""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json from transformers import AutoTokenizer, AutoModelForQuestionAnswering import torch from aws_lambda_powertools import Metrics, Logger, Tracer from aws_lambda_powertools.metrics import MetricUnit import os import shutil # Lambda Powertools Setup logger = Logger() tracer = Tracer() metrics = Metrics() # Note: For bootstrapping purposes of the demo only! Copying # model files from OCI to EFS. For a real-world use case, this # step may be skipped and you can pre-load EFS with your model # files. logger.info('Copying model files') os.makedirs(os.path.dirname('/mnt/lambda/model1/'), exist_ok=True) os.makedirs(os.path.dirname('/mnt/lambda/model2/'), exist_ok=True) shutil.copy('./model1/pytorch_model.bin', '/mnt/lambda/model1/pytorch_model.bin') shutil.copy('./model1/config.json', '/mnt/lambda/model1/config.json') shutil.copy('./model1/tokenizer.json', '/mnt/lambda/model1/tokenizer.json') shutil.copy('./model1/tokenizer_config.json', '/mnt/lambda/model1/tokenizer_config.json') shutil.copy('./model2/pytorch_model.bin', '/mnt/lambda/model2/pytorch_model.bin') shutil.copy('./model2/config.json', '/mnt/lambda/model2/config.json') shutil.copy('./model2/tokenizer.json', '/mnt/lambda/model2/tokenizer.json') shutil.copy('./model2/tokenizer_config.json', '/mnt/lambda/model2/tokenizer_config.json') @tracer.capture_lambda_handler @metrics.log_metrics(capture_cold_start_metric=True) @logger.inject_lambda_context(log_event=True) def lambda_handler(event, context): body = json.loads(event['body']) model_type = body['model_type'] question = body['question'] context = body['context'] if model_type == 'nlp1': logger.info('NLP Model Version 1 loaded') # Set up Tokenizer and Model, looks inside model/ folder tokenizer1 = AutoTokenizer.from_pretrained("/mnt/lambda/model1/") model1 = AutoModelForQuestionAnswering.from_pretrained("/mnt/lambda/model1/") tokenizer = tokenizer1 model = model1 elif model_type == 'nlp2': logger.info('NLP Model Version 2 loaded') # Loading Model 2 inside handler tokenizer2 = AutoTokenizer.from_pretrained("/mnt/lambda/model2/") model2 = AutoModelForQuestionAnswering.from_pretrained("/mnt/lambda/model2/") tokenizer = tokenizer2 model = model2 else: logger.info('No model specified, loading version 1.') # Set up Tokenizer and Model, looks inside model/ folder tokenizer1 = AutoTokenizer.from_pretrained("/mnt/lambda/model1/") model1 = AutoModelForQuestionAnswering.from_pretrained("/mnt/lambda/model1/") tokenizer = tokenizer1 model = model1 model_type = 'nlp1' inputs = tokenizer.encode_plus(question, context,add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] output = model(**inputs) answer_start_scores = output.start_logits answer_end_scores = output.end_logits answer_start = torch.argmax(answer_start_scores) answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) print('Question: {0}, Answer: {1}'.format(question, answer)) return { 'statusCode': 200, 'headers': {'Content-Type': 'application/json'}, 'body': json.dumps({ 'Model_Type': model_type, 'Question': question, 'Answer': answer }) }