.path.join(model_dir, 'model.pth')\n", " print(path)\n", " torch.save(model.state_dict(), path)" ] }, { "cell_type": "code", "execution_count": 164, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "./model/model.pth\n" ] } ], "source": [ "save_model(model_ft, './model')" ] } ] }