from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics import joblib iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.4, random_state=1 ) classifier_knn = KNeighborsClassifier(n_neighbors = 3) classifier_knn.fit(X_train, y_train) y_pred = classifier_knn.predict(X_test) # Finding accuracy by comparing actual response values(y_test)with predicted response value(y_pred) print("Model Accuracy:", metrics.accuracy_score(y_test, y_pred)) # Providing sample data and the model will make prediction out of that data # save the trained model file model_file_name = "iris_classifier_knn.joblib" joblib.dump(classifier_knn, model_file_name) print("Model file {} saved successfully".format(model_file_name))