ELF>`@P @8@l l p p)p)xPk  ))$$Ptdb b b QtdRtdp p)p)GNUѣ^Z nÂ:C p"  #@012a@AT% $@ RmHJݼ(y a aף{6}tkm@tOjt#H)M ,,qғ75kΑ(B9 S fQ{`ܪ)|6LZv c  (  _G_  r7# $ 2 l " D?U  aE s}  W97 C #; Kp x 8 k!     $ = 8 :Ii -U R" 4-V  ] G    q Є  pS     97 @g & L I І2 p` 9 @KJ p :u P    P  (  , t Ъ/ }  @ p /   Д `v   9 @/  `   N Z @ `   o `G W  PQE ' N @  0`, ^B ,  9* 2 `~ P Ж/  Њ9s6,Q  :a 0>T p?p ' P pe   б  Wg, В  %__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyBaseObject_TypePyExc_DeprecationWarningPyErr_WarnFormatPyExc_TypeErrorPyErr_FormatPyThreadState_Get_Py_CheckRecursionLimitPyObject_Call_Py_CheckRecursiveCallPyErr_OccurredPyExc_SystemErrorPyErr_SetString_PyThreadState_UncheckedGetPyFrame_NewPyEval_EvalFrameExPyObject_GetAttrPyLong_FromSsize_tPyTuple_PackPySlice_New_Py_EllipsisObjectPyTuple_NewPyCode_NewPyObject_GC_UnTrackPyObject_CallFinalizerFromDeallocPyErr_FetchPyThread_free_lockPyErr_RestorePyBuffer_ReleasememcpyPyErr_NormalizeExceptionPyException_SetTraceback_PyType_LookupPyExc_AttributeErrorPyErr_SetObjectrandom_bounded_uint64PyCapsule_NewPyDict_SetItemPyErr_ClearPyObject_RichCompareBoolPyObject_GetAttrStringPyExc_ValueErrorPyOS_snprintfPyErr_WarnExPyDict_SetItemStringPyErr_ExceptionMatchesPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyModule_GetDictPyDict_NewPyImport_ImportModuleLevelObjectPyList_NewPyInterpreterState_GetIDPyModule_NewObjectPyLong_Type_Py_TrueStruct_Py_FalseStructPyFloat_TypePyObject_RichComparePyUnicode_TypememcmpPyObject_IsTrue_PyUnicode_ReadyPyList_TypePyObject_SetItemPyTuple_TypePyObject_GetItemPyExc_OverflowErrorPyDict_NextPyUnicode_ComparevsnprintfPy_FatalErrorPyEval_EvalCodeExPyExc_NameErrorPyObject_GC_TrackPyErr_GivenExceptionMatchesPyLong_AsLongPyObject_FreefreePyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyLong_AsUnsignedLongPyFunction_TypePyCFunction_TypePyTraceBack_Here_PyObject_GetDictPtrPyObject_NotPyObject_SetAttrPyUnicode_FromStringPyUnicode_FromFormatPyMem_Realloc_PyDict_GetItem_KnownHashPyMem_MallocPyNumber_InPlaceMultiplyPyNumber_MultiplyPyLong_FromLongPyList_AsTuplePyList_AppendPyUnicode_FormatPyDict_SizePyObject_GenericGetAttrPyExc_NotImplementedErrorrandom_logseriesrandom_geometricrandom_zipfrandom_poissonrandom_negative_binomialrandom_waldrandom_rayleighrandom_lognormalrandom_logisticrandom_gumbelrandom_laplacerandom_powerrandom_weibullrandom_paretorandom_vonmisesrandom_standard_trandom_standard_cauchyrandom_noncentral_chisquarerandom_chisquarerandom_noncentral_frandom_frandom_gammarandom_normalrandom_exponentialrandom_betaPyDict_TypePyDict_GetItemWithErrorPyExc_KeyErrorPyNumber_AddPyNumber_InPlaceAddPyExc_BufferErrorPyMem_FreePyErr_NoMemoryPyGILState_EnsurePyGILState_ReleasePyMethod_TypePyExc_StopIteration_PyObject_GenericGetAttrWithDictPyDict_DelItemPyType_ModifiedPyExc_RuntimeErrorPyObject_SizePyFloat_FromDoublePyNumber_InPlaceTrueDividePyNumber_SubtractPyNumber_FloorDividePyEval_SaveThreadPyEval_RestoreThreadPyLong_FromUnsignedLongPyObject_GetIterPy_GetVersionPyFrame_TypePyBytes_FromStringAndSizePyUnicode_FromStringAndSizePyImport_AddModulePyObject_SetAttrStringPyUnicode_InternFromStringPyUnicode_DecodePyObject_HashPyLong_FromString__pyx_module_is_main_numpy__random___generatorPyImport_GetModuleDictPyType_ReadyPyImport_ImportModulePyCapsule_TypePyExc_ExceptionPyCFunction_NewEx_PyDict_NewPresizedPyThread_allocate_lockrandom_standard_exponential_fill_frandom_standard_exponential_inv_fill_frandom_standard_exponential_inv_fillrandom_standard_exponential_fillPyNumber_RemainderPyBool_TypePyObject_GetBufferPyUnicode_DecodeASCIIPyBytes_FromStringPyBytes_TypePySequence_TuplePySlice_Type_PyList_ExtendPyErr_WriteUnraisablePyErr_PrintExPyObject_Mallocmallocrandom_intervalPy_OptimizeFlagPyExc_AssertionErrorPyErr_SetNonestrlenmemsetPyExc_ZeroDivisionErrorPyExc_UnboundLocalErrorrandom_hypergeometricrandom_standard_normal_fillrandom_standard_normal_fill_frandom_standard_uniform_fillrandom_standard_uniform_fill_frandom_triangularPyFloat_AsDoublePySequence_ListPyNumber_MatrixMultiplyPyNumber_NegativePyNumber_Absolute_PyLong_Copyrandom_standard_gammarandom_multinomialPyNumber_OrPyLong_FromSize_trandom_multivariate_hypergeometric_countrandom_multivariate_hypergeometric_marginalsrandom_binomialrandom_standard_gamma_frandom_uniformPyObject_IsInstancePyInit__generatorPyModuleDef_Initrandom_standard_uniform_frandom_standard_uniformrandom_standard_exponentialexplograndom_standard_exponential_fexpflogfrandom_standard_normalrandom_standard_normal_fpowsqrtpowfsqrtfrandom_positive_int64random_positive_int32random_positive_intrandom_uintrandom_loggamrandom_gamma_ffloorrandom_binomial_btperandom_binomial_inversion__isnanacosfmodrandom_geometric_searchrandom_geometric_inversionceilrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_filllogfactoriallibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5< ui xVui xp) x)P ))`+),h+/,p+p+,+1,+1,+),+),+),+),ȿ+/,п+,,ؿ+p+,+@-,+.,+),+/, +H/,@+1,H+),P+0*,X+X+,`+1,h+),+@-,+.,+),+),+/,+p+,+-,+),+),+),+),+/,+p+, +),(+),0+),@+/,H+/,P+),`+/,h+/,p+ ,,x+),+/,+),+/,+ ,,+),+),+/,+), +,,(+-,0+),@+1,H+),`+1,h+),+1,+),+-,+),+),+-,+),+),+-,+),+),+-,+),+), +),(+),@+-,H+),P+),`+-,h+,,p+*,x+),+,,+X+,+),+,,+X+,+),+-,+),+1,+), +X+,(+),@+@,,H+p,,P++,X+),p+X+,x+),+-,+0,+),+0,+(,+,,+,,+*,+),+H0,++,+),+,,0+X1,8+),`+',h+1,p+p+,+',+1,+',+1,+0,+),+-,+.,+,,+`1,+x,, ++,(+/,0+x/,@+),`+*,h+*,p+*,+4,+/ +4,+ +4,++x4,+`. +p4,(+ .H+h4,P+-p+`4,x+-+X4,+ +P4,+@-+H4,+ #+@4,+x 8+84,@+"`+04,h+"+(4,+P + 4,+  +4,+` +4,+ (+4,0+ P+4,X+` x+3,+ +3,+ +3,+@ +3,+ +3, +`"@+3,H+  h+3,p+ +3,+ +3,+  +3,+ +3,+0+3,8+ "X+3,`+!+3,+!+3,+`!+3,+ !+x3,+ +p3,(+ H+h3,P+`p+`3,x+ +X3,+ +P3,+ +H3,+ +@3,+ 8+83,@+ `+03,h+ +(3,+ + 3,+` +3,+ +3,+` (+3,0+  P+3,X+ x+2,+ +2,+@ +2,+ +2,+ +2, +  @+2,H+h+2,p+ +2,++2,+@+2,++2,+0+2,8+ X+2,`+- +2,+ +2,+ +2,+ +x2,+ +p2,(+ H+h2,P++ p+`2,x++X2,+p +P2,+ +H2,+ +@2,+8+82,@+ `+02,h+ +(2,+) + 2,+@ +2,++2,+`(+2,0+ P+2,X+ x+1,++1,++1,+ +1,+ +1, + @+1,H+ h+1,p++1,+ +1,+ +1,+ +1,+' 0+1,8+' X+1,`+ +1,++1,+ +1,+@+x1,+ +p1,(+ H+h1,P+h p+`1,x+ +X1,+ +P1,+( +H1,+ +@1,+ 8+81,@+ `+01,h+  +(1,+ + 1,+ +1,+ +1,+ (+1,0+ P+1,X+% x+0,+% +0,+ +0,++0,+` +0, +` @+0,H+ h+0,p++0,++0,+# +0,+# +0,+ 0+0,8+ X+0,`+ +0,+ +0,++0,+`+x0,+ +p0,(+X H+h0,P+X p+`0,x+ +X0,+ +P0,+ +H0,+ +@0,+`8+80,@+ `+00,h+ +(0,+ + 0,+ +0,+ +0,+ (+0,0+P P+0,X+ x+/,+ +/,++/,+ +/,+ +/, +` @+/,H+ h+/,p+ +/,+ +/,+ +/,+ +/,+ 0+/,8+ X+/,`++/,+ +/,+ +/,+ +x/,+ +p/,(+ H+h/,P+ p+`/,x+ +X/,+ +P/,+ +H/,+H +@/,+ 8+8/,@+0 `+0/,h+ +(/,+ + /,+ +/,+ +/,+(+/,0+| P+/,X+v x+.,+ +.,+ +.,+ +.,+ +., + @+.,H+ h+.,p++.,+ +.,+@ +.,+@z+.,+8 0+.,8+X+.,`+ +.,+h+.,+  +.,+| +x.,+`U +p.,(+ H+h.,P+ p+`.,x+ +X.,+ +P.,+p +H.,+j +@.,+d 8+8.,@+^ `+0.,h+w +(.,+( + .,+H+.,+r +.,+ (+.,0+X P+.,X+ x+-,+ +-,+ +-,+m +-,+ +-, +` @+-,H+R h+-,p+R +-,+ +-,+ +-,++-,+h 0+-,8+ X+-,`+ +-,+c +-,+ +-,+ +x-,+ +p-,(+^ H+h-,P+p p+`-,x+=+X-,+,+P-,+!+H-,+Y +@-,+ 8+8-,@+P `+0-,h+ +(-,+ + -,+ +-,+ +-,+F (+-,0+F P+-,X+`x+,,+` +,,+ +,,+ +,,+ +,, +@+,,H+h+,,p+A +,,+` +,,+ +,,+ +,,+0+,,8+ X+,,`+`+,,+! +,,+! +,,+8 +x,,+ +p,,(+/ H+h,,P+/ p+`,,x+* +X,,++P,,+`+H,,+ +@,,+L 8+8,,@+L `+0,,h+` +(,,+ + ,,+% +,,+% +,,+@(+,,0+P+,,X+@x++,+ ++,+  ++,+ ++,+ ++, +@ @++,H+@ h++,p+` ++,+@ ++,+F ++,+@ ++,+0++,8+X++,`+ ++,+ ++,+ ++,+ +x+,+@ +p+,(+ H+h+,P+@ p+`+,x++X+,+ +P+,+ +H+,+ +@+,+  8+8+,@+`+0+,h+9 +(+,++ +,+++,+x ++,+ (++,0+ P++,X+p x+*,++*,++*,+  +*,+ +*, + @+*,H+3 h+*,p+3 +*,+P +*,+ +*,+0 +*,+P 0+*,8+ X+*,`+ +*,+ +*,+@ +*,+- +x*,+k +p*,(+H+h*,P+' p+`*,x+! +X*,++P*,+d +H*,+ +@*,+ 8+8*,@+ `+0*,h+ +(*,+ + *,+ +*,+ +*,+ (+*,0+ P+*,X+ x+),+ +),+ +),+ +),+ +), + @+),H+  h+),p+ +),+0 +),+ +),+ +),+ 0+),8+ {X+),`+ +),+  +),+  +),+ +x),+ +p),(+ H+h),P+0 p+`),x+ +X),++P),++H),+ +@),+`r8+8),@+e`+0),h+ +(),+ + ),+ +),+ ,),, (,),0, P,),X,x,(,, ,(,, ,(,, ,(,,] ,(, , @,(,H,@h,(,p, ,(,, ,(,, ,(,,p ,(,, 0,(,8, X,(,`, ,(,, ,(,, \,(,, ,x(,,V ,p(,(,O H,h(,P,H p,`(,x, ,X(,, ,P(,,,H(,,@R,@(,,A 8,8(,@,: `,0(,h,3 ,((,,@F, (,, ,(,, ,(,, (,(,0,` P,(,X,@9x,',, ,',,8,',, ,',, ,', ,.,7,$,,,,,,X,p,1,,.,@/(,@ ,8,,x,,\ ,p@ ,a H ,[` ,s h ,PZ , ,P ,@ ,` , ,@ ,( ,Pr@ ,0 ,X ,0` ,  ,` , , , ,z0 ,@ , H ,pVP ,` , x ,- ,  , ,\  ,` ,R ,b8 , @ ,` , h ,p` ,  , ` ,  ,_ ,  ,^ ,  ,]` , h ,0 ,  ,P ,  ,p] ,  ,@W ,a  ,n,s ,@mX, p,0, ,0 ,P (,,h,tx, ,a , ,s ,>X, p,F,,,,,Pz,,(,,8,`,x,@,`, ,{,z, ,`, h,0v, ,@z,a ,w,s ,vX,p,,`,,@, ,P (,`,8,,h, x, ,, ,,* ,",`,9 h,,F ,,S ,, ,, +,,,+,K,,+ ,B(,C8, +@,WH,RX,@+`, h, x,+,:,0?,@+,@ ,,`+,p ,@x,x+,y ,P,i+,1 ,0,^+ ,: (,8,R+@,H,X,E+`,h,x,9+,,е,`1+,,p,&+,,,+,|,0,+,s,Щ,+ ,l(,8,*@,dH,X,*`,^h,0x,*,V,, *,O,0,*,F,,`*,<,0,`*,3,,@* ,.(, 8,*@, H,X,*`,%h,x,`u*,,Љ,i*,, , `*,,`,@V*, ,,O*, ,X,@=* ,(,~8,@2*@, H,X,*`, h,]x,@*, ,@,), ,@,`),,0,),H ,*, ),P ,`,)@,H,/`,h,x,),_h)p)x) )) )) )))))!))%)))))))4)9): );()=0)>8)@)H)P)X)`)h)p)`x)b))d)e))h)j)))q)v)) )|)})))))) ) ()0)8)@)H)P)X)`)h)p)x)))))))))))) )))))) )()0)8)@)H)P) X)`) h)p)x)))))))))))))))) )")#)$)&)' )()0)(8))@)*H)+P),X)-`).h) p)/x)0))1)2)3)5)6)7)8))<)?)@)A)B)C)D)E)F)G) )H()I0)8)J@)KH)LP)MX)N`)Oh)Pp)Qx)R)S)T)U)V)W)X)Y)Z))[)\)])^)_)a)c))f)g)h )i()k0)8)l@)mH)P)nX)o`)ph)p)rx)s)t)u)w)x)y)z){))~))))))))))) ) ()0)8)@)H)P)X)`)h)p)x))))))))))))))))))))) )()0)8)@)H)P)X)`)h)p)x))))))))HJH5)%)@%)h%)h%)h%)h%)h%)h%)h%)hp%)h`%)h P%)h @%)h 0%)h %)h %)h%z)h%r)h%j)h%b)h%Z)h%R)h%J)h%B)h%:)hp%2)h`%*)hP%")h@%)h0%)h % )h%)h%)h%)h %)h!%)h"%)h#%)h$%)h%%)h&%)h'p%)h(`%)h)P%)h*@%)h+0%)h, %)h-%)h.%z)h/%r)h0%j)h1%b)h2%Z)h3%R)h4%J)h5%B)h6%:)h7p%2)h8`%*)h9P%")h:@%)h;0%)h< % )h=%)h>%)h?%)h@%)hA%)hB%)hC%)hD%)hE%)hF%)hGp%)hH`%)hIP%)hJ@%)hK0%)hL %)hM%)hN%z)hO%r)hP%j)hQ%b)hR%Z)hS%R)hT%J)hU%B)hV%:)hWp%2)hX`%*)hYP%")hZ@%)h[0%)h\ % )h]%)h^% )h_% )h`% )ha% )hb% )hc% )hd% )he% )hf% )hgp% )hh`% )hiP% )hj@% )hk0% )hl % )hm% )hn%z )ho%r )hp%j )hq%b )hr%Z )hs%R )ht%J )hu%B )hv%: )hwp%2 )hx`%* )hyP%" )hz@% )h{0% )h| % )h}% )h~% )h% )h% )h% )h% )h% )h% )h% )h% )hp% )h`% )hP% )h@% )h0% )h % )h% )h%z )h%r )h%j )h%b )h%Z )h%R )h%J )h%B )h%: )hp%2 )h`%* )hP%" )h@% )h0% )h % )h% )h% )h% )h% )h% )h% )h% )h% )h% )h% )hp% )h`% )hP% )h@% )h0% )h % )h% )h%z )h%r )h%j )h%b )h%Z )hSH5Hh+1|H\+Hu H5g+1UH\+HtH\+H5\+1/Hh\+HtH5f+1H9\+HtH5f+1H\+HqH5zf+1H[+HNH5`+1H[+H+H5H5Y+1H$S+HH5T`+1xHR+HH5Y+1UHR+HH5vY+12HR+HH5V+1HHc+L c+VA11AQh5\+5[+RRPRRHPHIH5U+1HR+H&H5U+1HQ+HH5tU+1`HQ+HH5\+1=HQ+HH5^\+1HcQ+HL V+LV+1H V+HV+H5V+HbHb+L b+Q11AAQj5JV+5T+RRPRRHPH[UH1HS1QHtGH5U+HHHHxHʽHu!HCHP0HHu HCHP0Z[]UHSQH5W+>HHu1Ht'HHUŅxH u HCHP0Z[]AVEAUIHATIUHSHHHH@u H(HLH52H81 mLK M9s#H(MHLH5.H81AAuMM9vHIPLIAQH}ML11L17ZYyH u HCHP01HH[]A\A]A^AVEAUIATIHUSHt5H;(Hu1AtHLLH u)HCHP0H#(H8t1[]A\A]A^AWIAVIAUIH5*ATIUSAPHLHHGHHu(LLH5HH(H81xLHu9H`LHeIMLHH(H5H81a0LHdIHtH1HPHHuHCHP0H u HCHP0Z[]A\A]A^A_AWIAVIAUIH5)ATIUSAPHLHHDHHu(LLH5ZHH(H81xLHu9H]LHbIMLHH(H5@H81^0LHaIHtH1HPHHuHCHP0H u HCHP0Z[]A\A]A^A_AUIATUSQHxH (HuH(Ht"H9tH(H5H8^1H]+HtHH5(LIHtH4I $Hu ID$LP0HtHIHAH T(HLHR(xkAH C(LLH?(xHAH 0(LLH/(ex%E1H #(LLH(ExHHMHEHP0ZH[]A\A]HGH(H9u 1USQ9HHu-HHxXHW(H0dt111H=4HZ[]AWE1AVIAUATUSHH53T+HH(H5O+HHIHvH5O+L8H$HZI9H5tO+HHHHH5YO+L8IH8H9uH51O+LIHu"]H5O+HADžu1E1<IH5N+HIH5N+ADžyL9$HE1H5)N+L7HHKH5N+L/HHt6IH5M+HKxeIH5M+DADžyIHtAHu:LT_1E1H$E1HE1E1H1E1 11H]HuH(IVH56 H81,AMtI $u ID$LP0H<$u'1E1H$H $HHD$HHu HAHP0MtIMu IELP0HtH u HCHP0Ht.HMu(HEHP0H5L+HHD[]A\A]A^A_AVAUATUSHHHY+Ht)1H9T,H(H5- H86,Ld$0A1H'LLl$8mH'LH1D$88D$0u D$:8D$2t?Hl$@1MH HL:*Lh1Hj(HR(1H@ HHiX+HX+HT(1H=$HgX+HM(1H=$hHAX+HF(HHH[X+VHGX+H;(HH=&7H X+H3(HH=&HW+H+(HHW+H5y&H*H=W+(L3MtvC C!H{t7{"t I7HCHSHpHt 1PIIHCHpIHH8H$*mH*H(WfH?H+H)4IHH+H)y4,HG+H)|4HG+H)1(HG+H)HG+Hp)HmG+HV)HKG+H<)2H)G+H")1 HG+H)ʚ;HF+H(11H=$HF+H(HSHF+H(H(8u"HH7&5H5L+H5vK+H=U+zyϽL%"AH5&HHtH=I+NHtD1HU+H5&HyӽL%"AFH=H+{NHuL%Z"AH=(P+SNH$S+HtH=L+;NHS+HtH=8P+#NHR+HtH=XP+ NHR+HtH=P+MHR+HmH=\P+MHR+HQH=O+MH\R+H5H=P+MH8R+HH=PP+MHR+HH=L+gMHH=Q+RMHQ+HH=O+6MHQ+HqQ$H(H=;0+HHXR+HIR+H:R+H+R+HR+y L% AH/+H5P+H=S+H 0+HxHA+H=,+HR+HS+HHA+YxH5R+H=-+H,+Hu,+]HzMH=Q*+HQ+2H6*+Hc*+H=H@+H RHFQ+H_R+H:H=Q%+HL$~D$H HD$HD$HL$H ){@+~D$HD$H)8D$HL$)h@+~D$HD$HHo@+D$)S@+.[H5Q+H=%+H-$+H$+m.HKH?+H"+H5tQ+HH]Q+HEH?+HHH-P+H?+H-"+H5Q+H="+H!+HH=HO+ HHA`HH;H5b9H}H u HCHP0H=>HHeA HHw H5H,H u HCHP0H=~HHA HHH5HH u HCHP0H=-HHA`HHGH5FHO+HAH HHH5vHXO+HRA0HH[H5EHO+H!AXHH4H5HN+HAHH H5HAHHH5XHAHHH5.HYN+HkAHHH5^HAAHHkH54HAHHQH5 HAHH6H5HM+HAHHH5NHAHHH5$HhAHHH5[H>AHHH51HH u HCHP0H=~fHHA`HH#H5QHA@HHIH5'UHHH5@+sHHt~1HIHu HuH(H5H8HMu HEHP0Mt7AHHH5HtH u2HCHP0&H u HCHP0 L%rA6H=;HHH HAK+HH5H dHK+HH5ZH ]HJ+HH5UvH u HCHP0H=*HH4H 2HJ+HH5-@H HJ+HH5H HJ+HH5H HlJ+HH5H H?J+HH5H yHJ+HH5tH THI+HH5}ObH /HI+HH5d*=H HI+HH5KH u HCHP0H=1HHH HI+HH5 H AHH+HH5H HH+HH5oH OHH+HH5J]H *HkH+HH5%8H MH>H+HH5H PHH+HH5H KHG+HH5H >HG+HH5gH HG+HH5IlH H]G+HH55GZH u HCHP0H==+11?.HHH5<+H=MH+HH u HCHP0H=W9+11-HHH5;9+H=H+HTH u HCHP0SHHHhC+HHH[C+HCHH=%A+1~-IH@H u HCHP0H5$C+LAHHH5 C+H=bG+HH u HCHP0I $u ID$LP0H= <+11,IHH5'<+H=G+HX1I $u ID$LP0UIHH;+LHH;+ID$HH=;+1,HHI $u ID$LP0H5;+H@HHIH5;+H=aF+HEHMu HEHP0H u HCHP0HHHA+HHHA+HCHH=R:++IHH u HCHP0H5FA+L.@HH H5+A+H=E+HH u HCHP0I $u ID$LP0HD$HD$ HD$(HD$0HD$8HD$@YHL$(HT$ HHt$IH=#HHH5HHMHu HEHP0HuH(H5H8:CH^(H9Ct.H(H5H8H HCHP01H`H HD+u HCHP0H{D+HuH(H5NH8= HMD+t& H5UHT(H81 HD+w'H5iH(H81RAŅuH(H5H81+tH(H5H81` H|$Hu)3H(I|$XH0^KufraHuHGP0HD$H|$ Ht HuHGP0HD$ H|$(HHHGP0H raH=_HL$@HT$8LHt$0&x@H51+H=@+1HHt/H3H u.HCH߽aP0"aa aI$HL$(HT$ Ht$*H|$0Ht HuHGP0H|$8Ht HuHGP0H|$@HHHGP0H(A+IHH@+H56+LH&&I $u ID$LP0H=f@+AHA+H K/+H9Hu)H6/+Ht HL%'/+.H=6+:IH=}6+H/+H5/+ZIMnH5W9+LHHI $u ID$LP0HA+H1+H .+H9Hu)H.+Ht HH.+.H=5+:HH=5+H`.+H5a.+HHH58+HiHH H u HCHP0H@+H-1+H .+H9Hu)H-+Ht HL%-+.H=d5+9IH=S5+H-+H5-+0IMrH5u7+LHH{I $u ID$LP0H?+Hb0+H [-+H9Hu)HF-+Ht HH7-+.H=4+8HH=4+H-+H5-+HHH57+H?HH H u HCHP0HU?+H-/+H ,+H9Hu)H,+Ht HL%,+.H=:4+U8IH=)4+Hr,+H5s,+IMvH57+LHH^I $u ID$LP0Hw3+1H=>#+H/+"HH9H57+H=>+H H u HCHP0*HH H1+H5:+H H0+H5:+H H`5+H5 ;+Ha H7+H53;+HC H|7+H5;+H% H./+H59+H H0+H59+H| H2+H5:+Ho H/+H59+Hb H65+H5W:+HU H`5+H5A:+HqH H:2+H59+HS; H6+H5:+H5. H2+H5w9+H! H8/+H59+H H.+H58+H H-+H58+HH0+H58+HH`-+H5A8+HH:0+H58+HcH2+H58+HEH3+H58+H'HH2+H58+H H"2+H5{8+HH/+H57+HH,+H5w7+HH,+H5q7+HxH:5+H5k8+HskH0+H57+HU^H/+H5g7+H7QH++H56+HDH2+H57+H7H42+H57+H*H0+H5G7+HH0+H57+HH 0+H57+HH/+H56+HeH2+H57+HGH(.+H5a6+H)H,+H56+H H-+H5-6+HH6+H52+HH50++H=a9+HH u HCHP01H5j H=HH H7+H5,+HH\XH u HCHP0H=7+yH5b'+H={7+1H H=L7+HE7+HuHGP0H5"'+H=C7+1H| H= 7+H7+HuHGP0H5&+H= 7+1tH[ H=6+H6+HuHGP0H5&+H=6+1<H: H=6+H6+HuHGP0H5b&+H=6+1H H=L6+HE6+HuHGP0'6+H$+H$+H$+H$+wH$+kH$+_H$+SH$+GH޹1H$+H=o5+H5oH=_HHs H5+H5*+HHaqH u HCHP0H=5+~1H5H=yHH) HV5+H5*+HH$H u HCHP0H="5+H~1+1H=+HHH5*+H=V6+HH HCHP0H HCH߽ L%:AP0H= 6+tCH=5+tLDH=5RH=5+Ht9HH5+u)HGP0 HuH[(H5H81H=5+YL%A)L%AE18L%sAM=AL%SE1\L%?AIL%*^AE1nL% A|MsAL%bE1L%AHE1ơL%A.L%AL%L%~L%mL%\L%KL%:L%)L%L%~L%mL%\L%KL%:L%)L%L%L%L%nL%]L%LL%;L%*L%L%L%n L%] L%L L%; L%* L%L%L%L%oL%^L%ML%<L%+L%L% L%rL%dL%VL%H&L%rA4L%^A% L%JA L%6H u HCHP0M;I2IFLP0#H HCH߽L%8AP0H ޽~H= L% A(M;AYJA LYA?qA2A%AA ֡AdML%L%{A?ĠL%dA(ŠL%MAƠL%6AL%AL%AL%AL%AL%AL%ApL%AY'L%~AB3L%gA+HL%PA TL%9AiL%"AL% AL%AL%AL%AġL%AsԡL%Ad\L%AEL%j4$L% A1L%A?L%AML%A [L%A#iL%A$L%A%L%jA|L%Sk L%ATL%yA=L%bA&H[]A\A]A^H=*;HH(HtHÐH=+H+H9tH(Ht H=+H5+H)HHH?HHtH(HtfD=+u/UH=~(Ht H=(=h+]{f.HG8HHGHHGWl1~HGxHDf.AWAVAUATUSHL.M~HHIEătLHB1DyHD$HFH$HT$H4$HEDHII9uH[]A\A]A^A_Eu#1H;H/u0HWHR0IL9u1H HHII9u믐HII9uH[]A\A]A^A_DHu+10HtH(HHPHHHQ(1H5*+8ATIUHSHHHt HՅu!H1Ht[LH]A\[]A\Ðf.UHSHH(HHH]HHHt H/tCHHHHHHtH/tH1[]HGP0H1[]HGP0HGHHGHu#10HtH(HHPHfH)(1H5)+8HHHt H1DH(HGHHWHtH(t 1HHPHR01HUHSHH@(HHH]HHHt H/HH} HH] HHt H/tbHH}(HH](HHtH/t5H}PHtHEPH/tH1[]DHGP0H1[]HGP0HGP0HGP0e@HGHHGHxHHxf.USHHGXHo`H$H_hHt$~D$HOh$GXHtH(tPHtHmt4HtH+tH[]f.HCHH@0H[]DHEHP0@HPHR0ff.HGE1LH@ uLGuLA1LAHL r(HLM9tMu HxHuLHxH:H@HHHtHHHtHHHtHÐHt;Ht6H9HOHVH9t(\Ht 1~\HtÐ1H91DF\f9G\u΋GX;FXuATUSH_H9^H_ H9^ tmH_(H9^(tZH^0H9_0tGH_8H9^8t4H^@H9_@t!H^HH9_HtHFPH9GP\St[]A\1^`9_`uH_LfHtcMtH;I4$Ht_HtHSI9T$u1tHcH@HHI H:H1Ht%Ht HAH9Bt1x1Mk1I<YSHGHL@t+H(LHH81u%H[fHq(HHH5dH81ҶH+t 1H[DHCH1P0fAVAUATUSHGLM|HIHL-O(p NH A;MhLHHAHH QP AEH=~9|HtTH[]A\A]A^ @9}豲@$[]A\A]A^۵H=t1@HHuH(H5H8eAVIAUATIUHSHH1LLHI HtzIHq#+H~%1I fDHHHHHH9u1L]AE I,$tAm H[]A\A]A^IT$HD$LR0HD$1f.HGHHtfDsUHHSHHtJHHEHHH@pPH+tH[]fHSHD$HR0HD$H[]D1ff.SHGHuGH׵H{HtHCH/tHCH[H@HGP0HtGut[f.SHGHuoHWH{HtHCH/t@HHtHǃH/tHCH[H@fHGP0HGP0HtGuKt[ÐSHH HGH说H|$HT$Ht$KHH=P(H9{^H9{PH{0H+1H9=8+JtyH;=.+tgH;=$+tUH;=+tCH9=+t1H;=+tH;=+t H;=+菳H+H|$HT$Ht$gH{HtHCH/thH{ HtHC H/tAH{(HtHC(H/tHCH@H [HGP0HGP0HGP0H{H菩f.+9(H +HH4H4H<DH/HCPJHGP0>f.HG!fDnfD^fDNfD>fD.fDfDAWAVIAUIATUSH8HIDd$pL|$xHD$HH$AH~hIAA1IHD$(I@IHD$HAHD$ HFHD$AWLLHATLL$8LD$ HL$0Ht$(jLl$Lt$XZH9uH8[]A\A]A^A_f.HD$H~ H<$~I9tJ1H~LLd$L,$LHLH螫MHLH9uH8[]A\A]A^A_ÐL9<$uH$H8HLH[]A\A]A^A_YfAWMAVMAUATIUSH(L*Ht^H~CA1D$ HBHD$HFHD$L$ HT$LMHt$MHMH9uH([]A\A]A^A_H~1fLLLH讪MH9uH([]A\A]A^A_AUfIATIUHSHH(HGXHT$Ht$HD$HG`GXHD$HGhHGhH|$HD$H{XHt$Ht H|$,HD$HtHHD$HtHHD$Ht HHD$HT$IUI$HD$HEHH8HhHHT$HXHPHT$HPHtH/tMHtHmt1HtH+tH(1[]A\A]fHCHP0@HEHP0@HGP0H|$IEI$HEHt H/uHGP0H|$Ht H/uHGP0H|$Ht H/uHGP0H([]A\A]ATIUSHHHoH親Ht9HPHHtHHHH[]A\fDHH[]A\Ha(LHD$H:1HD$f.AUATUSH^HH9=IIH@H1E11L螦HLHDHHHTHI9~H[]A\A]DAVAUAATIUSHt}H=+HIH]HHLEHHL蝩IH+t[L]A\A]A^HCHP0[L]A\A]A^f.1 HHtrH=+腫IHtMةHHt@LEHHLHmItHEHP0H+fuDHmu HEHP0E1[]LA\A]A^UHSHHHt7HH}H/tH]H1[]@HGP0H]H1[]@H(Df.ATIUHSHHHt HՅuAH{ Ht LՅu/H{(Ht LՅuH{P1Ht[LH]A\fD[]A\Ðf.USHHHoH$H_Ht$~D$HO$HtH(tJHtHmt.HtH+t H[]@HCHH@0H[]DHEHP0@HPHR0@H9t[HXHt/HJH~H;rt@1 @H9tt1HH9u1DHH9tHu1H;5(ff.H9t7HGH;(u>HGHuHtHA(H@HuuH(HH;(t͡DfH*f.Gzt@ATUSHH9H~(H9GHH9F ~ HSH9VHCHNH9@H@t H{ DF D8@ "H{HA |HN0HHA@HEȃpwDA9uEHH1u)1 L%(L9ut1H[]A\L9uuH߉UHHH;z(H;(uL9u<H+uHSD$HR0D$1H[]A\H蘤fDHK0HH@HHDfHt$FHt$>'HHt$Ht$@HvHD@Dff.HGHHGUSHHHGH;D(tH@hHtaH@(HtXH[]HGHHGHuHuH(H@HutHE(HH;I(tmDfH*f.Gzt@UHHSHOHtJHHEHHH@pPH+tH[]fHSHD$HR0HD$H[]D1ff.LVMH9~1DH9|HI9uE1fJTHBt>@t5H9tbHXHt4LIM~H;QtG1H;Tt;HI9uIM9u1@HDHH9tHuH;(uθATIUHSHHHt HՅuQH{ Ht LՅu?H{(Ht LՅu-H{PHt LՅuHx1Ht [LH]A\[]A\Ðf.USHHBH-(HxHEHxHtH/tMHH9t(Ht#H@@~BHǃtAHǃH1[]DHGP00H=1HHtHǃH/uHGP0fUHSHHH=+HGHHtHHt#HH[]fۘHfDHY(HH5H81%HHH?H9t}HXHtOHJH~H;rtb1 @H;ttSHH9uHY(HNH5ޤHWH81踗1+@HDHH9tHuH;50(uH@HI(H5H8 1fDUHSHHGHHtHHtHH[]軗HfDH (H8聑tH(HH5H81SHH HGHOHT$Ht$H|$HHPHHH;(HHB@HǃHǃHHH|$HT$HHt$pHxHtHǃxH/tH蛏HH [DHGP0HǃHG軐뮐0H=1HH:HǃH/%HGP0HHHG@HFH@t{H9t^HXHt2HJH~!H;rtC1H;tt1HH9u1DHH9tHu1H;5v(ff.Ktff.HOD_@GDHt?H1HLHH9t8HQLNHLSHH( }w%IcLAGE=H }vу0 1CHK0p@ wDHTPp@ vHcHIW(|E1LeIG(HIG0AGEAGFCEo@AGDIG(9fDE1A8ODuE9o@uAGEA8GFuAGuIG(HIG0IG(fDKHSA<v dHADIG(IG({{HD$IG8HD$LfHCH|$AGDA)G0HD$JE1Ht$L8HHIL9l$uHD$H>IG85f.HAOE{:HCtfDH8:uHXfDI(}Lt`IGKHs1HLESX) VLHHuH5H(H81`1fADtItLJtIL1LHIo8tAGDH}IO 1HHHtlHH)Io `L_IG(IG HAGEIG(IG0AGDAGFH(H51H8H(H[]A\A]A^A_fDH(H5J1H8fDу0 HFvJЍVЀ wfDHLV0VЀ vtMA9~HcHcITH9,t ),ƒHH f A9uAGGH^IG(Hފ(DH52H81PHb1ZH5H(H5”H81HHw(H5pH81H](H51H8t~WH@(H51H8W~:fAUATIUHSHHHEHHhID$HHL-0(p VP A;U1HLHˀH QP AEH=~D9|JHH+tHH[]A\A]HCHP0HH[]A\A] @9}a@$H1[H]A\A]1HLsHfDH=I7@1bf{HHuH,(H5-H8|1USHHHGHt)HkHUHH HcHHHH+tHH[]DHCHP0HH[]@kH+HcukCHH H+uH+kuDkCHH HH+uHH+HlvfDH@`HtOHHtCHHt9H@H;ֈ(HH5PHHu3HD~HuH_(H5H8h{H@f.AWAVAUATUSHH8HGHsHT$(Ht$ H|$觀HC`HHH{H{8w|H+H|$HT$(Ht$ oxH{PHtHCPH/tHH{XHtHCXH/t!HCH@H8[]A\A]A^A_DHGP0HGP0SheClLsuLwMDHS8H*H~K0Lc@E1tRID$DyH$HBHD$H$Ht$LE1DIM4$L9uLsDIM4$L9tI>H/uHWIR0M4$L9u@H@t GpHz`fDATUSHHGHPhH7HJH*HHH=m(H9~#HVHrHweHuHtsH;Ԇ(^H;w(1HhhHHMHHHH[]A\fHuEHH fHHHCH;P(t6H;(uHCHH0HH9stHDHH[]A\fHSHH2H9vJHSHHH[]A\DHPH (H5H81t~H1[]A\HfHyHHHHxHmkHUHD$HR0HD$RDHSH]@{HPHCH;G(H;(HhhHfHMHH[HEHhHt$HHt$HSHHMDf.H}IHdHyI,$HIHD$ID$LP0Ht$/@HCHHPfHtHxHf.uUHH kfDHCHH;!(tw1H;Ɓ(rHCH1H(HH2(vt,xHEH5܌HPH(H81o|1HSHHS11HD(Ht$H8vHt$tHt$ xHMHt$@f.SHHGt~HGHtH{HT$HLLɂH5I$H5 *LHV}DHtHD$IF|I\$AVAUIATIUHSH H$M(H^HD$HT$M)HHHHH HOH>L LOL@HHL(SH܇H5YH81`FX]<ZH P H=[1H []A\A]A^fHV I|$HHHuE1H>*AHH *jQPjQHPj5*WH=M(*HPHH+uHSHD$HR0HD$H []A\A]A^HHHLkHtHD$IF|I\$AUATIUHSHH*HG(H^H$HT$MHfHXHHHs|IH `|H|HIHHF(I?SIH5TH8L }A1@XU;ZH 3| H=oV1HH[]A\A]fHfH HdL{7IHH$HT$HHHuE1H *AHH=N*jWQjWH=E(QHj 5<*P-*HHHPHt>HPHH>HCHP0HH[]A\A]fDHV HFkHHt'H { ~;H=WUDHCHP0@oFL)$o6HHLzHLH5:**D;nHFLH$ 6IMH5*LHVq>X:ZH yl H=S_1H0[]A\A]A^HV(IL$ ID$HHHuE1AH=B(Hj5*5*j5y*QHj5*Pƪ*HPH9H+uHSHD$HR0HD$H0[]A\A]A^fHV~tHtHHF(HD$ ID$ LHD$ID$HD$/4IHtoHHt;MHD$HL$HT$ f.HnL3IH5ՠ*LIHV5:HD$H5H5x*LHV:HD$HIM{H5r*LHV9HtzHD$ ILH+t2 H w:HD$H=%RHD$!fDHSHD$HR0HD$fHFLHD$2I@HT$HLLqwH57*蹘:HHTA(H wH5NOjL ]xAH$wH81;Y^:[I\$AWfAVAUATIUHSH8L5A(H^)D$Lt$ H:H(HHV(ID$ ML$HHHuAH=A(HHAVj5 *5%*j5-*Pj5L**HPHH+HSHD$HR0HD$H8[]A\A]A^A_I\$HHuH uHMHSHuL@H?(H5ML vH81M:X,3ZH u4 H=CPn1H8[]A\A]A^A_DLIHS~qHtHYHF(HD$ ID$ LHD$ID$HD$0IHtlHHt8MLL$HD$HT$ oHHo0IH5*LIHV6HD$HH5*LHV6HD$HIM~H5*LHVz6Ht~HD$ ISH+t2s H NtU3HD$H=NHD$fDHSHD$HR0HD$fHFHHD$/I@HT$HLLtH53*I3!HH=(H sH5KjL tAHsH81.8Y^3fAVAUATUHSHL **L%C>(H^L $Ld$H=H+HHHHsIH sHHsHIHH.=(I?SIH5'KH8L 5tA17X2ZH r H=M1HH[]A\A]A^ÐLHHo*HHuAH=z<(HH /*ATjQPjQHPj5J**HHHPHHPHHuHCHP0HH[]A\A]A^HV LNnLIHHtmHH|-IHL $HT$%fHHt'H q/ 2H=LDHCHP0@oFH)$-H~HLqHLH50*Βv2q@HFHH$,IMLH5*LHV3HtHD$IFfH5*LHV2HtH$I@f.AVAUATIUSH0H*H s*H-;(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHI$It$AH=;(HUj5Ɲ*Pj5*QHj5 **HHHPHHPHHtH0H[]A\A]A^@HCHP0H0H[]A\A]A^fDHDHHoIH qoHoHIHH9(I?SIH5GH8L pA13X2ZH Do H=@J1H0H[]A\A]A^ÐHIHcHtHMHF(HD$ HF LHD$HFHD$Z*IHHM~.H5'*LHV0H HD$ IMLL$HL$HT$ H:*$DHH)IM~H5P*LHV40HtHD$IM~H5*LHV0HWHD$IDHHt'H m >2H=H誽DHCHP0@HVfHFHHD$)IaHT$HLLmH5n,*َ2 AVAUATIUSH0H *H *H- 8(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHI$It$AH=6(HUj5F*Pj5m*QHj5*3*HHHPHHPHHtH0H[]A\A]A^@HCHP0H0H[]A\A]A^fDHDHHlIH kHKlHIHH6(I?SIH5DH8L %mA1r0X1ZH k/ H=F1葻H0H[]A\A]A^ÐHIHcHtHMHF(HD$ HF LHD$HFHD$&IHHM~.H5*LHV-H HD$ IMLL$HL$HT$ H*$DHH_&IM~H5@*LHV,HtHD$IM~H5*LHV,HWHD$IDHHt'H `jz 1H=E*DHCHP0@HVfHFHHD$%IaHT$HLL;jH5(*Yl1 AVAUATIUSH0H*H s*H-4(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHI$It$AH=4(HUj5Ɩ*Pj5*QHj5y**HHHPHHPHHtH0H[]A\A]A^@HCHP0H0H[]A\A]A^fDHDHHhIH qhHhHIHH2(I?SIH5@H8L iA1,X0ZH DhH=C1H0H[]A\A]A^ÐHIHcHtHMHF(HD$ HF LHD$HFHD$Z#IHHM~.H5'*LHV)H HD$ IMLL$HL$HT$ H:*$DHH"IM~H5*LHV4)HtHD$IM~H5*LHV)HWHD$IDHHt'H f* 1H=7B誶DHCHP0@HVfHFHHD$"IaHT$HLLfH5.%*ه0 AVAUATIUSH0H *H *H- 1(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHI$It$AH= /(HUj5F*Pj5m*QHj5*3*HHHPHHPHHtH0H[]A\A]A^@HCHP0H0H[]A\A]A^fDHDHHeIH dH[eHIHH/(I?SIH5=H8L %fA1r)XV0ZH dcH=P@1葴H0H[]A\A]A^ÐHIHcHtHMHF(HD$ HF LHD$HFHD$IHHM~.H5*LHV&H HD$ IMLL$HL$HT$ H*$DHH_IM~H5@*LHV%HtHD$IM~H5*LHV%HWHD$IDHHt'H `c0H=>*DHCHP0@HVfHFHHD$IaHT$HLLKcH5!*YB0 AWAVAUATIUHSH(L5-(H^HD$Lt$HJH0HHV ML$HHHuH7*H=,(AHH *AVjQPjQHPj5ڏ**H;HWHPHH=HHSHD$HR0HD$H([]A\A]A^A_I\$@HHaH aHOHcL `LOL@HH+(SHbH59H813&X/ZH aH=A=T1H([]A\A]A^A_LIHHHHHH5Ɏ*LIHVI#HD$HMLL$HT$kHt3^H `/HD$H=<虰HD$=HSHD$HR0HD$foFH)D$H~HT$HLL`H5*ǁX/DHFHHD$I'H5*LHV "HtHD$IG|f.AWAVAUATIUHSH(L5*(H^HD$Lt$HJH0HHV ML$HHHuHW*H=)(AHH *AVjQPjQHPj5* *H;HWHPHH=HHSHD$HR0HD$H([]A\A]A^A_I\$@HH^H ^HOH1`L ]LOL@HH((SH(_H56H81S#X=/ZH ^H=:t1H([]A\A]A^A_LIHHHHHH5*LIHVI. HD$HMLL$HT$kHt3H ]f/HD$H=9蹭HD$=HSHD$HR0HD$foFH)D$.H~HT$HLL]H5*~X-/DHFHHD$I'H5*LHV-HtHD$IG|f.AWAVAUATIUHSH(L5'(H^HD$Lt$HJH0HHV ML$HHHuHw*H=x'(AHH ?*AVjQPjQHPj5*,*H;HWHPHH=HHSHD$HR0HD$H([]A\A]A^A_I\$@HH \H [HOHQ]L [LOL@HH&(SHP\H5 4H81s X.ZH [9H=7蔫1H([]A\A]A^A_LIHHHHHH5 *LIHVINHD$HMLL$HT$kHt3H [.HD$H=7٪HD$=HSHD$HR0HD$foFH)D$NH~HT$HLL[H5*|X.DHFHHD$I'H5*LHVMHtHD$IG|f.AWfAVAUATIUHSH8L5$(H^)D$Lt$ H:H(HHV(ID$ ML$HHHuAH=$(HHAVj5[*5u}*j5e*Pj5D*F*HPHH+HSHD$HR0HD$H8[]A\A]A^A_I\$HH+YH YHMHSHYL@H=#(H5>1L OZH81X5.ZH XH=35辨1H8[]A\A]A^A_DLIHS~qHtHYHF(HD$ ID$ LHD$ID$HD$ IHtlHHt8MLL$HD$HT$ oHHIH5݀*LIHVHD$HH5Ё*LHVHD$HIM~H5V}*LHVHt~HD$ ISH+t24H W^.HD$H=3hHD$fDHSHD$HR0HD$fHFHHD$I@HT$HLLWH5N*x#.!HH4!(H VH5./jL =XAH[WH81~Y^.fAWAVAUATIUHSH(L5!(H^HD$Lt$HJH0HHV ML$HHHuHz*H=X!(AHH *AVjQPjQHPj5**H;HWHPHH=HHSHD$HR0HD$H([]A\A]A^A_I\$@HHUH UHOHWL TLOL@HH(SH VH5-H813X-ZH UH=1T1H([]A\A]A^A_LIHHHHHH5*LIHVIHD$HMLL$HT$kHt3H T-HD$H=>1虤HD$=HSHD$HR0HD$foFH)D$H~HT$HLLTH5L*uX-DHFHHD$I'H5y*LHV HtHD$IG|f.AVAUATUHSH L%(H^Ld$H8HHHVHHHuE1L hw*H=I(HH6*HATjPAQjPAQjP&*HPHH+HSHD$HR0HD$H []A\A]A^fDHHSH SHIHH(RH?L NTHLIL@HH(SHoSH5+H81wX"-ZH RGH=m/蘢1H []A\A]A^fLIHHJHFHHD$ HbHT$f.H+t2H >RK-HD$H=.HD$hfDHSHD$HR0HD$HT$HLLwRH5*Tsx-fHX IHXH55w*LHVHtHD$IF-fDAWfAVAUATIUHSH8L5Q(H^)D$Lt$ H:H(HHV(ID$ ML$HHHuAH=t(HHAVj5~*5t*j5y*Pj5|**HPHH+HSHD$HR0HD$H8[]A\A]A^A_I\$HHPH {PHMHSHQL@H(H5(L QH81X,ZH OPH=+-1H8[]A\A]A^A_DLIHS~qHtHYHF(HD$ ID$ LHD$ID$HD$l IHtlHHt8MLL$HD$HT$ oHH IH5U{*LIHVuHD$HH5w*LHVTHD$HIM~H5t*LHV*Ht~HD$ ISH+t2BH N,HD$H=+ȞHD$fDHSHD$HR0HD$fHFHHD$? I@HT$HLL,OH5N *o,!HH(H JNH5&jL OAHNH81Y^,fAWAVAUATIUHSH(L5(H^HD$Lt$HJH0HHV ML$HHHuHq*H=(AHH _{*AVjQPjQHPj5by*L*H;HWHPHH=HHSHD$HR0HD$H([]A\A]A^A_I\$@HH,MH MHOHqNL 6LLOL@HH4(SHMH5-%H81X,ZH LH=)贜1H([]A\A]A^A_LIHHHHHH5Qx*LIHVInHD$HMLL$HT$kHt3H /LA,HD$H=>)HD$=HSHD$HR0HD$foFH)D$nH~HT$HLLeLH5L *'mX,DHFHHD$I'H5p*LHVm HtHD$IG|f.AWfAVAUATIUSHH8L5(Hn)D$HD$ Lt$(HqHWHHV0HK(HC LKHI$It$AH=/(HAVj5r*QHj5mv*Pj5Tv*^|*HPHH+HSHD$HR0HD$H8[]A\A]A^A_@LIH5v*LIHVF HD$HHk@HHJH JHMHUHJL@H%(H5&"L 7KH81X+ZH IeH='覙1H8[]A\A]A^A_DLHfIH$ZHcHHF0HD$(HC(HD$ HC LHD$HCHD$IH ~2H Hu+MLL$HD$HL$ HT$(&HM~HT$HLLIH5L*Wjy+fH+t2H H+HD$H=%舘HD$fDHSHD$HR0HD$fH5m*LHVm H_HD$(ILfDHFLHD$IH5s*LHV) HD$HtoIH54p*LHV HD$ Ht IHH(H GH5 jL IAHrHH81\ Y^v+HH(AH5jL HH mGH8H*H1 _p+AXf.AWfAVAUATIUHSH8L5!(H^)D$Lt$ H:H(HHV(ID$ ML$HHHuAH=|(HHAVj5t*5j*j5r*Pj5lr*vx*HPHH+HSHD$HR0HD$H8[]A\A]A^A_I\$HH[FH KFHMHSHGL@Hm(H5nL GH81 X*ZH F H=#1H8[]A\A]A^A_DLIHS~qHtHYHF(HD$ ID$ LHD$ID$HD$<IHtlHHt8MLL$HD$HT$ oHHIH5q*LIHVEHD$HH5p*LHV$HD$HIM~H5j*LHVHt~HD$ ISH+t2`H D#+HD$H=="蘔HD$fDHSHD$HR0HD$fHFHHD$I@HT$HLLEH5*e*!HHd(H DH5^jL mEAHDH81Y^*fAWAVAUATIUHSH(Hg*L5(H$H^HD$Lt$HWHEH#HHHCH uCHOHDL BLOLDHH (SHIH5H81Xk*ZH =CH= 1 H(H[]A\A]A^A_LML$HHHuAH= (HHAVj5p*5f*j5h*Pj5th*vt*HHHPH[HPHHqHCHP0b@HV(ID$ mf.LIH[HtHHF(HD$ID$ LHD$ID$H$IHHM~.H5~g*LHVHHD$IML $HD$HT$@HH?IH5]g*LIHVH$HM~H5dg*LHVpHbHD$IOfHHt'H @A*H= DHCHP0@H'VfHFHH$I`HLGHLH5)8H5)X!HH(H :7H5~jL 8AH7H81Y^fAWAVAUIATUSHUHHHa*HHHa*HEHH=]*|OHHHmHCH-ja*HHHHIMI<$H+IEH5Fc*LHH HHHCH5b[*HHHHHHHHHfL=b*H0(HLH9E#HHWHHmu HEHP0IHI^IELH5zb*HHHHHCH5Z*HHHIMH+LHHLd$~D$Lt$I$Lx(D$@I,$u ID$LP0HH[]A\A]A^A_f.HEHP0HCHP0PID$LP0H+:fHCHP0HCHP0;+AdAHfDHmu"E1HEHP0MtI/u IGLP0H 04DD1H=yMfDH 4HH=H˃fDE1AMAl@HQ'H8HAAPHHH[HCHP0LIH i3_1H=1>@sHAAaf.KHkHH,AdAfDHAgAH2IGLH-'H8HHLAAl@II.tHAnAHIFLAAnP0HHHI.LAAqf.Hq'HH50AAPH81iHH1HHEHH'H8H+)HCHP0I/uAqA"H \1qH=&3UHSHHGH5 ^*HHHHHCH5+V*HHHHH HQHx-HtH'HH[]fDHCHP0@Ht&H 0H=lH1[]HCHP0@HLf[fDUSHHGH5]*HHHHHCH5.U*HHHH HQHHt2Ht H[]fDHSHD$HR0HD$H[]DHu HCHP0H /H=?bH1[]fHIf{UfDAUATUHSHHGH5[*HHhHHjHCH5W*HHH|IHHHMtH{HEH5[*HHHHHHEH5Z*HHHHHEHHHEHHCH5V*HHHHHHHHHH=[*HHHEHxHHEH5[*HHHHHHu HCHP0HL6HHEH.HHEu HEHP0I,$u ID$LP0HIHPHHHu HCHP0HL[]A\A]HCHP0vHEHP0HCHP0HEHP0HsHHAHCHP0H ,DH= |MiI$LE1HDHH ,YE1H=m `|HL[]A\A]fI|[AHWH E,[H= |f.KHkh޺LH +H= {I$E1HhHOjHEHuHEHP0fDH`mfDHpDHvH f+H=@ 3{@f.AUATUSHHHH1nHHLHcClM,M9sLI<$HHtmHEH;E HHUHHHEH+u HCHP0IM9wHHHmuPHUHD$HR0HD$:@xHm@HEHP0<H *H=i ,z1H[]A\A]HHZHmu HEHP0H+uHCH߻xP0<x<@HZ*L-jK*HCHHL%"'p VP A;$1HLHH QP A$H=~v9~HH-MH+t7x:x<<fDHCH߻xP0: @@$tfx[H1L9HHXx:MH=bCHuH'H5H8fDAUIATIUSHH(HGH;b'H;'EHHI$L`IELh HCHLM*L-c'p VP A;Ux1HHAIH QP AEH=9MaHmH+tpH(L[]A\A]fHWBፁ)Ht$~D$1Ll$D$)D$LB uH{Ht$AIfDHCHP0H(L[]A\A]HEHP0H+\f. @9(@$@Ht$~D$Ht$HT$D$)D$'NIE11HHIH=t@E1IHuH'H5H8]w1ɺAIvfDAVAUATUSHrL%'HHLfI$t Gh1tHExHC01tHHC81tHHC@1tHEpHC(HEHHElC$HE`HCHEXHCEhC HEH{H/tHkL9t!1[]A\A]A^fDHGP0HkL9uHmtHCHEHP0HC@H-U*L5F*HELML%:'H QP A;$1HLAHH QP A$H=~}9HHAv>HHmtGH=H $D,tH{HH/t4HCfHEHP0@ @xDHGP0@$]H1LEHHMAvWH=rSHuH'H5AvH8H6'H5H8f.SHT*LOL9IXHLAM~&H;A`1@H;DMHI9uHWxHLH>HGHHFlM;LL9H9AD L9AH9AE D!M9AL9AE DGo )No)VPAo)tjob)f oi)n`Aop)tFoz )~0oy )~pAo` )t"oB0)F@oI0)AoP0)9tHJHcHpyH;0utH'HHİ[f.H!'HHİ[@nH |HD$H=gHD$Hİ[+f.AVAUATIUSH HGH5D*HHHHHCH5C*HHH HHHHHHYHEH5?*HHHHHEHHHEH(H=G*Ld$HGH;'H;'HWBHjE1 uLwL-$'H QP A;UQLLHH QP AE=@9HRhIHlH\$~D$HHl$H=D*D$@HtoI,$uIT$HD$LR0HD$H []A\A]A^fDHCHP0HEHP029Z@$LI,$uIID$LAdA}{P0DDH 7H=YeH 1[]A\A]A^f.AdA}{fH=@HAk{AeHHHu1HCHP0HvHEHHEHaHEHP0R@H+AdAu{u@LTHHJoAdA[{HA]{AdBHAdA`{?cHHt$;H\HHk'H5lH8,LJE1 uLGHt$uLAH1ɺLAHAWAVAUATUSHHL-b'HHL5#@*LnLgPIEM9L='M9|$M9~„_WA|$ A~ IT$I;VLePL5=*M9M9|$M9~„A|$ A~ IT$I;VID$IvH9@H@t HA|$ EF D@@8v@ It$0IH@IDHA MN0IvHA@IEDAA DDE9HL$ E1H!L$ AfM9L5<*M9MM9~LLL$ nIHH;'L$ AH;'DM9LI,$L$ AuID$L$ LP0L$ EUE6%M9uLLL$ IHH;'L$ AH;e'Du M9I,$EuID$L$ LP0L$ EEE%HEHHE HCE0C$HE8HC0HE@HC@HC8HEHC HC1tHE(HC(HEH{H/uHGP0HkL9t1H[]A\A]A^A_fHmHCID$IvH9@H@t HA|$ EF D@@8@ I|$HA cMN0IvHA@IEDAUADDE9KHL$ E1HoL$ AHEHP0HCfM9uuM9LDZH-?*L50*HELMSL%*'H QP A;$\1HLAHH QP A$H=9aH3H02HmHEHP0ugH=H ^H{HH/uHGP0HCH[]A\A]A^A_LhI,$L$ A(ug @<DIt$0IH@IDHI,$EL+@LL$ L$ 5+gLL$ L$ fDIvHDD;@$fLL$ TL$ IgLL$ $L$ fDDD>IvHbI|$H7fDDD\H1LHHqg H=HuH'H5H8UDDH'H5@H80fDAWAVIAUIATLUHSHHHD$XHt$pHD$`HD$hNHI~`HHHD$0L$@AIFHLLP0HH(NIHXIcVlHH9r<@HH9+H8xH;*L-o,*HCLMH-G'p VP ;U%1HLAHH QP EH=89>HH߽0J.H+H  AsH=+Z6fHT$`HD$XHHHt$XHD$`HD$hHHLpH@LhH $HL$hf~$H|$0L,$$)$Hfo$H8LxLhLpHt H/Mt I/iMt ImIHD$XH{XLs`LkhHCXHD$`HC`HD$hHChHt H/Mt I.Mt ImHD$XHD$`HD$hH DH=X1f.H-'H}IN`AL{HL$ AMlD$E1 Hi)L5b'H QP A;xL1IH QP AH=9M^HHmu HEHP0H=-*H5l+*HGHHHHbH=;1*Ll$HGH;D$H;'HWBHZE1 uLGL5'p VP A;^LLIp VP A=29M[HEH;@'L}MLuIIHmu HEHP0LLL I/Hu IGLP0Imu IELP0H]I.u IFLP0HLHI$HRHPI$Hu ID$LP0H+u HCHP0H(H[]A\A]A^A_Ll$H;D$H;'CHUBHZE1 пL5 'p VP A;'LLH觿H QP AH=9H I@@9f]@$X@Lc @9S-@$E@Le29@@$2L} @9M;@$?@xLp=IMI$AHI$uID$LP0HtHmu HEHP0H 8D1H=M#DA;HI$AHI$tf. HhLH-/*ML5'p VP A;1HHAI踽p VP AH=69>MHH'H5H8y@Ht$#IfLH;II/qI$LAHI$uHI$AH+sHCHP0dH=TLHe;H!DHH'H5H8脹 @DS@$f.LJE1 uLGHt$ LAId11HHa"IQfHt$H>"IfDLJ1 uH}Ht$AIkDH=tHH'H5AH8^]fHt$H!HfDH=A褺@I/_E1DfDkHuH'H5 H8fDLB1 uH}Ht$AHDH=@1HHuH'H5H8]H1HHxIH=Q费Q{1ɺLAIU1ɺAI1ɺAHbID$LAP0H+T@f.AVAUATUHSHHLfHD$H8IH^HH}H/H]HCHH5$*HH6IM8H5LɸQH5L蒼IHAoEH59!*EAoMM(IE HE8HCHHHHHHH/t1H1I,$t1H[]A\A]A^fHGP0@HGP0ID$LP0H[]A\A]A^fDIMtIHFHHD$色IMH\$ IH hH=F8fH'*L5*HCLM詷H-'H QP ;U1HLAH}H QP EH=S9[HHH+>@諷H fDHH9H H=E1fH(H5q"*LIHVI~HD$HzLc@HH'H2H5ATL ]AH H81ϹX:ZH !H= DfDHCHP0! @D@$H1L%HHH=N&/HuH'H5H8褲HT$LLLH5)B/DAUIHATIUHSHHWH=&*HH&*H@IEI$HtHHH[]A\A]DsHuH=&*HHGHHt'HHuHS'HH5H81訸HHGtkHGHHHwUH5HcHDGHËGWHH fG@GWHH H˴USHH@`H"HHHHH@H;'fDHCHHHH5JHcHHH5aHHHfH+uHSHD$HR0HD$H[]CHCSHH HfDCCSHH HH5ZHHt-H@)fH蘳cnHHcH@`HHHHHHHԼ'H9EHEtHEHPHwkH HcHH2HmHUHD$HR0HD$EHӋEUHH HE뼋EUHH H謲腲HfH'H54H8KHҺ'H5H8ۮfDAUATUSHH}hHXXHHu1H[]A\A]H'H0H9fLm`LehHEhEXH+tgMtImtkMtI,$uID$LP0fH/uHGHt$P0Ht$H'HH5H81nZ@HCHP0@IELP0HCte@t\HFHt\@tSHXHtXHJH~"H;r1 H;tHH9uHZtHHHH9Hu1H;5.'fAWAVAUIATUSHկHHIEHIEH5F*HCHFIELHHHHL=E'L9bIHHEHHHh貪IHI,$H+H *H@H9 *YH *HHH *HۮIHoIEHIEID$H**HID$ M|$(I蛮IHH$~$LL$$$@ILp(H+LHtHmu HUHR0HL[]A\A]A^A_DIohIGhfMw`AGXI,$u ID$LP0MtI.u IFLP0HtHmu HEHP0L='IH*ImH@L9H9h **HS *HZHL=? *M脭IHIEHIEID$H*HID$ HI\$(DIHL<$~$L$$$@H+HSHR0f.I$$ylA HPI$HH+MtImu IULR04$H VDLH=E1o;+f.HCHP0`ID$LP0H+tIf.H+$nlE1A fDHSHR0]$4lE1AI$IHPI$H41IT$LR0HH+fDLHK諦IHA'MgXL0M9MEIFH>IT$A$@A@I$XHHJHL;r1@L;tHH9ulE1H H=Y9HHPHH@H s lE1H=9dLLŧ:MgXfMw`IohIGhAGXMXef/lH H=E1 9H=*L%*HGLHHPIMH'LH5H81芭f.lE1H ~H=58HHPHH]H=)*HZ*H5[*fHfDH=*H"*H5#*>IfD$llA fDH=*L%*HGLHHCHH0H'LH5A H81脬$ll*I/uBMIA$lfILDM$lA{H 3lE1H=H7HHHOlINH~IvI9t|1fDITI9tkHH9u1LHT$H $2H $HT$dHH9ItI9I@HILfMw`IohIAGXIGhI$I9YHt)HL9uCHI90Hu1L;5'$nlA AUATUSHHXXHu1H[]A\A]HH'H0H9ubfLm`LehHEhEXH+t(MtImt,MtI,$uID$LP0HCHP0@IELP0HCte@t\HFHt\@tSHXHtXHJH~"H;rN1 H;t?HH9u HJtHHHH9Hu1H;5'fAWAVAUATIUSHHHH -*HD$(HD$0HPHFHD$8HH9MHXIHcH~H~&H;N'1@H;LHH9u/IHHHHt H;'8HPHuHpHhH4$H&H$HtHHtHEA@f@ϘHcHD$(H.AH'HHD$0襤IHD$8HdHD$(I$H *MgIG HD$0HD$(IG(HAHD$0LMLHL$bHL$p VP H';ML1HAI2p VP Hb'=5@92M>L|$0H|$8H/uHGP0I,$Ll$0HD$8u ID$LP0HD$0HtH+u HCHP0H$HtHH$HHu HCHP0HtHmu HEHP0IUMHBMI$I$Ht5HHL[]A\A]A^A_HH9tHuH; 8'ID$LP0HpHhH4$HHI'H29Т@$A rHD$(H|$0Ht H/uHGP0HD$0H|$8Ht H/uHGP0L=*IUXHD$8I9HIGHVHJ@A@HXHHQH~"L;yt1 L;|eHH9uAIH\$~D$H8HP$LhHhHtH/uHGH$P0H$HtH*u HBHP0MtImu IELP0H|$(Ht H/uHGP0H|$0Ht H/uHGP0H|$8Ht H/uHGP0DDH E1H=e/I$HPIOHIwH9tb1 fDI;TtQHH9uE1HHL$LL$HT$u*LL$HL$HT$IL9KtH9u@H DH=/HL$(HT$8LHt$0L5ߩ'H|$(IH/uHGP0HD$(H|$0H/uHGP0HD$0H|$8H/uHGP0IH\$HD$8~D$H8Lx$LhHhHt H/uHGP0MtI/u IGLP0Mt&ImuIELP0I$HP I$HPA4rH|$(HH/xHGP0lfD1LHSHD$0H A?rDH=|HL$HD$0A?rz@;HuH'H5H8谛fDA`rALHuHI9uHI9Hu1L;=B'f.HGtkHGHHHwUH5HcHDGHËGWHH fG@GWHH HKUSHH@`H"HHHHH@H;'fDHCHHHH5HcHHH5bHHHfH+uHSHD$HR0HD$H[]CHCSHH HfDCCSHH HH5YHHt-H@)fHcHHcH@`HHHHHHHT'H9EHEtHEHPHwkH HcHH$HmHUHD$HR0HD$EHӋEUHH HE뼋EUHH H,HfHm'H5H8vKHR'H5H8[fDAWAVAUATUSHHۤ'H9bLnHIIEHH/eLmID$HZH2H5Q*HFPHEHHHqHVH(lHEH5 *HHHfHHhHEH5m)HHHZIHEHHEMH'Md$ I$IEH;z'MuMImIHEIm'LLHII.ILI,$Mt7HmI/HHH[]A\A]A^A_HGP0HmHEHP0H H=O(H1[]A\A]A^A_ÐHHPHR0fID$LP0@HEHP0IGLP0;HEHP0I/&f.IELP0H;'9HUBbLrE1 uL}ސH'H QP ;LLAI赐H QP =/29tMHHIH~aHtHHF(HD$ HC LHD$HCHD$莊IHt^Ht}Ht.M9H|$Ld$7fHHOIH5M)LIHV襐HD$HH5H)LHV脐HD$HCIH5 )LHV_HD$ HI^@DHٕHHH H=N)f@$~f @$&fH {H=fDӒHLH} I*DHƕAHH(E1HCHP0H DH= MfHL IzDHHH5'H5HH81蕑' H H=%I$HP1{fIH9'H8豋QImu IELP0H 3ɕH=KCfD(ffDוfDAHFHHD$诇IfDMt$MI\$IHI,$u ID$LP0HLHUI.IIFLP0 fHt$HI+fDHt$LIfDLB1 uH}Ht$mAIDLB1 uI|$Ht$FAIQ@H=A褋F@HEHAHLDcHuH'H5H8؈fDH=D@E1IHuH̓'H5͗H8荈Hɕ'HH5gH81͎H@`H&HHHHHPH-J'H9HkHMH H5HcHH@`HEHH5LIH$H9hLI.Hu IFLP0ImuIELP0DH+HSHR0kHcfDkCHH HfDkH+뷐kCHH H5HBHHxHPDH耊H`HT$HLLaH5)HH'H %H5jL AHH81ߌY^jHHP'AH5KjL ZH H8H1蚌_zAX$蘉HH'H5GH8 vHB`H/HHHIHH9huuIEImHEHHHcHAmHcAmAEHH HAmAmAEHH H5H|IHpH+HCHP0L計Hr1ɺAIc1ɺAI H5H IHH*3HzH'H5H8褄_ HuHv'H5H8H DH=rH H=PAHHFH;'t H;5'u^Ht,H(tH'HHfDHPHR0@lH FH=c1H@HHH'H5KH>H81l@f.H9AUATUSHHHHFHHHW@@HXHt6HJH~H;rte1 H;ltWHH9u1H[]A\A]HH9t2Hu1H;-'H虂uIM9tJtH9u]H[]A\A]fHHH[]A\A][LfM{HvH9t1 fDH;\tHI9uE1HCs@fHFHt[@tRHXHt^HJH>H;rG1DH9t3HH9uéHGHH9Ht*HH9u@HH9Hu1H;5J'fAW1AVAUMATIUSHHHH|$(H$PHL$ HHH$ HIH)LL$H )HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H9HH")HQ HL=)L$MIGH52)LHHGIH$MAH/7HDŽ$IH$HHHXЄIH$H H'H5)H薅 H$H$L6IH$HI.u IFLP0H$H/uHGP0H$HDŽ$H/uHGP0H+H$HDŽ$H$u HCHP0H$H5)HDŽ$HGHH6IL$M6H5$)L9tIGH;ċ'n7IHT'HHD$H$I/H$H;|$HDŽ$H;='H'H\$u H9H/5HDŽ$a{H$H$HH$H Hz)H )H9H:Hr)H:HH=^)H$H7H5)H$H:H$H/uHGP0H5)H$HDŽ$HH'<H'HD$8H9EL}MHUIHHm=1HLHT$0mHT$0H$I/61H$fHGP0@IGLP0@H5!)H$IH$H8H@Ht$LH@pHO6H@HB6IL$M9H$H/uHGP0H$1H5)HDŽ$HDŽ$HHD$0IH$H:H;D$L;=&'u L;|$D0I/u IGLP0HDŽ$U H6)H')H9XPH)HQHL=)L$MOH5)LIH$HyQH$H/1H$He'HDŽ$H9G&ULoIH$L$HtH/uHGP0L$HDŽ$H$M;UH/1H5)1H$HDŽ$IH$Hu1H$H/uHGP0H$H;|$HDŽ$H;='4H;|$3b~H$Å~WH/uHGP0HDŽ$H5)H=)1IH$H}HNH$H/uHGP0H$E1E11HDŽ$D$+D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$8HGP0HDŽ$%ffA.Gz +fDH'Hr'HH\$@|H$ÅRH$E1E11H$D$E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0HY'E11HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$HD$HtH/uHGL$P0L$Mt I.uIFL$LP0L$H$HtH/uHGL$P0L$H$HtH/uHGL$P0L$Ht!HmuHEL$HP0L$H$HtH/uHGL$P0L$MtI(u I@LP0T$t$H 1H=pL;|$tMtIG@(-HL$0HtHHD$HHu HAHP0H$HtHHD$HHu HBHP0H$HtHHD$HHu HFHP0H$HtHHD$HHu HAHP0HT$ HtHHD$HHu HBHP0Ht$PHtHHD$HHu HFHP0HL$XHtHHD$HHu HAHP0H$Ht H/uHGP0HT$xHtHHD$HHu HBHP0Ht$pHtHHD$HHu HFHP0HL$hHtHHD$HHu HAHP0HT$8HtHHD$HHu HBHP0Ht$@HtHHD$HHu HFHP0HL$HHtHHD$HHu HAHP0HT$`HtHHD$HHu HBHP0Ht$(HtHHD$HHu HFHP0H+u HCHP0MtI,$u ID$LP0MtImu IELP0HH[]A\A]A^A_H'E1E11H$D$D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0HD$WL;l$EL=vHD$@HGH)H)H9XLH)H(HL=s)L$M3KH5)L;IH$HLH$H/uHGP0HC)H)HDŽ$H9X&NH)HQHL5)M$NH5+)LHH=PI.u IFLP0H)H)H9XQHx)HSHL5d)MQH5)LTIH$HeSI.u IFLP0H|'HD$8H9EUH$HHH$H$H/uHGP0L$HDŽ$MTH+u HCHP0H5F)H$IHVH$H/uHGP0H$HD$8HDŽ$H9G WLmH$H$Ht H/uHGP0HDŽ$I/u IGLP0L$MWH$H/uHGP0H$I}HDŽ$H5)HDŽ$H$QH)H)H9XfbH)HeHL=n)L$MaH5)LfHH-dH$H/uHGP0H5)LHDŽ$*IH$HnHDŽ$HEH;D$8oA1H;R{'[H; |'T:qIH$H|H$HtIGHDŽ$H$HcIcHHITH()1HH$HDHDŽ$褽IH$H{H$H/uHGP0HDŽ$Hmu HEHP0H$H;|$H;=y'iLH;|$^LqH$Å0tH/uHGP0HDŽ$H)H{)H9XHb)HHH-N)HH56)H^IH$H:Hmu HEHP0Hj)H)H9XH)H.HL=)L$MH5V)LIH$HGH$H/uHGP0H5)LHDŽ$袽IH$HH$HD$8H9G}LHH$H/uHGP0HDŽ$HH$H/uHGP0H5)HHDŽ$IH$HHmu HEHP0H$HD$8H9GH$٨H$H$H/uHGP0L$HDŽ$M:H$H/uHGP0H$HDŽ$HH$HH$ujHHH;D$H;w'kH;l$kHnÅ9Hmu HEHP0|H$HH$H$H$H/uHGP0H$HDŽ$H/uHGP0H$H$HH$H/uHGP0H$H$HDŽ$HHD$HHHu HAHP0HDŽ$H$Ha) H(hE111AHLIH$HUH$HH$H/uHGP0ImH$HDŽ$u IELP0HDŽ$H;\$!YH5:)HHknIH$HOXH5[)HFIH$HZH$H/uHGP0H$H;|$HDŽ$H;=t' =H;|$=lH$AŅ\H/uHGP0HDŽ$E^H5)H蛹IH$HgHt$0HǺgH$IH$HiH/uHGP0H$H;|$HDŽ$H;=t'MDH;|$BDkH$AŅsH/uHGP0HDŽ$ElHt$@H)H)H })D$@H9HLvH^)HhyHL=J)L$MBvH5)LrH$IH$HyH/uHGP0D$@HDŽ$hIH$HyH$HD$8H9GLH$H$H/uHGP0L$HDŽ$MЂH$H/uHGP0H$H;|$HDŽ$H;=ur'!MH;|$MRjH$ŅąH/uHGP0HDŽ$[Hp)H )H9H)H)H)HL=)L$MbH5)LIH$HH$H/uHGP0H$H5d)HDŽ$裶H$IH$HH/uHGP0H5)1HHDŽ$dIH$HTH$HD$8H9GYHoHYHGHEHH$H$H/uHGP0H$H$H}H$Hmu HEHP0H$H/uHGP0L$HDŽ$MH$H/uHGP0H$H;|$HDŽ$@H;=Gp'@UH;|$U#hŅH$H/uHGP0HDŽ$mD$@\fTʵEeIH$HH$HbIH$H$H$H/uHGP0H$H;|$HDŽ$@H;=go'@gH;|$gCgŅ@H$H/uHGP0HDŽ$I݅H5n)H=g)1hIH$HH,H$H/uHGP0IH$E11H$E1E1HDŽ$D$*D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$DH=q)Hr)H5s)NIPfDH9n'E11HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$HD$1f.gIHim'E1E11HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$HD$H=)I@Hl'E11HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$HD$df0_%H=br1Hk'H$E11HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$HD$jf.H8HH$H<H*u HBHP0H$HD$8H9GmH$耛H$H$H/uHGP0H$H$HDŽ$H/H$H$HDŽ$HDŽ$HD$0Ht H/ H$HDŽ$Ht H/H$HDŽ$Ht H/H5)H|$0HDŽ$\IH$H0H;D$L;=Gi'u L;|$I/0HDŽ$|H])H^)H9X]HE)H:HL=1)L$Mn8H5)L٭H$IH$H:H/uHGP0H$HD$8HDŽ$H9G;L蕙IH$L$HtH/uHGP0L$HDŽ$M;H$H/uHGP0H57)1H$HDŽ$ IH$H0=H$H/uHGP0H$H;|$HDŽ$H;=g'EH;|$:_H$Åg>H/uHGP0HDŽ$H5)H=)1譪IH$H>kHqH$H/uHGP0H$E1E11HDŽ$H$E1D$D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$ fHDŽ$L;d$yH*f'1HDŽ$HHD$H9 f'É$dHE)I$H)H9XjBH)H#CHL=t)L$MAH5)L輪IH$H=BH$H/uHGP0HDŽ$[IH$HBI$L`]IH$HcCHx)Hɴ)H9XEH)HHHH-)HmDH5|)HIH$HFHmu HEHP0H$H5)H$K^kCH$H/uHGP0H$H$HDŽ$H$ŧIH$HHKH$H/uHGP0H$HDŽ$H/uHGP0H$HDŽ$H/uHGP0I,$H$HDŽ$u ID$LP0Hc'L$HDŽ$H$HL$ HD$H9H; c'?Ht$H91Hi[ ;L;l$-H5)L_HD$ H$HEH *b'HDŽ$HL$8H9H9HH@H$H8HQHHH$H$H/uHGP0H$H$H|$ H8ӓHD$ H$H$HtH/uHGP0H$HD$ H|$ H$HDŽ$FH/uHGP0H$1ɺHHDŽ$HHD$ HDŽ$藷IH$HIH|$ H6WIH$HnKH$H/uHGP0HL$ L$HDŽ$HHD$ HHu HAHP0H5z)H|$(HDŽ$茦IH$HLHDŽ$HD$8I9G=IGH$H<IWHHH$H$H/uHGP0H$L$H<H$LmIH$L$HtH/uHGP0L$HDŽ$MUH$H/uHGP0H$LH5Ż)HDŽ$HDŽ$HD$PkIH$H^WVIH$HXHL$PHH$HHXIH$HO`Hl)H5)HYDH$H$H$ H$IH$HetH/uHGP0H$HDŽ$H/uHGP0H$HDŽ$H/uHGP0H$H ֮)HDŽ$HDŽ$HD$XHj)H9HsH)HuxHL=)L$MsH5)LIH$HI{H$H/uHGP0HDŽ$UIH$HzHL$XHH$HH WIH$HyHM^'H5޿)HWDyH)H )H9HcH)H?HL=)L$MH5)LH$HHH/uHGP0H5)HH$HDŽ$GWHmu HEHP0H$H$H$ѠIH-H$H/uHGP0H$HDŽ$H/uHGP0H$HDŽ$H/uHGP0HL$XHDŽ$HHD$ HHu HAHP0Ld$ HD$`HD$HHD$@HD$8HD$hHD$pHD$xL|$XE1$L\$XH5K)I{H5)LkHD$(H$HH 6['H9HxTHhHkTH@HEHH$H$H/uHGP0H)H$HhHmHD$(u HEHP0H|$(,H$H/uHGP0HL$XHDŽ$HHD$XHHSHAHP0HD$(HD$XH5>)H$qHH$vH5n)1H费HD$(H$HuHmu HEHP0H$H;|$H;=Z'9H;|$ 9RŅrrH$H/uHGP0HDŽ$O$XVH5r)H|$X訟HD$(H$HIH5)H|$(1߸HHH$H/uHGP0H;l$HDŽ$H;-+Z'mH;l$mHRAącHmu HEHP0EUH1)H )H9HH)HqHH-)H&H5})H赞HD$(H$HӑHmu HEHP0)RHHzH5V)H$iIH&H56)HHHD$RLD$ΐI(u I@LP0H5B)H$HbHD$(HuH$H/uHGP0HDŽ$Hmu HEHP0H$Ht$XHGH@pH#H@HIMH5)H|$(LLD$ ILD$I(u I@LP0HD$(IH$HHHGP0@HEHT$0HP0HT$0IGHT$0LP0H$HT$0BLOL$ÅH$E1E11H$D$E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$IGLP0HGP0P@HGP0@HGP0@DŽ$HD$HDŽ$HH$H)H)HHI,$H$ID$LP0L@NL$ÅH$E1E11H$D$E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$7HGP0@HGP0iH=)ضIE11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$H=)H)H5)ݕIDI/gIGLP0XNI7HT'E11E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$ D$HD$7H;R'SLFIH$HLHS'E11E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$HD$9fID$-H$Ht>H/1(1HGHT$P0HT$HDŽ$HtH*u HBHP0H$Ht H/uHGP0H$HDŽ$Ht H/uHGP0H{XH5)HDŽ$D$t$H H=iH$H$HH$ŜH5Ʃ)H=)1舔HH#/HTHm5HEHP0D$D$HE11E1H$H$H$̠H$H$E1HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0@H$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$H=9)H)H5)膐H(fDH=)蜰H@D$/H$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$HD$0D$D$D$sD$CH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$$@H$D$2+H$HtH/HDŽ$D$@+D$PH7f.HoHHGHEHH$H$H/uHGP0H$H$HYH$HmFHEHP07Ht$0H?HHD$ H$Hx7HD$H9H; JL'8Ht$H9*H!DŅL8H$HD$ HL$ HHD$ HHu HAHP0HDŽ$BH5)1H?HHD$ H$HEHD$H9H; K'4HD$H9&HyCADžFH$HD$ HL$ HHD$ HHu HAHP0HDŽ$EKL;l$7Hr)H )H9HbHj)HaHHV)HD$ H$HAaH5Y)HHD$ H$H`H$H/uHGP0H5ǣ)LHDŽ$=HD$ H$H_HiI'H$HD$8H9GzaHt$ p{H$H$H/uHGP0H$HDŽ$HD$ HbH$H/uHGP0H$1HHDŽ$=H$IH$H"bH/uHGP0H$H;|$HDŽ$H;=I''H;|$'gAŅ7aH$H/uHGP0HDŽ$oH])LHH5)H$2HD$ H$HTnHDŽ$HL$8HH9H8IH@H|$ H$HIHL$ HQHHH$H$H/uHGP0H$H$HHyH$H$Ht H/uHGP0H$H$HDŽ$HD$ HlH/uHGP0H$HDŽ$ImH$u IELP0HC)H D)HDŽ$H9HoH)HoHH )HD$ H$HnH5)H讌HD$ H$H>nH$H/uHGP0HDŽ$=HD$ H$HH$HH$HH?HD$ H$HHHU)H F)H9HH-)HHH-)H:H5y)HًIH$H~Hmu HEHP0H$H5)H$(@H$H/uHGP0H$H$HDŽ$H$袉H$HD$ H$H€H/uHGP0H$HDŽ$H/uHGP0H$HDŽ$H/uHGP0H$H5)HDŽ$HDŽ$HHD$x豊HD$ H$HX{HD$ HL$8HDŽ$HH9HmHD$ H|$ H@H$HamHL$ HQHHH$H$H/uHGP0H$H$HmvH$H$Ht H/uHGP0H$HDŽ$HD$ HWvH$H/uHGP0E1E1E1E1H$H$HDŽ$HDŽ$HD$p1Hl$ HHH$1H7H$HbuH;D$H;$D'4TH;D$)TH;HyH$H/uHWD$@R0D$@HDŽ$H5)H|$(ԈH$HVH$H>H$H:H$HH$H$HDŽ$HL$8HPH9OW}HWH$HB}HGHHH$H$H/uHGP0H$H$H$H|HOH$H$Ht H/uHGP0H$HDŽ$H/uHGP0H$HDŽ$H,H$H/uHGP0H$HDŽ$HD$hMtI,$u ID$LP0H5U)H$HDŽ$W5H$HӆH;D$AH;A'DiH;D$iH9Aą)H$H/uHGP0HDŽ$E6{H)H Đ)H9HH)H}HH)H$HH5)H_H$HhH$H/uHGP0H$HL$8HDŽ$H9HĖH$HrH$H$Ht H/uHGP0H$H$HDŽ$HH/uHGP0HDŽ$L$HtH+u HCHP01ɺHLHDŽ$ڕH$H+HL~5H$HH$H/uHGP0HDŽ$H$I,$u ID$LP0H53)HHDŽ$H$Hړ<6H$HMHL$hHH$HHA8H$HH)H5z)H 9H$H$H$襂H$HH$H/uHGP0H$HDŽ$H/uHGP0H$HDŽ$H/uHGP0HDŽ$L$MtI.u IFLP0H)H ƍ)HDŽ$H9HH)HHH)H$H H5 )HeH$H{H$H/uHGP0HDŽ$4H$H͎I$H$L`6H$H4HT$H5e)Hm7H$H$H$H$H3H$H/uHGP0H$HDŽ$H/uHGP0H$HDŽ$H/uHGP0H$HDŽ$HGH;9<'HWHHGH$HG H$H$HH$HH$H/uHGP0HDŽ$H$HD$@MtImu IELP0HDŽ$L$MtI/u IGLP0H5Q)LHDŽ$eH$HHDŽ$HL$8H9HaHPH$HLH@HHH$H$H/uHGP0H$H$H lH$H$Ht H/uHGP0H$HDŽ$HdH$H/uHGP0H$HDŽ$H/uHGP0H5i)LHDŽ$MIH$HHDŽ$HD$8I9GfIGH$HQIWHHH$H$H/uHGP0H$H$HLGH$H$Ht H/uHGP0H$HDŽ$HfH$H/uHGP0HDŽ$L$I,$u ID$LP0H5)LHDŽ$*H$HH$H),H$HH$H/uHGP0HD$pHDŽ$H@L`pMI|$HT$H$H$3IH LHH|$pAT$I/Au IGLP0ErH$H/uHGP0H5')LHDŽ$3~H$HCzH$H*H$HyH$H/uHGP0H$H$HDŽ$H$H/uHGP0MLd$hLl$@HDŽ$/DH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$鄴D$D$DH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$鲳H=[)H,)H5-)8xIH$E1E11H$D$JE1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$ٲH=)蝗ISE11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$cH5)H|$(kzHH8+IH$H{:HJ)HL$0HH$HBHH$HH -IH$H9H$H5͏)Hu.5H)H /)H9HmGH)H2OHL=)L$McGH5*)LyIH$HmNH$H/uHGP0H$H$HDŽ$H5)-H$EFH/uHGP0H$HH$HDŽ$HwIH$HUMHmu HEHP0H$H/uHGP0H$HDŽ$H/uHGP0H$E1HDŽ$HDŽ$HD$XHD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$PHD$ yH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$TD$H=)Hm)H5n)sIHGH$HŪHWHHH$H$H/uHGP0H$H$HL>I~E11E1H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$έH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$VD$E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$鸬DͻH=)H)H5)pIӱH$E1E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$YD$钫H$E1E11D$E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$H=)觏I6E11E1H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$#鱳DH$E1E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$[D$`H= )$IٮHGH$H HWHHH$H$H/uHGP0H$H$HL=9IE11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$部H=)H{)H5{)lIH$E1E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$^D$hH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$鴦H|$ 芭HD$ BHDŽ$H=8)SIoH$E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$`D$̥H$E1E11H$D$E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$IH$E11H$D$E1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HH$E1E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$pD$ʣL}MH]IHHmu HEHP0H$LH3H$I/ܩIGLP0ͩHE@=H$HHHH$H$H$H2)H$gIH$H{XH$Ht H/uHGP0H$HDŽ$H/uHGP0HDŽ$H$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$sD$HGH$HߨHWHHH$H$H/uHGP0H$H$HL1阨E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$3H$LLUIAH$'E11E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ L$D$gD$H$-H=ր)Hs)H5s)dI鏽HL#'E11E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ L$D$iD$H$dH= )(IԼH"'E11E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ L$D$lD$H$驞D$D$oH!'E11HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ L$D$qD$H$/H)!'E1E11H$L$E1H$D$xD$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ H$>H 'E1E1E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ L$D$sD$H$閜E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$8D$@H=|)Hn)H5n)`H#H$HHHH$H$H$H)H${IH$HE1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$-H''H$E1E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ L$D$uD$H$AIE1E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$H=hz)~HIH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$QD$H5)H{0~ǦIH$E11H$D$GE1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$:IE1E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$鵗Ld$ E1IE1H$1E1H$D$ D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$X,@RIE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$SD$ʖH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$ەH=v)Hi)H5i)aZI铝H'E11E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ L$D$zD$H$IH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$鈔IE1H$1D$VE1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$LJHH$cH$E1E1E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$$IE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$H=Ns)iwIkH5Rn)H=+|)1,YIH$HNHnH$H/uHGP0IE1H$1HDŽ$E1D$eD$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$IE1E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD${D$aLd$ E1I1H$E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$鋐IH$E11H$D$|E1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HkHD$@HGH|$0kIHG$00H l)HD$`HI'?H|$@rHD$ H$HLTHD$ H$HHt$`H|$ _HD$ H$Hk~H$H/uHGP0H$H$HDŽ$H$HD$ H$H}H/uHGP0H$HDŽ$H/uHGP0H$H;|$HDŽ$@H;='@15H;|$&5 ŅPH$H/uHGP0HDŽ$Hy)ffWI*HD$XH$HQHD$XH5q)HDŽ$LpHD$(He^HD$ H$HPHD$(H5q)H7^HH$H|~H'HDŽ$HD$8H9GEHGH$HEHWHHH$H$H/uHGP0H$H$HEAH$H$Ht H/uHGP0H$HDŽ$~H$H/uHGP0H$HDŽ$H/uHGP0HDŽ$Q LH+T$@LHHH|$(HNLHv]H>H$Ht`H5g)1RH$HD$ H/uHGP0H|$ HDŽ$}HL$ HHD$ HHu HAHP0H|$0Hd HD$ H$HiH$ARE1E1jH|$h11jHD$0H$A[]HiH$H/uHGP0H$H5Qp)HDŽ$SH$HD$ H$HShH/uHGP0H$HD$8HDŽ$H9GhHGH$HhHWHHH$H$H/uHGP0H$H$Hg&?H$H$Ht H/uHGP0H$HDŽ$HD$ H?}H$H/uHGP0HL$XH$HDŽ$HHD$ HHu HAHP0HDŽ$E1Hl$XH|$XH5h)H$HGHH|ЅIH$E11H$D$b$E1D$5HD$(HD$HHD$@HD$8HD$hHD$pHD$xHD$PHD$ bIE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$wD$ H$E1E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$HUH$HlH]HHHmu HEHP0HCHA1ҿC"HD$XIHD$(H$HH鼈Ld$ E1I1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$bIE11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$yD$xH5b)H=p)1MHD$ H$Hb<HbH$H/uHGP0D$IH$E1HDŽ$D$HD$(E11HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ Ld$ E1I1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XD$D$eE11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$'D$鼄@{H5`)H|$(8HD$(ѫHD$(HD$XLd$ E1I1H$E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XD$D$鼃H5u_)H=Vm)1WJIH$H 6H`H$H/uHGP0IH$E11H$E1E1HDŽ$D$D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$鼂IE1E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$遂H$E1E11D$E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$闁IH$E11H$D$E1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ H5b^)H$MIIHqHrl)H R)H9HJ\HR)H\HH-R)Hx]H5f)HLD$HLD$HHD$(H$]HmuHELD$HP0LD$LD$LD$HH\HD$XLD$HHE$LD$HIV\Hk)H R)H9H\HQ)H[HHQ)HD$(HD$(H$H[H5b)H|$(LD$HLD$HHD$(H$A[H$H/u HGP0LD$H$H5c)LLD$HDŽ$BH$LD$dH/uHGLD$P0LD$H$LHLD$HDŽ$ELD$HHD$(H$4dH$H/u HGP0LD$HDŽ$HmuHELD$HP0LD$I.uIFLD$LP0LD$LD$MLD$HIdH$LD$HDŽ$IFJLD$HHHD$(H$WcHT$H5c) LD$>YH$LLLD$DLD$HHXI(u I@LP0I.u IFLP0H$H/uHGP0HDŽ$IH$HD$(~IH$E11H$D${E1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$|H5nX)H=wf)1xCHD$ H$H:H:YH$H/uHGP0IE1HDŽ$H$D$D$`A$Ld$ E1I1H$E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XD$ D${IE1H$H$D$WE1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ B{E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$zH$E1E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$zH=Z)H M)H5 M)>I魉IE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$yIE1E1E1H$HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ D$KD$xH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$HDŽ$D$D$wIH$E1E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ D$UD$fwIH$E1E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ D$MD$vH=~W)[I鏆H$HH$H$;IE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$GvIE11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$]uH`)H G)H9HibHG)H:HHG)HD$ HD$ H$H9H5(Y)H|$ ^=HD$ H$HH@H$H/uHGP0HDŽ$HD$ H$H?HH$HXHD$ H$H>H `)H F)H9H>HF)H}>HHF)HD$ HD$ H$H=H5W)H|$ }HD$ H$HPHD$(H5R)H>H$HPHL$8H9HPLpMPH@IHH$H$H/uHGP0H$L"I.uINHD$ LQ0HD$ HOH$H/uHWHD$ R0HD$ HDŽ$H(u HPHR0MML+L$@HD$ HD$(MLt$HLd$PHHD$8LILIL9MH|$8HE111LT$hLL$PLL$PLT$hHL!H9qMHL!HtHHuHIHI߫IE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$)RBInH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$\H={=)H/)H5/)X!I gH$E1E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$ \H$E1E1E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$a[H= <)%@H7eH=;)Hw.)H5x.)HeH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$ZH=,;)G?IdLd$ E1IE1E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xD$,D$YLd$ E1I1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xD$*D$YH=0:)K>I~H=:)H-,)H5.,)I~@IH$E11E1H$D$$D$9YIH$E11E1H$D$$D$9XLd$ E1I1H$E1HD$(HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xD$1D$kXLd$ E1IE1H$H$E1D$/D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xWIE1E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$ D$hWIE1E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$ D$-WH5o2)H=@)1HD$ H$HKH|$ A3H$H/uHGP0IH$E11H$E1E1HDŽ$D$D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ UIE1E11HD$(L$HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$* D$UIH$E11E1E1HD$(L$HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$( D$TH=5)9HD$ WH=n5)HO')H5P')KHD$ 3Es[IE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$5TIH$E11E1HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$CSH5.)H=<)1IH$HWFH/H$H/uHGP0IH$E11H$E1E1HDŽ$D$D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$CRIH$E11H$D$E1E1D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$QIE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$D$DIH$E1E1H$D$$HD$(D$EDH=$)(HmH=$)H)H5)yHdmIE11H$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ HDŽ$HDŽ$D$aD$xCH$@ImAT1AE1jHL$01H$Y!H$ZYH!HO)H$H϶OH$H/uHGP0HDŽ$OH IE1E11HD$(H$HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$D$YBIE1E11E1HD$(L$HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$; D$AIH$E11L$E1E1H$D$9 D$HD$(HD$`HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ @IH$E1E1HD$(L$HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ D$6 D$N@IE1E1E1H$HD$(HD$`L$HD$HH$HD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ D$4 D$?H=[ )v$H |H=G )H)H5)$H{IH$E11E1E1HD$(L$HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$2 D$>IH$E11E1E1HD$(L$HD$`H$HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PD$- D$R>IH$E11H$D$"E1E1D$HD$(HD$HHD$@HD$8HD$hHD$pHD$xHD$XHD$PHD$ =H\$ HE11Lt$8IH$E1Ll$@H$L|$HE1L$HD$PHD$(HD$`HD$XD$ D$S=H\$ IE1H$Lt$81E1H$Ll$@L$L|$HE1D$ D$HD$(HD$`HD$XHD$P )Y_oH=- )H(H5( @oH\$ HE11Lt$8IH$E1Ll$@H$L|$HE1L$HD$PHD$(HD$`HD$XD$ D$)H\$ IE1H$Lt$81E1H$Ll$@L$L|$HE1D$ D$HD$(HD$`HD$XHD$P)H\$ HE11Lt$8IH$E1Ll$@H$L|$HE1L$HD$PHD$(HD$`HD$XD$ D$)H\$ HE11Lt$8IH$E1Ll$@H$L|$HE1L$HD$PHD$(HD$`HD$XD$ D$(H\$ HE11Ll$@IL$L|$HE1H$HD$PLt$8HD$(HD$`HD$XD$ D$|(HLl$@E11L|$HL$E1Ld$ IH$HD$PLt$8HD$(HD$`HD$XD$ D$(HLt$8E11Ll$@H$E1L|$HE1L$Ld$ IH$HD$PHD$(HD$`HD$XD$ D$\'H\$ HE11Lt$8IE1H$Ll$@L$L|$HE1HD$PHD$(HD$`HD$XD$ D$&HPH$H'iH@HHH$H$H/uHGP0H$H$HhH$H۶hH\$ HE11Ll$@IL$L|$HE1H$HD$PLt$8HD$(HD$`HD$XD$ D$f&H\$ HE11Lt$8IH$E1Ll$@H$L|$HE1L$HD$PHD$(HD$`HD$XD$ D$%H=V)q }gH=E)H(H5("^gIH$1E1H$D$$D$FP%H&H$QD$@`VIH$E1E1H$D$$D$E%IH$HD$(H$D$A%D$K$IH$1H$D$@%D$KHD$($H=F)LD$\ LD$HѣH=()Hy(LD$H5u(LD$H饣ID$/%H$D$KU$IH$H$D$-%D$K $H=)LD$LD$HD$(H=)H(LD$H5(lLD$HD$(IH$HD$(H$D$+%D$K#IE1H$HD$(H$D$&%D$KX#IH$E1H$D$#%D$K-#IE1H$HD$(H$D$!%D$K")9IE1E11E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$"D$|"IE1E11HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$"D$S"IH$E11E1E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$"D$!H\$ IE1E1Lt$81E1H$Ll$HH$L$D$!D$HD$(HD$`HD$XHD$P#!H\$ HE11Lt$8IE1H$Ll$HH$HD$(L$HD$`HD$XHD$PD$!D$ MH\$ IHnH \H5uLt$8HDHPE11Hd&E1H81ϝLl$HE1H$L$H$D$!D$HD$(HD$`HD$XHD$P H\$ HE1E1Lt$8I1E1Ll$HH$HD$PL$H$D$!HD$(HD$`HD$XD$HH9tHuH;&HD$ H=(HqL|$ AOlE1pHL!HTH:tHL!HTH:uHI|$0LMM H|$ H$HܔH5r(1H$H$H/uHGP0H$HDŽ$HD$ Ht1HL$ HHD$ HHu HAHP0HDŽ$bIH$E11E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$J$D$$H|$(HL$HHt$@HD$h#H$H/uHGP0IH$E11HDŽ$H$E1D$$HD$(HD$HHD$@HD$8HD$hHD$pHD$xHD$PHD$ ;H$骯D$Z#LIH$E11E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$X#D$$H yIHWHL(HGHHOHQ&VH5H81ǙAXAYMtMI/u IGLP0Hl$ IE1E1H$H$E1D$J#D$#HD$(HD$HHD$@HD$8HD$hHD$pHD$xHD$PHD$ L|$ 1LE1H&H5MH81-H8HW&1H5H81̘H8&H5)H8QIH&H5зH8(IHIHyH9pHfH&H5H8ڑrI1H$D$>%D$KID$4%H$D$KID$2%H$D$KHD$(jI1H$HD$(H$D$9%D$K7H9IH$E11E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$E#D$#IH$E11E1E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PHD$ D$"D$,H=(HD$ 阦H=(H@(H5A(HD$ tIH$E11E1E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$ #D$#wIE1E11HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$ #D$#NIE1E11E1HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$#D$#IE1E11HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PD$#D$#kIH$E11HD$(H$HD$HHD$@HD$8HD$hHD$pHD$xHD$PHD$ D$7#D$#HG@={H$L$~$H$IcHk$)$HL ?&HHD$\LmDMHH HOHIL LOLDHH &AUHH5H81iXZH VH=wHH1[]A\A]A^A_fIfHJcHfDHF@HD$8HE8HD$0HE0HD$(HE(HD$ HE HHD$HEHD$}IL /&I~HJcHfD'H5w(HHVL &HtHD$IM H5(HHV躃L &HtHD$ IMH5(HHV艃L &HtHD$(IMH5l(HHVXL Y&HtHD$0IM~zH5(HHV+L ,&HHD$8IuuHl$Ll$HHL$ LD$(Lt$0HFHHD$g|L ؋&IMHl$H\$8Ll$HL$ LD$(Lt$0H~HT$LHLH5|(x*Hl$H\$8Ll$HL$ LD$(Lt$0L \&5DAWAVAUIATUSH8H&L=(L%(HnH\$L|$Ld$ H\$(H H?H HcHH$Lf(L~ HFHD$H=4(L|$HGH;&H;w&iHOARHiE1 uLw覀H H H։&; LLH~x WP H&=a29dH H(H (H9HHf(H HL5R(MaIFH5(LHH# IIHMIHu IFLP0LH\|IH I/u IGLP0L;5q&L;5&tI9kLÀADž I.u IVLR0EH(H q(H9H HX(H HL5D(M IFH5(LHH IIHM IHu IFLP0LH^{IH I/u IGLP0L;5s&L;5&I9LADž I.u IVLR0E L=(M9Hˆ&I9D$I9GA|$  A  IT$I;WvID$IOH9@H@t HPA|$ EG D8,@ k IL$0IH@IDHA E IO0IwHA@HEȃ  DA9Ht#1H=|MIuL$HT$H=&IL(HH4 I.IFLP0H$H\$f.H$H$HF0H$I9WOMIuL$HT$H=&IL(HH{I/u IGLP0Hmu HEHP0H8H[]A\A]A^A_DD@9{@$@HHIH H׾HIHH&I?UIH5H8L A1X5ZH TH=p1! E@L=(M9Hم&I9D$I9GA|$ A IT$I;WLID$IOH9@H@t H&A|$ EG D8@ IL$0IH@IDHA IO0IwHA@HEȃDA9H1HPy}fDI9uuwI9uunLLvIHH;&L;%Y&I9L5{I,$u ID$LP0iMIuL$HT$H=&IL8(HHAA@DLHHH U1H=*H6IHHcHHF0HD$(HF(HD$ HF LHD$HFHD$4sIH~eHHu*M~.H5(LHVmyHHD$(IMHD$L|$Ld$ HD$HD$(H$mHufDHt$HfI9uLLtIHtIH;܁&L;%R&I9L.yI,$u ID$LP0ADAaDH gD1H=6IH=9(H(H5(IDfDMIuL$HT$H=U&IL(HH0IAH#H=(I@cAIHAIFLP02fzIH=Dv[AfI/IGLP0@vHH~&H5H8dsIhAHDHFLHD$pIMH5\(LHVvHtHD$IMgH5(LHVvHHD$ I LpIM"H5(LHVavHuHD$I^f.Ht$aHfH= (Hj(H5k(IfDAxH=(I@xIAA+IAHfH=i(H9HEt H;&HxHHH=(HӮIHMHHu HCHP0LI,$uyID$LAP0gI,$DI,$DA+IAHAHT$HLLH5n(LmJL|m@}IwHI|$HLTmAslL4mIwHfI|$HBDD^DiDFHrHHAAIHAH EH=\"f.AWAVAUATUHSHXL%{&L-Y(H{&H^H|$HD$ Ld$(Ld$0Ll$8HD$@HHHHcHL=1{&Lm0HE(HD$H] HmHEHL9H=(Ll$ HGH;{{& H;6|&HWBHrE1H4$ uLwaqH QP Hz&;) LLH$H$4qp VP Hdz&=W29ZH<$1 H(H (H9H H(H HL5(M IFH5(LHH IIHM IHuIFLT$LP0LT$H<$LֺLT$mLT$HIIL HIu IBLP0L;5 z&L;5y&MM9DL\qd I.uIVD$LR0D$L;=y&AL;=*y&D&M9LqAAHD$HH1HLLHIAWHT$d(_AXIIM*HIu IGLP0L9d$H $IMHHD$HHuH<$HGP0MtI.u IFLP0Hmu HEHP0H+u HCHP0HXL[]A\A]A^A_DL=)x&Ld$L@L=x&Ld$L=w&@L~8LhIH5(LIHV6oHD$ H H]@HHH HOHIL LOLHHw&SH/H5H81gqXZH H= E1@9m@$@HEI,$u ID$LP0L5(IHm+HEHHLP0fDH(H5*(H9pH(HPHL(M|IBH5(LLT$HHLT$IIHMIHu IBLP0H<$L\iIIMHIuIFLT$LP0LT$L;av&L;u&<M93LLT$mLT$A I*u IRLR0EEL;=v&AL;={u&Du M9 EHD$H1HHLLHIARHT$LT$ (Y^LT$HIIHIbIBLP0Sf.E L@H$H<$pH :E1H=<@HLDDHIHԻHcHHF8HD$@HE0HD$8HE(HD$0HE LHD$(HEHD$ 3eIH HHcHfDIEH5t&L7gHHH;\t&AH;s&Du H;L$EH)EImuIELP0EH(H w(H9Hm H^(H HH J(Hq HAH5(HHL$HH HL$IHHM\ HHuHALL$HP0LL$Hq&I9A LLLL$LL$IMIHML IHu IBLP0IGH5(LHH HIHH IHuIGHL$LP0HL$H5(HϺHL$eHL$HIH HHu HAHP0L;=r&L;= r&GM9>LiAąk I/u IGLP0E&IEHp&I9ELLѢMIIHM/IHu IBLP0H $HHD$HHHt$ YH$tH(H=(H9x H(HHL5(M IFH5(LHH IIHM IHH<$LֺLT$cLT$HIIPHIL;5q&L;5p&M9yLah#I.uIVD$LR0D$L;=p&AL;=/p&D[ M9R L hAHD$H1HHLLHIAWHT$a(IXIZMH1E1MAmAH= (H*(H5+(I`fDH H=@H4$AHHD$HHE1@H=(I@iI1AAIHWIFHL$LLT$P0LT$HL$MHtHHHHu HAHP0DDH "AH=uH4$HHD$HHfH=AqdHAAIHuIBLP0zfKeHQHl&H5pH8a6IA1E1AHHAHP0H5n&L`HH H;!n&AH;m&DL9 HHL$leHL$As H)u HAHP0EH(H E(H9H H,(H HH (H H5(HHL$HL$HI H)u HAHP0H5(LIH I/uHD$IGLP0LT$LֺLLT$_LT$HH I*uHD$IBLP0HL$H; l&AH; Sl&DL9HHL$)dHL$Ac H)u HAHP0ImpafIFLT$LP0LT$IBLP03HHL$cHL$AIEIAHIEH I*A48LhcAD$bDD$H>H=H AH<$HHD$HHHGP0f.AA3I*E1fHFLHD$ [IMH5(LHVbHtHD$(IM~zH5v(LHVaHtHD$0IM~TH5P(LHVaHtHD$8IM~.H5(LHVaHHD$@IMHD$0Hl$ H\$(Ll$8HD$L|$@LJE1 uLGHt$  LAH$DH(H5(H9p H(H HLշ(Md H5 (LLT$pLT$HIIm HIu IBLP0H<$Lh\IIMc HIuIFLT$LP0LT$L;mi&L;h&0M9'LLT$`LT$A\ I*u IRLR0EL;=i&L;=h&\M9SLd`A HD$H1HHLLHIARHT$LT$ (AZA[LT$HIIHA Af,H=I(HZ(H5[(&IIfDD$^DD$HZfH1E1MAAyE AA.aLT$IfDH=(I@H1A1AH=i(H(H5(FHfDA5AEA5ACaHL$IjfDH=(H@A5AIIHdMQHII)uIALT$LHL$P0HL$LT$HLLHL$LT$ sHL$LT$IH) HALT$HP0LT$MA MA5[`H$DHIA5A8IMAMA51HVIEMAMA4H7EHT$ HLLH5V(HA(H B(H9HH)(H0HL5(MH5(LũIIMHIuIFLT$LP0LT$H<$LֺLT$WLT$HIIHIu IBLP0L;5d&L;53d&M9L\I.uIVD$LR0D$L;=hd&AL;=c&DM9L[Aƃ HD$HE1HHLLHIAWHT$D(AXAYIIMH1E1MAA"R@XH=(H(H5(I HAAAH=k(I1AZA]IM}MMUIIImuIELT$LP0LT$LLLLT$oI/LT$IIGLT$LP0LT$A6A) HAA]IA_1E1AHDIEMAMA4HIEIAHAH$(H5(H9pH(HHL(MH5(LLT$裦LT$HIIEHIu IBLP0H<$LTIIM:HIuIFLT$LP0LT$L;a&L;a&DM9;LLT$XLT$AI*u IRLR0E[L;=Ea&L;=`&mM9dLXAǃHD$HHELLHIQ1ARHT$LT$ (^_LT$HII-HA$AfDD$OWDD$HjfH=Z(HK(H5L(7IbHAAzH=#(>I9H1AAH=(H(H5(ՠH]IEMAMA4HTAAiEIEIAHH=(HIEMLMAA4HIEAHC1ɺLAH$DIEMAMA4HMD$UDD$H 1H(H (H9HbH(HHL5n(MH5(L>IIMWHIuIFLT$LP0LT$H<$LֺLT$,QLT$HIIHIu IBLP0L;56^&L;5]&gM9^LUI.uIVD$LR0D$L;=]&AL;=V]&D7M9.L1UAƃ HD$E1HHLLHIASAWHT$(IXIZM,H1E1MAA&!LH=#(H(H5(IH=(IH1AA!sHA!AIA1E1A!HADHA#A#H=o(芽IRH=[(H,(H5-(8I0H!(H (H9HH٩(HHLũ(MfH5m(LLT$蠠LT$HII)HIu IBLP0H<$LNIIMHIuIFLT$LP0LT$L;[&L;[&&M9LLT$RLT$AI*u IRLR0E3L;=B[&L;=Z&M9LRAǃ(HD$1HHLLHIAPEARHT$LT$ (AYAZLT$HII'HA(AISQHn"EH1AA#A#ADIA1E1A%HPH$_DH(H5(H9pH(H#HL5s(MH5(LcIIMHIuIFLT$LP0LT$H<$LֺLT$QLLT$HIIoHIu IBLP0L;5[Y&L;5X&M9LPvI.uIVD$LR0D$L;=Y&AL;={X&DM9LVPAƃHD$EHHLLHIQ1AWHT$ſ(^_IIMRH1E1MAuA*H=X(H(H5(5IHA%A xH1A A%%$H=(IHHA)Ae)H1AbA)X)`H=(ǸIIAg1E1A)HeH=s(莸IYH=_(H(H5(H=J>E1">IHuHF&H5JH8k;1ɺAI@AWAVAUATUSHH@lAAAAHLgLP1DpHՐyOHA9DHtP)HcHI LH9H|PH1H0HLHtHHݐxH=W(H5 iu:H {ZH=/i7H1[]A\A]A^A_fH[]A\A]A^A_ff.USHHOHDOlHWxHH<$HLHL$E%LML9H9AD L9AH9A D!M9AI9AE DAIo D)L$o)T$PAo)$tsob)d$ oh)l$`Aop)$tLoz )|$0ox )|$pAo` )$t%oB0)D$@oH0)$AoP0)$DɃA9t$ANHcLTJHDPKHԐ~HHefH;iE&HgHHHHtHH[]@HCHP0HH[]fL9AH9A H9L9AD AWAIJo*Dfv)l$o0)$)t$PtaoZ)\$ ox)$)|$`t@oj )l$0op )$)t$ptob0)d$@oX0)$)$DɃD9AN HcLLJHDŽԐHDPHHH x<1H=+f*H xwH=.f@H HL$HHL$PIH$A HJHL$HHHL$XIHH$AHJHL$ HHHL$`IHH$AHJHL$(HHHL$hIHH$AHJ HL$0HH HL$pIH H$AHJ(HL$8HH(HL$xIH(H$AXHJ0HL$@HH0H$IH0H$A-HR8HT$HH@8H$I@8H$f.H (HHxH9HXHHqH~&H;Q1@H;THH9uHeA&HJH5HHWH81;H+u HCHP0H v*w1H=2dHH[]+H vw1H=cHHPLDH HL$HHL$PHH$ALBLD$L@H$LD$XALBLD$ L@H$LD$`ALBLD$(L@H$LD$hAxLB LD$0L@ H$LD$pATLB(LD$8L@(H$LD$xA0LB0LD$@L@0H$L$A HR8HT$HH@8H$H$H>&H5sH83KH@HH9HuH;@&AWAVI1AUI1ATIUSHHH=(ɍHHmIFH5B(HLHEAHL|$;HBIMDI|$pZ6IHS5IHL`H5>&I9FILLLL$/1LL$HII)tI.ZIGHHa5L5>&H QP A;q 1LLH65H QP AH=\9bHI/!I,$HCH;=&L%>&L9 HHKHPHHS HH9IEH9HC0@I9@HH)H!HHH)Hx1HHfoL ALHH9uHHH2H9'AT5HPH9PAT5HPH9PAT5HPH9PAT5HPH9PAT5HPH9PAT5HPH9PAT5HPH9PAT5HPH9v|PAT5HP H9vjP AT5 HP H9vXP AT5 HP H9vFP AT5 HP H9v4P AT5 HP H9v"P AT5 HPH9v@AD5HHHHu HCHP0I$HmLH+u HCHP0HHH[]A\A]A^A_fH/HHI|$p3IH+HCH;:&2LKMLcII$H+.HCHLL$P0ID$LL$H;<&H;<&LL$L$1LL$HI>MHcL$tLHHM|IMtID$HHELD$1L5;&LD$H QA;P 1LLD$LH1LD$H QP A=H @9HI(u I@LP0I,$u ID$LP0HCH;9&OH%:&L%:&H:L9H5btL.0v8I/AuE1I.uIFLL$LP0LL$MtI)u IALP0E1Mt'I,$u ID$LP0MtI/u IGLP0H nD1H=\HmE1HEHLP0HT_ID$IFLP0IALP0I.f.ID$LP0IGLP0I,$f @9/@$@ID$@=^LL$~D$E1L|$HD$Lt$0Ht D$)D$ ID$LX@ uMT$LL$<HLALL$HHA vI/H(uHPHR0@.H iH=V#1Bff.AWIAVAUATUSHXHGt$,H1?$IHbH(HIGH;4&t H;l2&IME1HD$HcD$,E1E1L|$0D$ MHH|$D$HD$8vIEH `4&I9MI9IEJ,IHEMtI)u IALP0HMtI/u IGLP0H{H;=k3&H5(6HCL@I\H{sH)LFHIE'IHHMHHuHCLT$HP0LT$H9-1( HuH1&H9tH~`HNH@T$u H9D$It$ ID$HHH9H9HEIt$H,HID$H|$IILLL$LHD$LL$HHL|$L|$0~(LD$LL$HH\2&H2H9 LD$LL$)'LL$LD$f.L$ I|$ ID$H5(IIL9DH9;HI|$H4HID$D$ D$&'HtILxI H ed~E1H=jHXL[]A\A]A^A_fDH;=a/&=Hs"IHHMD$~L|$0HAHHuHBLT$HP0MLT$tImuIELT$LP0LT$MI*u IBLP0t$H dDH=iIE1HIuIGLP0MtI,$u ID$LP0HtH+u HCHP0HHmHEHP0I9KlIHEP@HFHHG`HIfDH|$0LT$<$HNLD$8LT$I)IILD$jLD$LT$HI1M~(DH(HIWH (H HI9uLLLT$$LT$HH(uHpLT$HV0LT$I/IGLT$LP0D$ LT$D$Xf.{CHH H~f.CsHH H)ZfDH=q(H;=-&L|$0HFt H;.&LT$S(LT$IMH=(LD$HHGH;-& H;.&DHWBHRE1HT$ uLwLT$LD$#LD$LT$P P H,&;LT$LLHD$LD$Ie#LD$LT$P P H,&=.29cMI(uI@LT$LP0LT$LLT$装I.LT$uIFLT$LP0LT$ILE1D$XAH @HLLT$0"LT$`ILL|$0D$}AE1HLLt$DH `H=eAI/LLT$!LT$.D$ D$@DML|$0ImEH+ID$HHc\$,H)zD$:H+&HLHT$LD$LL$HLL$LD$HIHT$HT$LD$LL$D!LL$LD$HIHT$HT$~D$LLLl$D$@IHIDL#IH|H@HHD$HIHCLD$HLL$P0LD$LL$DIELD$LLL$P0LD$LL$DHLD$LL$LL$LD$HHH ^H=cLD$LL$LL$LD$LLILL|$0D$~AE1H=ILL|$0D$AE1HfLT$LD$LT$LD$@${nXC\ILLT$LD$BLT$LD$IMBILMD$SAHLD$HILL$TLL$LD$HH1H~*H (HHJH5(H4HH9uHLLD$ LL$HT$HT$LL$HLD$ H(u(HHHT$ HLD$LL$Q0HT$ LD$LL$H*HBLD$HLL$P0LD$LL$LT$LT$I>ILL|$0E1D$~AHjILE1D$QAHJIMLL|$0MD$AH"Ht$HLT$LD$#LD$LT$I<LZE1ɨ uLOLT$Ht$HLD$LALD$LT$IH=)LD$LT$LT$LD$LD$LT$HHZ%&H5[)H8LD$LT$HLLAD$HHHVE1E1 D$AH*uLLE1ImLLE1HH11D$~AHHAE1E1D$~뜾HLD$LL$(LL$LD$>HHE1LLD$~AH6HLLAD$H1ɺLALD$LT$I<H 'Z~AH=^>I/t11?f.AWAVIAUATUSHHT$HHGhIwlLHHH;$&HPHHhLh HEIEH(I,$tjL%$&L9AH;--$&Du}H;-v$&ttH ÅyjH 1YpqE1H=kGFHm$ID$LP0H@HP0I,$qfAIFHt$LPIHL9L;=t#&1L;=#&$LLIVLLHRpHHBHHHIFLHLPIH~H+u HCHP0I,$u ID$LP0HE1HHEuHEHP0MtI/u IGLP0Imu IELP0H[]A\A]A^A_HT$LLP IHH(tHmuE1@H@LP0HmuDHHBHHHH;U"&IFHT$HLPIHAqH+Au HCHP0H VDDH=EHmHч(L5x(HCLM H-B!&H QP ;U 1HLAHH QP EH=C9HHJzH+9q@KqH VH=HDMfDHQ &ME11H5CAbqAH8FH+u HCHP0H UDDH=C轥Hnf.~Hx.HHVH THEH&H58H81+MASqE11AlfHCHP09q @DHQ&H5m6H81떐AqAAzqA@$WfAqA胙H(sH&AqAbAqAJH(H LKL9IXH$H~H~&H;V1@H;THH9uH=&HJH5%AqIQH81AqAH1LBHHD5qaH=!kLHuH&H5!H85qHGH5,HPH&H81&H QP A;$kHLHH QP A$=329HMI$HH2I$Hu ID$LP0H=(Hl$HGH;P&ZH; &HWBHZE1 uLo:L%s&H QP A;$HLHH QP A$=29HHmHEHP0f.HH9tHuH;=&fHH=(HID$LP0LoW2IHTHHFHHD$y HH\$$fDH&H5/H8 fIH@XIT$`Ml$hAD$XID$hHtHHtHMtIEI|$XM|$`H$~ $Mt$hH$Ml$h $) $AL$XHt H/Mt I/Mt I. H=0;I|$Xfo$IM|$hID$`Ml$hAT$XHt H/BHt H(#Mt I/MLI.H=(~(IFLP0H=~(@ @$f.@DH= MI,$ID$LP0e_fH LH=Z:1ۛ fD@ D UfDH踋HHSIGLP0HPHR0HWH$R0H$@IFLP0PfIGLP0)HGP0 @e_!H=yy(Hj(H5j(VIHT$HLLOH55 (`l^fD @$Bf. @$fH8IHH5ep(LHV HrHD$IEfHt$qHf{IHL%HDHHH`Hmth_fDHEHP0h_LJE1 uLGHt$LAHH=T #W_aMuMLMeII$Imu IELP0HLL I.HIFLP0H=aw(uI@Ht$L~pHgfDHt$apHfxHt$LSHfDhHt$SH\f H&H&H5H8 H=< HH{&H5|H8<H`&H5aH8!x1ɺLAHAWAVIAUATIUSHX10HHH,z(\&CPfHCHI&)D$ Il$HH t(HD$0HD$@HD$8MDHHHHHFH FHMHUHNKLDH &H5 L HH81j ZndYzH iFH=05苖H+ 1HXH[]A\A]A^A_DID$8HD$@ID$0HD$8ID$(AoL$I|$ Il$HD$0)L$ H&H9GHGHPH1 H8OH $HHD$8H|$@Ld$0HD$HH;=&H;=q&u H;=&D$HEH;k&t H;-&TL;%&I$H;-{& HEHG H $C0HKH H<$9 ID$GH; &I$H{XH/7HGP0L;% &LcXZ ID$ Hc{0HC(HHcS0HC8HHS@H HEH}HPHUqE1<@IUHuIUHD$LR0HD$HBHS8JL9}(NlMcIIUHBIEH&I9EMEI@HMAEIvHHt]IMHQ`D$PHB_d{CLcXH$H" IEIHPIUHuULfLHtHHD$HT$H*DLBHD$HAP0HD$*DIIcL$yIH L$L!IH ;IH L,$~$HL<$H=q($@kIH I.u IFLP0H=s(L|$ HGH; & H;& HWB LrE1 gp VP H &;) LLAIp VP H &=,@96 M I/u IGLP0LeI.sIFLE1E1P0$eD$Hmu#E1HEHP0MtImu IELP0MtI/u IGLP0MtI.u IFLP0T$4$H DAH= 0fM H$H<$J Hs H$/fDInITAEA}HH HHH5Rl(LH6 IM Hi &I9G'MOMMoIIEI/H4q(LLLL$,LL$II)IEHM IEHu IELP0I,$u ID$LP0IFH; &IH{XMH/fD$EHI &1H5r(8H^fHH#RHcHfDID$8HD$@ID$0HD$8ID$(HD$0ID$ LHD$(ID$HD$ &IHhHQHcHfHEHHEHH54j(H|$e[I wHj(HH{PH/uHGP0Hi(Hs@H{8HCPC0 D@H$1HHHHHL9uD$HS LH5)m(ChIHH; &@H;# &@L;5h &LŃI.u IFLP0D$klLs LHHCH tpLHH<$H~bH5&H>HR HH&HHHfDHH9uHHH9WH5&H4HHHI,$ID$LP0DIH.HI,$H$ ID$LP0L@H &H@H5+Hh&HIH81DHI&HAH5+H81Y@HH7H$rfDL AEAUHH n@H51m(LMN8I fDH&H5+H8dH <H=*=I,$ID$LP0fd@Lo2IGLL$LP0LL$DHCHP0@IALP0GHEHP0fH5qh(H|$W{HEh(HH{PH/uHGP0H)h(S0H{@LC8HCPdHcHH)H$H HHIHHH9uNfDDGII L<$fDGII IL<$zfDID$LHD$ ^IH5d(LHVHD$(HIH5e(LHVHD$0HIMHl$ H|$(DH5)c(LHVUHtHD$8IM~H5g(LHV/HtHD$@IM~HT$ HLLj>H5'n[zKdz)LhIH5_(LIHVHD$ HIl$fD$eE1E1D$fDH5a[(H=Zj(1[GHHH']Hm\HEHP0dH5 [(H= j(1 GHHH\HmHEHP0ds@hH&HCXH&H5'H8CeL%~&)fL;5i&H\&H{XHH/uL%G&+fH51Z(H=i(1;FHH,H\Hm HEHP0D$$oenfD3@$f.dqLwIM$eD$$eE1D$HEE1HHE@E1E1$eD$rfDd$eD$$eD$D$$oel@$eD$@Ht$ q^If eQIIEHE1D$$e@LJE1 uLGHt$ eLAI|H=$eE1D$2HLH%H5H8B1H$D$$e@[dzD$$TfhH@D$$Ufdd H V&HH%H9H5 jL 6AH '5H81^z_;diD$$fsD$$ke_H=c(H;=%HD$H@t H;&Ht$2HHH=e(HW0IHKHmu HEHP0LRXI/IGLP0D$$7fH5#V(H= e(15BHHHXHmHEHP0D$$fhHH%%L >5AjHG8H5 H8H 31oAX5dAYz1D$$7fD$$fMHHH%H#:MH5S4H81D$$1eE1$2fD$ED$$}fD$$0fqHt$gH@1ɺLAID$$e6fDAWAVAUIATUSHxH%HnH|$HD$PHD$XHD$`H H HD$HnIHNe(HEIH &Q(H9H$ H Q(H$ HHP(H( HCH5]_(HHHZIHHM HHu HCHP0ID$H;o%H;%Hl$PH;%r IT$BLz1ۨ L L-%P P A;UMHHAH$H QP AE= @9 H<$LH<$H+u HCHP0Hmu HEHP0L;5% IFH;[c(eHH5V(LHkHHmH<$H5zV(HGHHnIMpLH`IHMHHuHCL\$HP0L\$I,$uID$L\$LP0L\$L;I%L;% L;% LL\$L\$I+u ICLP0kHb(H N(H9HHtN(HHL=`N(MIGH5[(LHHHIHHIHu IGLP0pIHILpH$HIG {H:HU(H5[(HHD$GHL$HLHHL$(H=ZM(1[*HHH'@H+HCHE1E1余TP0D$;H=D(H:(H5:('INfDE1E1佫TD$ HGME1E1THD$D$$@H=C(GI@E1E1qTD$E1E1HD$TD$.>IT$0I$0I;$0 HI$0IT$0I$0fDIME1E1HD$THD$EDHl$~D$HtPHLH\$`D$)D$P&BHD$HHIHl$1E1UD$HfH\$(HL|$0Ll$Ld$ MIHIML|$LLIHHH0I4$IuH0I$IEI)IuMLd$ Ll$IL$I|$ 7E1E1UD$H=A(H:8(H5;8(v%IH,$E1E1E1HD$,TD$E11IH HD$H5D(H 1HH H%H9C" HSH HKHHH+uHCHT$(HHL$ P0HL$ HT$(HHHT$(HL$ ~HT$(HL$ H*uHrHD$(HHL$ V0HD$(HL$ Ho H)uHQHD$ HR0HD$ H(u HPHR0hIL$I|$ HD$8HD$HHD$(H9HL|$HLt$@Lt$HD$0HD$HHD$@I$0HD$IL|$(MxwH\$0Ld$ MHH|$LIOHL$LLHL<LTHLLFHLL8H)IuLd$ IL$I|$ AT$HIL$u~I$(ID$(I$0H97Lt$@L|$HH|$8[H59(1L%I/Hu IGLP0HE1D$EW fA$8t%I$(H@8Hc@ I$0p^IT$0I$0I;$0rHI$0IT$0I$0&fDH\$(HL|$0Ll$Ld$ MIHIML|$LLIHHH0I4$IuH0I$IEI)IuMLd$ Ll$IL$I|$ oITHH==(HX4(H5Y4(!HH==(AI0E1E1HD$UD${E1E1余TD$H=X=(sAHE1E1UD$"nHD$&LhHMBHhIEHEHHD$HHu HAHP0LLH}ImHIELP0Hl$E1E1UD$E1E1DTD$IrIoH MoHEIEI/u IGLP0IEMA1ҿIE1E1FTHD$HD$H $MHHHD$HHl}LcI$0KL@(L9(\H@(H+(BI$0H,ID(I+(HI$0MD(M;(}LcKIH(L@(I$0LcI$0KL@(L9(\H@(H+(BI$0H,ID(I+(HI$0MD(M;(}LcKIH(L@(I$0aE1E1VD$H?HD$HL$E1VHE1E11HD$H!H57(H|$!HHD$HH%H9AmHiHkLyHEIHHD$HHu HAHP0LHLnHmHu HEHP0HI/u IGLP0H+u HCHP0H$IMHHD$HHHHl$I۽U1D$HE1E1VD$QlHHHHE1VD$1HLE1E1VD$HE1HD$ITD$@HH1۽VD$kXHME1E1"VD$HD$oE1E1-VD$sII$(I+$0ID$0ID$(I$0I$(I+$0ID$0ID$(I$0H^HNH^H'E1E1HD$/VD$H5^5(H|$LIHH55(L1HHD$HHHHgH?(H56(HH5 B(HH/IHCHEHD$HHEu HEHP0H+u HCHP0H%I9GMIoH@IOHEHI/uIGHL$LP0HL$HLHHL$>HmHL$HuHEHL$HP0HL$I,$uID$HL$LP0HL$HH)HAHP0E1E1mTD$EHHHE12VD$1HE1D$=VHZ%H5[LE1E1H8H,$,THD$D$H5@(Hx#:VI$L?VE1D$1H7H5/(H=+>(1THHH 1H+ HCHE1aVP0D$7E1D$sV"HH1۽uVD$E1E1TD$E1xVD$HD$E1E1何TD$LHIKHE1E1HD$TD$fHHE1TD$1HHt$LLHE1D$aV4IUD$HD$HzH5[>(I~r8FE1E1TD$E1D$VE1D$VLLMLHI/11ɽVIGHL$LP0D$HL$HI/1ɽVIGHL$LP0D$HL$I/VD$1ɺAH$I/VD$tA14E1D$ UE1E1dUD$~H5<(Hx7IELE1 UD$1H#E1D$UHD$;E1D$UBHIHl$1E1UD$HE1D$VIUHD$D$HME1E1HD$UD$L|$LLTHE1E1住UD$E1IHD$.UD$WE1D$]V^HUD$E1E1`UD$E1E1^UD$E1E1bUD$E1D$eUE1E1IϽvUHD$D$H%E1GUH8D$MD$E1E1HD$D$VE1oE16D$VAWAVAUATIUHSHHELAHL1HIHcHc HHwHLDII$MTHI$H+tHEHEH;$%FH;%Ll$H;U%HUBLbE1 uL}H%H QP ;\LLAI[H QP H= @9HM_HImu IELP0MH+u HCHP0LA*I,$u ID$LP0H ]DH=o wVHmtHDHH[]A\A]A^A_@HAkI$t`H+uHCHP0fDHEHP0@HCHP0}fID$LP0H+_fID$LP0H+9fH=1@E1@$fLHEIDAgDL%)8(I$|I,$AifL}MH]IHHmtPLLHI/IIGLP0 fDHt$H~,IfDHEHP0@LB1 uH}Ht$uEAIfKIHH%H5H8u1ɺAIcA}AWAAAVAUAATUSHH$ H@`H$AIcH08GHH0GHH0GHH0GtuHH0Gt\HH0GtCHH0Gt*HH0}GtHH0dACH$0011H$8/tsH$@#0t_H$H0tKH$P0t7H$X0t#H$`"0tH$h01҃uH1H9AGddCD92FDD)HMcHJH@HĀJ@JԀAEHKHHcHH@HĀH@H̀AEHKHHcHH@HĀH@H̀AEFHKHHcHH@HĀH@H̀AEHKHHcHH@HĀH@H̀AEHKHHcHH@HĀH@H̀AEt{HKAHHcHH@HĀH@H̀At9IcōKHHcHH@HĀH@H̀HDŽ$}-HDŽ$taHDŽ$tPHDŽ$t?HDŽ$ t.HDŽ$(tHDŽ$0t HDŽ$8HcH$@JH@H90)')$@$@$Pt$`t$pЃ9tH$@HH@H$H,L$0H$E1I9tIXkIcAIH|H蜾IHL舾HH 袿HH.L4$~$HL$$H=)(HX($@HHEHfHHEu HEHP0H=/(H$HGH;0%H;%5HWBHjE1 uLoL%S%H QP A;$#HLHp VP A$=29HH+u HCHP0HL!HmHEHA/P0@DH H=GMD蹻H AH=ALDHD[]A\A]A^A_@HHEtA'vfDHEHA'P0VfDA/@HDŽ$pAH$L$8H$I9tAIaHDŽ$xH$ L$@H$I9t"AIHDŽ$AH$ ~L$HH$I9t"AIHDŽ$AH$` /L$PH$ I9t"AIzHDŽ$AH$9 L$XH$(I9t"AI+HDŽ$AH$L$`H$0I9t"AIHDŽ$AH$tFL$hH$8I9t"AIHDŽ$AH$pH$0H$(H$pHHHHHiH$8H$xHYHHHHЃ3H$@H$H#HHHBHЃH$HH$HHHH4!HЃH$PH$HHHH<"HЃH$XH$HHHH"HЃt_H$`H$HOHHH!HЃt-H$hH$HHHH"HH4$H0H$H$H$@H HHHH HHHiH$L$HHHIMH3H$L$PHHIM~HH$L$XHyHIMHH$ L$`HCHIM HH$(L$hH HIMZ Ht_H$0L$pHHIM8 Ht-H$8L$xHHIM4!HH$H9v H9)HD$EYDo$ DSDo$0Do$@Do$PDo$`o$pD)$o$o$D)$ o$o$D)$0H$ )$`o$o$o$D)$@D)$P)$p)$)$)$)$)$)$HP`$IcH̠uH;`gH Hƒ sHcH=H;`/H  sHcHH9`H K sHcHH9`H  sHcHH;`H  sHcHymH;`ucH  sHcHy@H;`u6H  sHcHyH;`u c fH~D)$D)$ D)$0D)$@D)$P)$`)$p)$)$)$)$)$)$HX H;$`J H$ Hƒ+H$& H9$h H$(H$ H9$p H$0H$ H9$x H$8H$ H9$ H$@tsH$n H9$` H$HtHH$C H9$5 H$PtH$ H;$ o$H$o$o$)$o$ )$ o$0)$0o$@)$@o$P)$Po$`)$`o$p)$po$)$o$)$o$H$)$o$)$)$)$H@` H;$` H$ +H$ H9$h H$(H$ H9$p H$0H$ H9$xw H$8H$V H9$H H$@tsH$+ H9$ H$HtHH$ H9$ H$PtH$ H9$ H$E\L$0HcIH/HGHP0L$@I9uۉH$@H$p4$jH$H$8L$L$@ L$茓L$Y^M1IHHL$@L9uHDŽ$H %H5!H8E1J@HH?H$H~1H@HHHH?HDHHكHDHL$@I9L$Ll$PL$Ll$XL$Ll$`tpL$Ll$ht]L$Ll$ptJL$Ll$xt7H$L$IŃtH$H$tH$H|$P/HDŽ$H=(1RH$ LD$HE1ҺwJ@HH?Hm1H$H@HHHH?HDHHكHD:11hH$pHH?H1DSMcJCqH$2H$@HH?H1H$H$(E1HH$HAF AALL$@HfDLl$LtH$@H$p4$SH$H$8L$L$@{L$L$A[A\M9gDSL$HL$H$EuVL$0HcIIH|$HHL$LHD$HL$HH:HtH&%H2H9ImH7IELP0(I$ID$xHJ4I$JH(J<f.MIApH]EHH fHHHL$iH HHL$nHHL$諏HL$HtHHL$HD$迊HT$HL$HH*uHBHL$HP0HL$vH9IlHHE@HFHHL$YHL$H/@LЉIHrH=='HEHHhI,$H=O'H\$(HGH;%zH;r%HWBLbE1 衊L=ړ%H QP A;HLAIwH QP A=@9MH+u HCHP0LI,$ID$LAAP0eD1]EHH fDID$LP0H%H5rAAH8辆fDH #DDApH=4Imu IELP0H DE1H=}HtHmu HEHP0H8L[]A\A]A^A_L؇IHH=E'HMHHI,$VH=W'H\$(HGH;%hH;z%jHWBSLbE1 uLw詈L=%H QP A;`HLAIH QP A=29MH+u HCHP0LI,$9ID$LA^AP0mDHHHHl%H5ŶAAH8,@Lw!29c谇@$UID$LP0HHIH?H@HHD$H{HYHt$(IMAAH+~HCHP0oAAWA^A?@pDHI{Ap,諆@$EAAAAI,$ID$LP0HIMAAY H oE1H=B@LRE1ɨ uLOHt$(ILAIH=eEAA7HrH%H5H8訂WATAAVAHt$(IՅHH%H5H8FH=Q贄AYAHYHApdAo1RLRE1ɨ uLOHt$(u(LAIT1ɺLAIQ1ɺLAI*AW1AVIAUATUSHH$@H|$HHH%8y HD$Hu'HxH9 HXH HqH~#H;Q 1 H;T HH9uHD$HHXHHD$pHpxL@lH|$(H\$xHHl$pL$H$L H}PLLHt$(HLۂHl$8~D$HD$(H\$IFH;%D$)$@t H;%IE1HD$ 1H|$ D$D$D$`IFH %I9NP I93IFN$II$HtHmu HEHP0ID$HP`HHxH;% ID$HPH HA\$H(HcD$HL$8HLHhPH@H9=L$H݅HcD$HMx T$`4H$HL8L$HD$H|$ LLHD$ IHAHtH-%H2H9I.HHD$H'H@H91 HXH HqH~,H;Q 1f.H;T HH9uHD$11I싈$$$$$$$$$$$$$$$$$$$$$$$$$$$0HHHDH;%eH5'HxMI޽yfDL;%%HH5'LHIMsH%H--%I9I9qL;=j%dLTWIHHD$0IHD$0ID$H5Z'LHHIMI9I9UL;=%HLx;IHHD$@IoHD$@ID$H5'LHH[ IM= I9I9L;=b%|LDoIHXIH1ID$H5s'LHH IM I/u IGLP0ID$H5'LHH HH H)uHAHHL$HP0HL$HID$H5'HL$HLHHW HL$HHH4 HmuHEHL$HHP0HL$HHcD$Ht$8H;-H%HHLL@PLHII?AHuNH='H5HL$hD\$dLL$XLD$PLT$HгLT$HLD$PLL$XD\$dHL$h0 L;=dž%EIAHHD$0IH; %HHDH;-%tHLHHHH9 HpHHHHcD$`LĐHPLD$HcD$HD$`\$MI؃D$`\$jf.Hn%I9G5 IGHPHd H AwHt$0H~I/~IGLP0oDH%I9GI IGHPHx H AH|$@HI/IGLP0DHcD$`HDŽPHHDŽĐHDŽ\$`XA\$AD$HH HHHcD$HL$8HLHhPH@HyHHT$H=R'H5nA@%xDH ;H=HV ߻T*uf.I.IFLP0{HD$H;% HD$HH~H\$8HHD$(HN%I9GIGHPH H A_HI/bIGLP0SfT$H=-'H5I`AH$H~I9OdII$@H|$0L;L$0H|$0IH; %.HD$0I)HEHIDIfI.I/u IGLP0H u1H=ܼH|$(t HL$(HHD$HHu HAHP0MtI,$u ID$LP0HH[]A\A]A^A_H\$0H|$0qxH: HD$0Uρ3IFLP0M*5HD$0L1H; ˁ%5H|$@9HD$@I9HINH+t$0I9tHD$0H/E1I9xLLL$01I럐H$H;wH}PLL wHL8u~D$Hl$8![{Ig+wHLH\$8HcD$HHLHhPH@fLzHHtHvHmHHEHP0HD$plwHq%1H8wtH H=:DkzI HHLduH@HDHH9HuH;$%"HD$H;%HHH9HuH;%yH~%HJH5MHWH81'yH 21H=H́{yIHH9tHuH;h%fH|$(HD$I싈HD$(HH$$$$$$$$$$$$$$$$$$$$$$$$$$$0HHHH;}%fH5'HxNI޽ PH\$@H|$@aztHHD$@EA_AGHH @HH>tHHfwI({wHUH\$8HcD$H1LHhPH@@HD$p~D$HD$(HD$8f.LuIHHH@HHD$ HILL$@HL$0LH)HMHHIE1LL$0GHD$01@{vHL$HHfDA\$AD$HH IFLP0E2dLvHH^H9qHmH>HEHP0/HD$@PIoFH _$H=gu߻ Il$E1H[|%Hĵ1IH5hH81t H <H=Z@HH9HXH:HqHRH;Q1H;THH9u(LtHwHHD$@pHT$@HD$0H*JHBHP0;HHAGAWHH HD$0HD$0}LktHsHHD$HoHT$HHD$@H*FHBHP07HHAGAWHH HD$@wH(HA_AGHH 1KGLnHD$0BAGAWHH HHD$0&LnHD$@AGAWHH HHD$@pLnHHw%H5IH8elE1 N3 oӁH:I/AHfH;5)'AVAUATUSH HslMDHHaL5:x%L9HPHL`Lh I$IEH(t{L;%,x%L;%w%uM9unHCLHHHSHHR(HHI,$tcImu IELP0H[]A\A]A^ÐH@HP0vLoyH ?pH=ĝWI,$uID$LP0fDHH[]A\A]A^HLHHTpH ʫH=Yf.pH 1H=,f.Hu%H5pH8iHmuHEHP0f>pHxHHѬH HEHu%H5hH81p@Hqu%pH5H81o@p fpAWfAVAUATUHSHhHu%H^H|$)D$@HD$PHD$XH Hu HHF0HD$L}(H] LuH'H(hE111AHLHH H8u H@HP0H='L(hE111AHHAIH H8u H@LP0H'L(hE111AHLAIH H8u H@LP0AD$;EH'H5:'H9p(H!'H@HH 'HHCH5'HHH&IM(H+H5'HgHH&IGH;r%5H;t%H\$@H;t%FIWBHrE1Ht$ uMwip VP H.s%;HLHD$HD$iHT$p NH Hr%=p4@9` HwMH+uHCHT$HP0HT$HI.uIFHT$LP0HT$H;(s%H;r% H;r% HHT$qjHT$H*u HBHP0 H'H5<'H9pH#'HHL='MIGH5'LHHHHI/u IGLP0H5'LeIHHp%H9C>LHIâHI/ HI.# H;q%AH;iq%Du H;q% AƉD$H* L$ H'H5'H9pH'HHH'HHBH5'HHT$ HHHT$ IMH*u HBHP0H'H5~'H9pHe'HHHQ'HHCH5u'HHHIHHMHHi H'H5'H9pBH'HyHH 'HJHAH5'LT$(HHL$ HH[HL$ LT$(IMZH) IAH;n%W11ɿH;p%H;p%= HL$0LL$(LT$ t$fDHLH6DHFLHD$@UIH5'LHVq[HD$HH IH5@'LHVL[HD$PH ID$>D$ DI*B 1E1IBL\$(LHL$ LL$P0L\$(LL$HL$ M IHI1HICHT$(LHL$ LL$P0LL$HL$ HT$(vfD1E1D$ D$>NfDH=a'H'H5'>HfDH=9'TH@c]I1D$ D$>Dn1D$ D$!>fIOHMwHII/uIGHL$LP0HL$HHLHL$*oHL$HH)$HAHT$HP0HT$ 1MD$ D$/>fDHt$@LƾHfDIB@=>LL$~D$Ht@HL\$LLL$(L\$ D$Ll$PLT$)D$@LT$L\$ HHLL$( Mt.I)u(IAL\$(LHL$ LT$P0L\$(HL$ LT$I+9ICHL$ LLT$P0LT$HL$ f.LB1 uIHt$@@ AHDH=icVN@1fWHuHD$HJ_%H5KcH8 THT$ZkWHD$ 11E1D$p=ffD;WHD$ 11E1D$z=6fD WHuD$ 11E1D$=fDH='H;=`%H5'$HFt H;`% fZIMH='L苐HIH'HIu IGLP0H聸H+u HCHP0D$ 11E1D$=UDH5'H=Z'1[IHH'I/u IGLP0D$ 11E1D$=H='H'H5'IofD11D$ D$9>H=ɻ'H:'H5;'覟HCfD1E1D$ D$u>nfDE1E11E1D$=D$ XHL$ ~D$ Ht@HHl$ LLT$0HL$(D$ Ld$PLL$ )D$@ºLL$ HL$(HILT$0E1D$>D$ H='IM@1D$ D$;>fWHHD$=1D$ IE1E11HIpH=i'脾H@1D$ D$w>!{WHT$ IfD1D$ D$>>1D$ D$z>fH='HJ'H5K'ƝHfDD$=D$ %LL$~D$Ht@HL\$LLL$(L\$ D$Ll$PLT$)D$@LT$L\$ HHLL$(D$>I*AD$ `*D$>D$ QVILH='H D$ D$|>IE1E111 HKHLsHIH+uHCHL$HP0HL$LHLHL$-hHL$HH){HAHT$HP0HT$bLE1D$ D$L>'H=@'H'LT$ H5'LT$ HE1E1D$>D$ H='LT$ LT$ HtULT$(HL$ IE1D$>D$ IIHaIYHHI)6HCI1һ|MJM7MrIII*1IFM1ҿD$Q1MD$ D$>MGMMwIII/uIGHL$ LLD$P0LD$HL$ HLLHL$ LD$afLD$HL$ HI(I@HL$LP0HL$1D$>D$ jHHX%H5fL jAH GHaH81R^<_D$ 1E1D$>D$>H5'H='1IHHűI/u IGLP0D$ 11E1D$>E1D$>D$ HHW%L AjH5eH nH8H1RAX<AYIALHL$(LT$ P0HCI1һLT$ HL$((IBLL\$(LL$ P0IFM1ҿLL$ L\$(D$LNI11D$ D$=&NH11D$ D$=uLHE1D$ D$=1E1D$ D$\><1D$ D$^>%18D$ 11D$ D$>D$>1AHt111f.AWAVAUATUSH8HV%L5'H|$HnH\$Lt$H\$ H#H~'HeHLn(Lv LfDIIHH='Lt$HGH;:V%H;V%oHOAXHiE1 $LH H HTU%;lLLHKH QP H,U%=@9HpHi'H 'H9HPHѥ'HHL5'MTIFH5A'LHHIIHMIHu IFLP0LHGIHI/u IGLP0L;5T%L;5bT%u I9DI.u IVLR0EHD$MLH=U%LHpILS'HIHHIHmu HEHP0H8H[]A\A]A^A_DL629|HJ@$nIHѻ'HB'H9PH)'HHL='M4IGH5'LHHvIIHMQIHu IGLP0LH?FIIM`HIu IFLP0L;=NS%L;=R%I9LJAƅ5I/u IGLP0EHD$MLH=S%LHpIL'HH~I/\IGLP0MDHHIH yHHIHHQ%I?UIH5_H8L A1KX'ZH LH=x1@LIADžWI (AHIHu IFLP0H D1H=xzf.IFLP0aI]LHHH '1H="xU!DRIH3HtHHF(HD$ HF LHD$HFHD$AIHHcM~.H5g'LHVGHHD$ IMLd$Lt$Ll$ {@HH7AIM~H5'LHVGHtHD$IM~H5'LHVfGH_HD$ILHt$ɬHH='Hz'H5{'IfDA(H='L=Ҭ'HGLHHIMaHvP%L(H5AH817If(AuII:H=Q$EA(I/BIGLP03@EHHM%H5QH8DBkH='I@A6(LIE1 uLGHt$&LAHHfA/(H(Aa@H=Q'H'H5'.IyfDA1([HIHFHHD$>IH4(A@H=ٰ'H9HEt H;|N%H&HHHH={'HK~IHMHHu HCHP0LAI,$uoID$Lc(AP0VAD(HT$HLLH5>'芣B'3GI5Ac(HCCHH-A\(H \(H=WsEIH^(A1ɺLAHfAWAVAUATUSH8H;L%L5'H|$HnH\$Lt$H\$ H#H~'HeHLn(Lv LfDIIHH=b'Lt$HGH;K%H;L%oHOAXHiE1 AH H HK%;lLLHAH QP HJ%=@9HpH'H 'H9HPHq'HHL5]'MTIFH5'LHHIIHMIHu IFLP0LH=IHI/u IGLP0L;5J%L;5J%u I9DI.u IVLR0EHD$MLH=J%LHpIL'HIHHIHmu HEHP0H8H[]A\A]A^A_DL629|?@$nIH'H'H9PHɖ'HHL='M4IGH5a'LHHvIIHMQIHu IGLP0LH;IIM`HIu IFLP0L;=H%L;=tH%I9LP@Aƅ5I/u IGLP0EHD$MLH=G%LHpILJ'HH~I/\IGLP0MDHH<}IH )}HHIHHVG%I?UIH5OUH8L ]~A1AXZH |H=n1@LX?ADžWIOAHIHu IFLP0H |D1H=tnozf.IFLP0aI]L@HHH =|<1H= n!DRIH3HtHHF(HD$ HF LHD$HFHD$Z7IHHcM~.H5'LHV=HHD$ IMLd$Lt$Ll$ {@HH6IM~H5Ƞ'LHV<=HtHD$IM~H5'LHV=H_HD$ILHt$yHH=ɢ'H'H5'覆IfDAHH=i'L='HGLHHIMaH&F%LHH5ZxAH81>fJAu[?I:H=qG:AMI/BIGLP03@;HH3C%H54GH87kH='謥I@A!{LIE1 uLGHt$&LAHHfA!tH]A a@H='HB'H5C'ބIyfDA!v >IHFHHD$O4IHyA!@H='H9HEt H;,D%H=HHH=+'HsIHMHHu HCHP0LI,$uoID$L绨A$P0VA"HT$HLLV}H5/3':B% E11ۿH;?%AH;z@% LT$t$5LT$HHHۋt$tHXIHcHEJlIELlIBLMHL$LT$b5LT$HL$P H>%;P 1HHL$LLT$AI#5LT$HL$P P = 298M/H)uHALT$HP0LT$I*u IBLP0H=%I9FTLL)oMHI,$uID$LD$LP0LD$HI(u I@LP0H;?>%AH;=%D`H;=%SH5D$/ H+u HCHP0t$H'H'H9PH|'HHL5h'MIFH5'LHHyIMSI.u IFLP0H<'H 'H9PH'HHH'HoHCH5'HHHIHHMHH IFH;m;%E1H;<%HH;=% LT$L$ 2LT$HHMHcL$ tLPHcD$IE1HLLlIL|QIHM HH% I.[ H:%I9D$LLLD$MlLD$HI( HI. H;;%AH;g;%D H;;% H>3D$H+u HCHP0L$Hg'H('H9PH'HHL%'MID$H5'LHHIMI,$u ID$LP0H'H'H9P$H'HjHH p'HHAH5'HHL$HHGHL$HHFH)u HAHP0HCH;9%<1H;:%H;;;%EHL$ t$_0Hct$HL$ HI'HtHHHcD$HE1HIlIM|L|IH4I,$uHD$ID$LP0LL$H+uHCLL$HP0LL$HJ8%I9FLLLL$XjLL$MHI)uIALD$LP0LD$HI(u I@LP0H;k9%H;8%^ H;'9%Q H0AąMH+u HCHP0EkH$HIH=S8%HHpHL 'HjAQAWjAQAUjHT$Hq'HH@HH+uH$HCHP0H $fHmDHEH $HP0H $HMtImu IELP0MI/~IGLP0rHkfHH#mH mHMHUHrL@H57%H56EL GnH811X3ZH lx H=^1贼HXH[]A\A]A^A_fHD$fDID$LP0JHCLT$HP0LT$IBH; 6%fDA;GH.f.|D$ L.f.|D$ L.f.v|f( d$f/, f/L$ f.d$ H$D$L$(LILT$ +LT$ HH L$(LT$f(+LT$HID$LT$i+LT$HIVH4$HLIH'5-6%AHH=5%jPATjPAVjPHT$XLT$Pל'HPL$HHTI*H+I.I,$BID$H $LP0H $*f.AƉD$HfIH }HcHHF0HD$HHC(HD$@HC LHD$8HCHD$0%IH~7H0Hu0M<HD$HH\$0Ld$8Lt$@HD$gHM~HT$0HLLoH5W)'by3@IB@=/H\$~D$Ht0HHl$LLl$@D$LT$)D$0tLT$HIZHH+HCLT$HP0LT$f.$ E1E11D$3fHtH)u HAHP0$t$H iH=[H}Hmu1Zf.1^f@DE11$ D$ 4w1$ D$4Zf.ImHDHCHP0ifIFH $LP0H $LfHCH $HP0H $"fH$IBLP0H $fI@LP0IFLD$LP0LD$IF@=LT$~D$Ht0HLl$LLT$L|$@D$)D$0rLT$HIMI*IBLD$LP0LD$f.IFLP00HCLD$HP0LD$H5y'LHV(HHD$HIfDAƉD$IZH\MbHI$I*u IBLP0ID$M1ҿAL!IH5'LIHVN(HD$0HH5'LHV-(HD$8H IH5$'LHV(HD$@H IHFLHD$0o!If.$ 1D$E5HH+|HCHL$HP0HL$cHL$LT$&HL$LT$@$fDH\$~D$Ht0HHl$LLl$@D$LT$)D$0ČLT$HID$5H!H+A$ IHIHuIBHL$LP0HL$MtI.uIFHL$LP0HL$MxI,$mID$HL$LP0HL$S$ 1E1D$5HHuE1ҐHCHL$HLT$P0LT$HL$MFd@1$ D$4f.H='H'H5'oIWfDH=ы'I=@(IY1$ D$5f.1E1$ D$5H=i'H:'H5;'FoH;fDH=A'\H!@k(I<INHMFHII.uIFHL$LLD$P0LD$HL$HLLHL$LD$k:HL$LD$HH)QHALD$HP0LD$81E1M$ D$B5@@-$H2$ 1D$=4.fD,#H$ 1D$G4fDD$ #L$ H$ 1D$Q4fDD$%5H5y'H='1oHH HwH+HCHP0$ 1D$i4MDLT$~D$Ht0HLl$LLT$L|$@D$)D$0ԈLT$HID$5M% IL$ E1HfH5'H=ڑ'1nHH H规H+HCHP0$ 1D$T5}D1HLHL$LT$%LT$HL$HII$ D$05HqDH5'H=2'13nHHy HH+mHCHP0$ 1D$4DH5'H=Ԑ'1mHH1 H衃H+HCHP0$ 1D$4w1$ D$f5Zf.H=,4 LT$HL$RI$ E1D$05HX@H=)'Hz'H5z'kInfDHC@=HL$~D$Ht0HHl$HHL$L|$@D$)D$0iHL$HIHH)HALL$HP0LL$fHL$L$2 L$HL$HH'%H5+HL$L$H8L$HL$$ D$05IHAD1$ D$h5Bf;#IH='I<@I1E1E1$ HD$4D1$ D$k5f.H='H:y'H5;y'fiHFfDH$ E1D$4HH1H^w"I3H=('CH1I$ D$m5&H$ D$4HMVMqI^IHI.HCI޹1ҿD$H$ D$4H=IL$HeMt$HII,$uID$HL$LLD$P0LD$HL$LHLLD$HL$3HL$LD$HH)HALD$HP0LD$1M$ D$5I$ 1D$i4$ 1D$T5$ 1D$5$ 1D$4rD$5jHL$~D$Ht0HHl$HHL$L|$@D$)D$0HL$HIHE1$ D$5HLHE1$ D$5H5}'H='1hHHH~H+HCHP0$ 1D$5$ 1D$4{H='H5v'H56v'qfI&1$ D$5CH=\'wI1$ D$5tIHHY$%AH5T2jL c[H YH8H_1_3AXE1$ D$5H=ȁ'HYu'H5Zu'eHIFLLT$IP0HC1ҿD$LT$H=r'荅HHL$HE1$ D$5|HKHLcHI$H+5ID$L1ҿD$HH$#%L =ZH51jAH XH_^H81nAY3AZ1E1M$ D$6MfMMFI$II.uIFLD$LLL$P0LL$LD$LLLLL$LD$/I,$LD$HLL$ID$LD$LLL$P0LD$LL$uH$ D$5H$ 1D$5$ 1D$6 HM$ E1D$6HKH5Cz'H='1eHHvHQ{H+HCHP0$ 1D$$6'E1$ D$A6mD$51$ D$e41$ D$P5HCHHL$LP0ID$1ҿD$HL$G1$ D$4x1$ D$4b$ 1D$$6LD$501$ D$5HE1$ D$5H1$ D$ 6L$ FI1E1$ HfDAWAVAUATIUSHHH- %H|$H9H$HD2IHI9Ht$ L"2IHnHCH5}'HHHxHHZHCHCHHWHgHcHE1DH+u HCHP0ID$H5<}'LHHHHHCHCHHH=gHcHCSHH HcAH9ukA^AHJArH+EHCHP06fDCSHH HHcAH9tH%H5?)H8'DDkwDkAd@E1DH+u HCHP0HD$DDAAAAAAAAAAAvxAvpAvhAv`AvXAvPAvHAv@Av8Av0Av(Av AvAvAvA6AAAAAAAAAAAwxAwpAwhAw`AwXAwPAwHAw@Aw8Aw0Aw(Aw AwAwAwA78NHĠHEHH[]A\A]A^A_fDCSHH HcAH9u[A~AHjArDcACSHH HHcAH9tH%H5''H8DDcfHHcAH9IHJH6@H'HH{H9HXHHqH~&H;Q1@H;THH9uHM%HJH5"HWArH81ArDH PDH=C谠1YfHHcAH9iHJHV@H'HMD$L9IXH H~H~%H;V1H;THH9uHM%HJH5!IPArH81@ArArHArHArH%ArH5MH8 H%ArH5mMH8 \HHH9HuH;d%zfH@`HHHHHHrLHH7%HD$I9 fAHBHHH5YaHcHDjAfH*HBHP0BrHH HHcAH9tH%HT$H5#H8j HT$H*HBHP0@DjfBrHH HcAH9dfH*AHAQ0@HH5P![HHOLH@HHT$[HT$HcAH9H(HT$H0DLDHH9HuH;l%H@`HHHHHHLHHG%HD$I9fAOHBHHH5}_HcHDbAfH*FHBHP07BrHH HHcAH9tH%HT$H5!H8 HT$H*HBHP0Db덋BrHH HcAH9qH*A7HAQ0+HH5NAYHHLHHHT$ HT$HcAH9 H5< HT$H"=f H H%H5JH8 HHZ%H5JH8c IA`H}HHmHHT$HT$HIRHD$I9AuBLHT$LL$ILL$HT$AI)2IAHT$LP0HT$LH5yMHT$WHT$HIuNIA`HHHHHT$HT$HItsHD$I9AuBLHT$LL$袖LL$HT$AI){IAHT$LP0HT$bLH5LHT$NWHT$HIuHT$r HT$HxH%H5IH8HT$XHT$: HT$HWH%H5HH8HT$7ff.AWfAVAUIATUSHH%LfHm'H|$H$H"m')$HD$H$Hl'H$HD$XH$H It$~0ItI HF8HD$XIE0HD$Im(H-y%IO Me MuII$HHPHL-s'I9 H%H9CI9E7/{ #A} #HSI;U!HCIMH9@H@t H{ Au 8@ H{H@ $IM0IH@IDHȃ%&DA9Ht$E1HAfDEdHHHHu HCHP0Hz'HXd'H9Pn H?d'HHL +d'M IAH57t'LL $HHL $IMI)u IALP0HG%I9GLLZBMH$H<$I*u IBLP0I.u IFLP0HIy'H zc'H9H0 Hac'H HLMc'MIBH5is'LLT$HH LT$IMI*H}%I9G!LLAMIM I)I,$|H;-%HEIH=(HEH@H(LH<$H5&k'HGHH!IM!LIH!I/u IGLP0I"IEH5j'LHHg"IMi"L)IH"I/u IGLP0I*H5;g'H=u'1RHHhHihH+u HCHP0D$AMA 1E1E1E1HD$E1HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$$@H;%c[H5h'H`/zH5:p'H_AŅ2"H+u HCHP0E[H5*f'H={t'1|QHH7'HHgHm]D$@1E1E1HD$E1E11HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$L4$A f.Mt$I(uI@HL$`LL\$XP0HL$`L\$XMtI+uICHL$XLP0HL$XHtH)u HAHP0t$H BD1H=4WHtHmu HEHP0MtI/u IGLP0MtImu IELP0HL$HtHHD$HHu HAHP0HT$0HtHHD$HHu HBHP0Ht$(HtHHD$HHu HFHP0HL$8HtHHHD$HHuHAP0HT$PHtHHD$HHu HBHP0Ht$HHtHHD$HHu HFHP0HL$@HtHHHD$HHuHAP0HT$ HtHHHD$HHuHBP0Ht$HtHHD$HHu HFHP0H $HHD$HHu HAHP0I,$u ID$LP0HĸH[]A\A]A^A_L;-y %uLHOIH3H;t %AH; %Du L;=2 %I/EIGLP0EL4$D$j@HD$1E11HD$ E1E1A HD$@E1E1E1HD$HHD$PHD$8HD$(HD$0HD$HH+HCHL$xHL\$pLD$hLT$`LL$XP0HL$xL\$pLD$hLT$`LL$XfDIBLP0MfID$LP0tIALP0I,$_fHaq'H9bHXHtDHqH~'H;QC1DH;T/HH9uHEAf.HH9HuH; %HE @HHH5~g'HHHV^H$HdMefIH#>H >HMHATHCLD@H3%H54L E?H81X1@ZH =c H=Q01貍DIwHHPJcHHF8H$IE0H$IE(H$IE HH$IEH$HI]HPPJcHL4$1E1E1HD$E1E11HD$ A HD$@HD$HHD$PHD$8HD$(HD$0HD$D$@H=d'HY'H5Y'HIfDH5Ib'L)LIH 111H\IHI/uHD$IGLP0LL$H5a'LLL$KLL$HI#11ҾH#\LL$HI$I/uHD$ IGLP0LT$ LL$LLϺLT$ LL$LL$LT$ HI%I)uIALT$LP0LT$I*u IBLP0L;=%AL;=%DL;=D%LAą &I/u IGLP0EpH<$H5`'HGHHIMIGH;%H;%H@hH:H@H-1LIM*I/uIGLT$LP0LT$IEH5M`'LT$LHH]LT$IMb111LLT$gZLT$HI6I/uHD$IGLLT$ P0LT$ LL$LL׺LL$ LT$LT$LL$ HII*uIBLL$LP0LL$I)u IALP0L;=%L;=?%L;=%LD$`I/u IGLP0L$`HUHBpHH@HyH5r\'HHD$Hs+HI|IHI$HD$HI$u ID$LP0H5^'H<$HH111HHD$ XLL$ HHD$ I)u IALP0IW IGHHH9 H9 HL$HIWH HIGHL$HHD$HHu HAHP0H5]'H|$GHHD$H"H%H9B@LbM3LRI$IHHD$HHuHBLT$HP0LT$LLLLT$eI,$LT$IuID$LT$LLL$P0LT$LL$Mr"I*uIBLL$LP0LL$H5]'LLL$GLL$HI"I)uHD$IALP0LT$H5\'H<$LT$FLT$H"111HLT$HD$WLL$LT$HIy#I)uHD$IALLT$P0LD$LT$IBH;M%]%MJMl%MbII$I*ID$1ҿH;%H;I%~LD$LL$L$(t$ dLL$LD$HI%Mɋt$ HcL$(tLHHY'HcLLHL\$HIT1MDCL\$HHD$G'I+u ICLP0I,$u ID$LP0H5b'LZEIH$Hh'HR'H9P%HR'H\&HLsR'M%H5`'LLT$(L\$ DL\$ LT$(HHD$5&I+uICLT$ LP0LT$ H$I9BIJHMJHII*uIBLL$(LHL$ P0HL$ LL$(HT$HLHL$(LL$ O HL$(LL$ IH)uHALL$ HP0LL$ HT$HHD$HHuHBLL$HP0LL$M*&I)u IALP0Imu IELP0H5X'HPP&>hIHD$H,HX'LHHX'IEHH=|['1LIH,IEHD$HIEuIELT$LP0LT$H5cX'LLT$ `LT$ HHHD$,H8u H@P0LT$ I*u IBLP0HD$H$HH9P-LHI.IM[0ImuIELT$ LP0LT$ IBH;$l.IRHn/IBHD$0IB HD$(IB(HD$8HD$0HHD$(HHD$8HI*f#IBLP0HD$@HD$HHD$PH5\'H|$N*HD$ H5^'HjN/Lt$H5@V'LCN>0t"H5X'L%N?3H5V'HN7Hd'H@&H;N'3;HN'H=HLN'M=H5^'LLD$ %ALD$ HIc=I(uHD$ I@LP0L\$ H+d'H,N'H9P=HN'H<HLM'M<H5\'LL\$hLT$ @LT$ L\$hHI9<I*uHD$ IBLP0L\$hLD$ H|$8;H5^'H|$8L\$hLD$ I@LD$ L\$hHI=;H|$(:Ht$(HL\$pLD$hHD$ LT$ LD$hHIL\$pBI*uHD$ IBLP0L\$pLD$hLL$ E1H$I9@AL$`I@H;$QHc9H;$,4HL\$xLD$pLT$hLL$ LL$ LT$hHHLD$pL\$x@MtLPHcD$`Ht$81LL\$pLL@HHHtHHL$hLD$`b=LD$`HL$hHHD$ L\$pn@H)uHAL\$hHP0L\$hLD$`I(uI@L\$`LP0L\$`L\$`L\$`HIDDHD$ LL$ IAI$Ma LL$ L\$`HICLt$XH5T'HL\$hLL$`LHD$ LD$ LL$`L\$h[7H5['LLL\$`LL$XLD$ LL$XL\$`j@LLLLD$hLL$`L\$X-LD$LL$ HHD$M1ME1HD$ E1A HD$@HD$HHD$PHD$8HD$(HD$0HD$D$ BRM1E1E1HD$E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$qAM1E1E1HD$E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0D$AOLMD$tA:M1E1E1HD$E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$A/MD$AA ,M1E1E1HD$E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$AjM1E1E1HD$E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$A5HH$H5L jAH }H#H81'^?_M1E1E1HD$A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$ADM1E1E1HD$E1E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$GAIH/H>'LL\$HICH>'HH=9'1+L\$HII+uHD$ICLP0LD$H5>'LLD$X?LD$HHHD$HH8u H@P0LD$I(u I@LP0HD$HH \$HH9HLHIh MHD$@H|$@I+u ICLP0HD$PHD$8HD$(HD$0HD$1MԹE11MԹM1Ll$E1E1AHD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$HD$D$5B1E1E1E1HD$E1LHD$ HD$@HD$HHD$PHD$8HD$(HD$0*M1MHD$HD$ E1A HD$@HD$HHD$PHD$8HD$(HD$0HD$D$B$H=7'H,'LT$H5,'LT$IEM1Ll$E1HD$ AHD$@HD$HHD$PHD$8HD$(HD$0HD$HD$D$7BLD$(HD$@HD$HHD$PH=7'LT$);LT$IM1Ll$E1HD$ AHD$@HD$HHD$PHD$8HD$(HD$0HD$D$9BM1ME1HD$ E1A HD$@HD$HHD$PHD$8HD$(HD$0HD$D$&BM1Ll$E1E1MHD$ AHD$@HD$HHD$PHD$8HD$(HD$0HD$HD$D$IB9M1E1E1HD$E1E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0D$AhD$VBLl$A1E1E1HD$HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$L4$1E1E1E1E1E11HD$A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$j@H57'Hx(H|$0H?'H('H9X!H('H HH('HC H5k1'HIHH+uHD$HCHP0L\$H|$(+ H\$(H$H9CHCHGHH$I9CLHL\$)L\$HMH+uHCHL$HP0HL$HoImuIEHL$LP0HL$H|$0HHL$HL$HIH)HD$HAHP0LL$H;''H''HeHL''M"H57'LLD$`ELD$`HHD$ I(u I@LP0H|$(]H|$XIHuH|$(1HHD$XLD$XHII(uHD$XI@LP0LL$XHD$ H$H9P_Ll$ LLL$XLLL$XHI)uIAHL$ LP0HL$ HImuIEHL$ LP0HL$ H; $AH; &$D1H; k$$HHL$ HL$ AH)u HAHP0Eb HP$HHD$ HD$ H;;$H;$yLL\$ L\$ HHD$I+u ICLP0HT$HBHLAIHHD$ H|$ALT$ HHD$0Lt$LAվHLT$ IHD$HIuIFLT$LP0LT$LT$(HD$@HD$HHD$8HD$M1E1E1HD$E1E1A HD$ HD$@HD$HHD$PHD$8HD$(HD$0HD$D$ALl$D$BA _D$zCLl$A1E1E1HD$HD$ Ll$1E1E1HD$ AHD$@HD$HHD$PHD$8HD$(HD$0HD$D$`BH\$Ll$1E1E1E1HD$ AHD$@HD$HHD$PHD$8HD$(HD$0HD$HD$D$eBLl$1E1E1HD$ AHD$@HD$HHD$PHD$8HD$(HD$0HD$D$hBHHHH< LhHIEHHD$ HHuHBHL$ HP0HL$ HLLHL$ dHL$ IH)HALT$ HP0LT$ vH|$0sHn8'H/"'H9X9H"'HHH "'HcH5*'HHL$HL$HHH)u HAHP0H|$(H$H9CHt$(HIIMmImuIEL\$LP0L\$H|$0LL\$fL\$HIBI+[HD$ICLP0LL$BH;$LLT$ hLT$ HII*uHD$ IBLP0LL$ IALLL$ LALL$ HHD$0~LALL$ HILHD$(ALL$ LD$(HHD$8bLAվHGLL$ LD$(I)lIALD$ LP0LD$ HD$@HD$HLD$(HD$PH H HHH tLT$XHEHe$H5>H81Ll$A1E1D$BE1LT$XHD$HD$ HD$@HD$HHD$PHD$8HD$(HD$0DL1Ll$E1E1E1HD$ AHD$@HD$HHD$PHD$8HD$(HD$0HD$D$BED$CLl$A11E1E1HD$HD$ H$PIH$HB ~$HDŽ$HDŽ$$HDŽ$@Ht HmMt I,$Ht$HtHHD$HHeDHa'H &H9H8H&HxHL5&L$M4IFH5)'LHHHH$H$H8H/uHGP0H'H 5&HDŽ$H9HH&HOHL5&L$M[IFH5'LHHIH$MH/uHGLT$P0LT$H$HDŽ$HAH;¦$4H;=$H;$BLT$ LT$HIH$HtIFHDŽ$HcD$I1LM|MTH$HH$HoI._ H$H/- H$HDŽ$HH$HD$HEuHDŽ$H} HD$H-'H|$HD$0~HCH5C'HHHIL$MH{$I9D$ Ml$M ID$IEHH$H$H/uHGP0H$LOH$Imu IELP0L$MH$H/uHGP0H5!&1H$HDŽ$IH$HH$H/uHGP0H$H;=$HDŽ$H;=x$eH;=$XSH$Aą\H/uHGP0HDŽ$E Ho 'H&H9PH&HHL%&L$MrID$H5'LHHIMH$H/uHGP0HDŽ$H$I9D$=HLMIH$L$HtH/uHGP0L$HDŽ$MI.u IFLP0L$L;%k$HD$IL$fHDŽ$HT$8HHL$HHD$PXHHuHD$ H5H'HIHHD$ H5L'HIHUHDŽ$Hi$I9FUIFH$H@IVHHI.uIFHT$(LP0HT$(H$H HHT$(.HT$(H$H$HtH/H$HDŽ$HH*u HBHP0H$H/uHGP0HDŽ$H|$0HD$XHD$Lt$ L|$`HD$(HHl$ Hl$PIHD$@HD$Ll$hLl$HLd$HLd$8H\$8HfDHtKE1CLCLT$eT$f(Y\YB II9uHt$Ht$(HD$(TH\$@H9D$0Hl$ L|$`Ll$hLd$HH\$8H|$X$H5&1LImIu IELP0M3I.u IFLP0Ll$IEH+2L<H]fDHHH tHOHL LOL@HH$SHH5H81XOZH =H=1 &HH[]A\A]A^A_DIIFLP0]HE@=Lt$~D$HHH\$Hi&HH$D$)$IH$HH$E1ID$IPD$ D@DL`H@HD$HEfAljD$ IHs H H`H舐H5I'LIHVIޖH$H#MTH$L$Lӕ@$f.D$PE1E11D$E1E11HD$H$E1@Ht H/QH$HtH/uHGLT$ P0LT$ H$HtH/uHGLT$ P0LT$ MtI.uIFLT$ LP0LT$ MtImuIELT$ LP0LT$ MtI*u IBLP0T$t$H H=Gr#HtH+E1HCHLP0HtHmu HEHP0MtI,$u ID$LP0MtI/u IGLP0HL$HHHD$HHHAHP0HGLT$ P0H$LT$ f.1Vf@$fH|$ƒHH$H蘓IH$HH$HDŽ$HDŽ$IGLt$~D$HHH\$H&HH$D$)$IH$HMMbI.XIFLP0IPHt H/< H$HDŽ$HtH/uHGt$0P0t$0H$HDŽ$HtH/uHGt$0P0t$0H YH=HDŽ$!H|$(H$H$H$*H$I9EJIEH|$IHlHD$0LT$0HILPHLwIHpImu IELP0I.u IFLP0H$Ht H/uHGP0H$HDŽ$Ht H/uHGP0H$HDŽ$Ht H/uHGP0HD$(HL$LHHDŽ$HgE1E1E1E1D$PH$D$ HD$E11xfH$E1E1E1D$(PD$ DH=q&H&H5&NIfDHGP0@HGP0@IFLP0HFHP0ID$LP0\HEHP0=H=Q贏 MIE1E1H$D$ZPHDŽ$D$ LIHD$QE1E1D$HD$(HL$LHLT$ E1E11HH$LT$ HD$LaIH$E1E1E1E1HD$E1D$*PD$ +HH=&Ip@HA@=H$HHHL$LT$H$L$H$LT$HHH$HtH/uLT$HGP0LT$HDŽ$I*IBLP0fH$E1E11HD$E1E1D$-PD$ @H=&HB&H5C&IfDL HHD$ H5&HhIH.HD$ H5&HDIHeHDŽ$Hݕ$I9F IFH$H~ MnHIEI.u IFLP0H$HS LH$H$HtH/uHGP0H$HDŽ$H Imu IELP0H$H/uHGP0HDŽ$芏H|$0HD$X1HT$HD$8Hl$`L|$hLl$HLd$pHD$@HHHHT$PHH\$xHD$H1HH|$HD$ M|Lt$8H\$(Ld$@fLHhAHIHL$L$CXM9u%H|$H\$(^f(HT$H1DfAfYAHH9uHD$PH9D$tHIDYH\$H9\$0,Hl$`L|$hLd$pH\$xH|$X^H5&1LI,$Iu ID$LP0M I.A9*f.E1E1E1E1H$D$/PHD$D$ ffDHH=&I@LuM LeII$Hmu HEHP0ID$L1ҿAfDHoHHGHEHH$H$H/uHGP0H$H$H聠H$Hm)HEHP01E1E1E1D$lPD$ H$HfDDD$oPH$D$ E1E1E1E1HD$E11fIE1E11H$D$OPHD$D$ onH)$sHH$HLLpH5&)OcHFHH$I@H5&H=Z&1[HH$H HH$H/uHGP0H$D$~PHDŽ$D$ 1LHsIH$HSH$MIE1D$ZPD$ fLJE1 uLGH$f LAHfDHGt$0P0H$t$0@ HHDŽ$YH=2@1dH$HHHL$LT$H$L$xH$LT$HHH$]E1E1E1HD$D$fQD$HKHHgH$H5H8蹃@H5&LHV]HzH$IE`H=)&Hz&H5{&IfDH$E1E1D$MQD$)DH=&I@E1E1E1E1HD$D$OQD$VfDӉHrH=&H&H5&^H8fDH$PfDH$E1E1D$RQD$iDH=&HZ&H5[&IJfDH=& H@P2fD fD1MfE1E1E11HD$D$TQD$?軈IH=i&I@HGH$HHWHHH$H$H/uHGP0H$H$HLL虚G@HqH$HHAHHH$H$H/H$1ҿD$HAlHGHT$(P0H$HT$(0LHHT$(HT$(H$E1E11HD$D$vQD$H$E1E1HD$E1D$QD$D$QE1E1E1D$`E1E1E1E1H$E1HD$D$PD$`MLH$E1ID$APD$ H$E1E11E1E1HD$D$PD$|I9H$E1E1E1D$QD$:HGLT$P01ҿLT$H$D$HAH$E1E1E1D$QD$BjH=&H&H5&I5H$E1E1E1D$QD$:"E1D$QD$H=K&fIH$E1E1E1D$QD$BSIH$E1E1E1D$QD$:D$QD$SH$E1E1D$QD$BeID$H$HMt$HII,$u ID$LP0H$HaHLI{E1E1E1E1H$D$QD$:E1D$#QD$H$E1E1D$,RD$IH5Y&I|$oL$ZE1E1E1E1H$D$QD$B^E11D$.RImu IELP0H$D$IE1E1ID$)|$PAo)$tsow)t$ o~)|$`Aop)$tLo )|$0oF )D$pAoH )$t%og0)d$@on0)$AoP0)$ȃ9t"HHE11HD$$D$ FHtH|$`E11$D$ FH=&H&H5&HHD$8HL$0L1HT$E1H茜IHD$HD$H$HD$D$ OHFH|$`E1E11HD$HD$HD$$D$ =FFI~H=V&qH9H|$`11$D$ FD$ QHHD$8HL$0LE1HT$H賛I$HD$HD$HHD$uI1$D$ FHXHHJ$AH5XjL H H8HK1/E_EAXL1D$ VH?I1$D$ FHI$11D$ FHH|$`IE11HD$$D$ 7ImH=&HW&H5X&ӋHI1$D$ FH^H=11H _E1H|$`HD$HD$HD$$D$ qFH=_&zH I$D$ FHH1$D$ FH|$`$D$ 6GtD$ 8GHmu HEHP0H|$`$1HD$ FGH|$`1$D$ G#AWfAVAUATIUSHL5I$HnHƧ&H|$)D$`Lt$pH\$xH HHH3 HH>~H .~HMHUH,LDHOH$H5PVL aH81BXIZH ~H=qE1HĈL[]A\A]A^A_H^0ID$(HD$ ID$ Il$HD$HD$HHD$PHD$XHEHL%&H\$@I9 H+I$H9CI9D${ J$A|$ n$HSL|$@I;T$HCIL$H9@H@t H{ At$ 8@ H{H@ $IL$0IH@HIDȃ%J'DA9uHH E1HL\$ HD$PHL\$ L\$ HD$PL|$@1ɻLAk L|$@1E1LAljL|$@1ɻMAo1E1MAL|$@1E1MA$L|$@YNAL|$@1E1YMA{L|$@1ɻWMA{eL|$@1ɻMA}NAlH52u&I|$L\$ CoL\$ L|$@lNA1xJL\$ HL|$@aNA1NL|$@]NA9[NAL|$@1ɻdMAzL|$@vNA1%OI/u IGLP0L|$@A1LHHD$PH^H=p&HCHHD$@H.H|$PH/uHGP0Ht$@H=dr&HD$PF=HHD$PHH|$@H/uHGP0HD$@H|$P0eH|$PH/uHGP0HD$PL|$@N1AL|$@1ɻOANI/u IGLP0L|$@A1ONL|$@1ɻNAKL|$@NAL|$@NAmNAL|$@NAHHD$PL|$@YOA)AWfAVIAUATUSHH $LfH|$)D$pH$HjI0 I.Lf(Mn MvHr& HD$@HD$HHD$PL(HD$XHD$`HD$hhE111AHLAHHH8u H@HP0HRr&D{H(hE111AHLHHH8u H@HP0EED$Lsf.[OD$LaIHH=f&D$p&YfH=1g&I*p&L;%n $HYq&H zZ&H9HHaZ&H0HL5MZ&Lt$HMIFH5i&LHH)ILt$@MH|$HH/wHp&H Y&HD$HH9HHY&H*HL5Y&Lt$HMIFH5g&LHHIMH|$HH/:HL$@H5$HD$HAHAHt$ H9H;T$H; $QME1fIFLMP0MtI/u IGLP0HtH+u HCHP0HHmHEHP0wMfDIH9H 9HMHATH9L@H$H5L :H81$X6ZH v9 H=b-E1BHĘL[]A\A]A^A_DH5`&Hk&ZH5a&Hj&\L;%$ Hk&H 1U&H9H'HU&HW HL5U&MIFH5d&LHH-HHD$@IHIu IFLP0HPk&H T&H9HHT&HHL5tT&M#IFH5pb&LHHUIIHMIHu IFLP0LL$@H z$IAHL$ H91E1H;$? H;$L$t$IHD$HHMt$HcL$tLpHcI$1LHMdMlH|$@MEIH H|$HH/ HD$HH|$@H/uHGP0Lt$@I>uIFLP0Lt$@HD$@E1Hi&AvI~ HHLL i&HD$1AIHH;$HD$H+Mt I,$ IGH5H\&LHD$HHH4HD$HH LHh&HD$@HjH|$HH/uHGP0HD$HH|$@H/uHGP0HD$L-)a&HD$@LLIT$HHT$(|HD$HnH@HT$(HH5 LH|$HD$HHD$L-`&LLIT$HHT$(H<HpHT$(HH; LHHD$HHjHpHD$PH;t$ % HPHT$PH H@HHH|$HHD$HH/Ht$PH|$HH 0H|$PHD$@HtH/HD$@HD$PHH|$HH/<HD$HH|$@H/HD$@E1HD$ HD$HH@HH|$Lt$0MLd$IH\$HHl$(LDH0HLL0H@H0H8H0H6$1IMHE %pH(H0H0H@(;}}MHcHLH0H@H0Pt8H(HR8HcR H0;}|IM94IH\$Hl$(Lt$0H|$ xLl$H5V&1L2AHD$hIEHD$HIEH|$hHH/~HD$hI>MI/H+Iu;HP0H;0HHP0H0H0H0HcLMH(M9(iI@(H0H(H)0+I@(H0H(H)0PH0HcLMH(M;(}ILL(H0H(H0H@0H0H@(H0H(H+0H0II3 ~qItIHF(H$IF LHD$xIFHD$pIItkIMt7M%Lt$pLl$xL$9MOHIH5Y&LIHVHD$pHH5@X&LHVHD$xHIMH5:V&LHVHH$II@D$71E1E1A< f.H|$@E1Ht#H/uHGP0MtImu IELP0H|$HHt H/uHGP0H|$PHt H/uHGP0t$H 0DH=#MI.u E1E1IA@= Lt$~D$HtpHLd$LL$D$)D$p:IH5MtI.u IFLP0Imu IELP0ME1E1A> D$#7H b&HH1IHH;#HD$@(Ha&H K&HD$@H9H)HJ&HaHL5J&M IFH5Z&LHH ILl$HMI.u IFLP0ID$H5T&LHH_HH8Ha&H5?J&H9pFH&J&HHL-J&MNH52X&LHL$=HL$HIpImuIELP0HL$LL$HH5B#IAHt$ H9RE1E1H;#8 H;W# HL$t${HL$HHD$PMHct$tLhI1JLLtH|$HH;IHD$@HaH|$PH/uHGP0HD$PH|$HH/uHGP0HD$@HD$HHH|$@H/uHGP0HD$@Lt$HHD$HID$LP0HGP0R@HGP0}@HGP0@HGP0@H|$HGP0)HGP0@HGP0)@HGP0J@HA@=HD$HHtpHHLd$xHD$pL$ 7HD$PHH|$HHt H/uHGP0HD$HI.IFLP0DHGP0v@H=iS&WID$9E1Aa H)u+E1HAHP0MtIHIHu IFLP0H|$@E1H_E1E1H .H=0AG zD$7HD$@DE1E1AB D$N7GE1E1AC D$W7'HD$HfLt$~D$HtpHLd$LL$D$)D$pQIHAE D$7HHD$Hf.H|$H&xHxHD$@L|$H5T&IAIH IH5T&AHD$HH HD$PH #H9HHPHT$PHH@HHH|$HHD$HH/uHGP0Ht$PHD$HH{H$H|$PHD$@HtH/uHGP0HD$@HD$PHN H|$HH/uHGP0HD$HH|$@H/uHGP0HD$@HL$XHT$`HHt$hHD$ 4HL$D$LHyHQ@HIHD$@H HD$ HL$XHD$@HT$`Ht$hHB1LL|$XH5 K&,6HD$`I.u IFLP0Lt$`M I.u IFLP0HD$`Lt$XHD$XH+E1AE D$k7Zf.H=O&HC&H5C&3IfDD$m7HAE E1E1?fDHFHHD$pI`H=1O&HbC&H5cC&3IfDE1AE D$p7f. HE1E1AX D$8cIkHE1E1AY D$8)fH=yN&RI0@AE D$r7DE1E1AZ D$8INMqM~ IAIHH|$@HD$@H/uHGP0LL$@1ҿIAE1E1A[ D$8WH )`MH=+AL zuD$8HD$H@H5W&HxQL|$HfDAM D$+8DkfDHD$HHtpHHLd$xHD$pL$LHD$PH-IAa D$9H[AM D$-8DAE D$7mDH=L&H@&H5@&v0I9fDE1Aa D$9fH#LAN H8D$:8E1AE D$7fH=L&4PI@E1Aa D$9f+IIA@=bLl$~D$HtpHHL$LHL$L$D$)D$p.HL$HHD$@MtImuIEHL$LP0HL$H)u HAHP0I.VIFLP0GH#LH8D$<8HD$HHL$AN HHD$HHHAHP0~H=J&H>&H5>&.IE1Aa D$9FD$J8H=J&NIE1Aa D$9IHqHt$HHHAHHH|$@HD$@H/uHGP0HL$@A1ҿHAD$HT$pLLL0"H5%oC6pHv#Ht$8Ae H8CD$9VHoD$9I/uEIGLAe E1P0#IAa D$9HAN D$8E1Ae D$ :Ll$~D$HtpHHL$LHL$L$D$)D$pHHL$HHD$@sD$7HMAH HHMD$7AH XH5)S&Hx8MLd$@H=H&H<&H5<&l,IIMLAH D$7H=GH&bLIHHg#H5hL y!jAH  H@ H81^6_ME1AH D$7|HH=G&H;&HL$H5;&+HL$IMD$7AH BAe D$K:H=sG&HL$KHL$IbMD$7AH MiMIAIEHH|$HHD$HH/LL$H1ҿAIAuE1A^ D$9D$9I.uIFLE1E1A^ P0YE1E1A^ HD$9D$7H|$HHt H/uHGP0HD$HH|$PHt H/uHGP0H c_ )9HD$PH=A$nH|$ HL$PHT$HHt$@;4JHL$PHT$H1Ht$@H1HLHD$(+I.HL$(HuHD$0IFLP0HT$0HL$(H)uHAHT$(HP0HT$(HH;#H;#hH;`#[HHT$(HT$(AH*u HBHP0EHt$@EHtH.u HFHP0HD$@H|$HHt H/uHGP0HD$HH|$PHt H/uHGP0HD$ HL$XHD$PHT$`Ht$hH`73MD$8AH e1MD$ 8AL HGHL$AP0LL$H1ҿHL$IAAE D$7E1A^ D$9H*DIAa D$9HlE1E1AG D$7iD$@9HD$ HL$XE1A^ HT$`Ht$hHH63E1D$7Ll$PLd$HHt$Ht$LLH%D$U9HD$@HD$HHD$P_D$M9RD$I9ED$D98Ae D$9AN D$:8sD$<8fDAWIAVAUATUSH8H#L5=&H<$HnHD$H\$Lt$ H\$(HHF~,HHLn0Mw(Mg f.IIHIGHD$H=L&Lt$HGH;0# H;#HWBHjE1 H QP HJ#;LLHH QP H"#=@9HH_L&H 5&H9HH4&HHL54&MIFH57D&LHHIIHMIHu IFLP0LHIHI/u IGLP0L;5#L;5X#u I9hDI.u IVLR0EH $HHd<&AH=_#LHqIH!F&LAUjRPjRLPj5 >&LL$XJ&HIHPHHI.fDHmu HEHP0H8H[]A\A]A^A_DL29N@$@IdHJ&H "3&H9HH 3&HHL=2&MIGH5qB&LHHIIHMIHu IGLP0LHIIMHIu IFLP0L;=#L;=#I9L`AƅI/u IWLR0EdH$LH=#LHpILL E<&AUjLD$.H&Y^HHI/FIGLP07LADžI)AHIHu IFLP0H D1H=4 efIFLP0LxIH5;&LIHVHD$H4Io@HHH HOHL LOLD@HH#UHH5H81Xj)ZH TdH=p 1!e%@ILUHHH )1H=" dDHIH'HcHHF0HD$(IG(HD$ IG LHD$IGHD$$IH~aHHu*M~.H5;&LHV]HHD$(IMHD$Ld$Lt$ Ll$(HD$Hu5f.Ht$;HfH=;&HZ/&H5[/&IsfD)AIt)A]H=YF&L=r;&HGLHHIM H#L)H5JAH81fH=JA)I/IGLP0@HHC#H5DH8H=:&>I@HFLHD$IMAH57&LHVpHtHD$IMH5=&LHVFHHD$ I)ALJE1 uLGHt$LAHH=9&H:-&H5;-&I1fDH)Aq@)AoI"A)kH)A)@H=A?&H9HEt H;#HHHH=A&H IHMHHu HCHP0L4I,$uoID$L*AP0A)HT$HLLH5o%1@T)I*A:HHH-)AH 0)H=G_IH*A1ɺLAHfAWAVAUATUSHH(HFv LfIT$HH "HcHHCH59&HHHIMHHH+HHH54&HH]mHmu HEHP0HA&H 6(&H9HH(&HDHH- (&HHEH5=3&HHHBIMHmu HEHP0H5:&LHImu IELP0IFL-1&HHL=#H QP A;oHLLITH QP AH= @9M_I.u IFLP0H+u HCHP0IEH5:&LHHIMImu IELP0IFH;#M~M I^IHI.u IFLP0H1&LHI/Hu IGLP0HH+u HCHP0HEH51&HHHHHEHHEH"Hu HEHP0HCH;X#LsMLkIIEH+u HCHP0Lt$IEH;#jH;[#IUBHZ1 uImL=#H QP A;HLHbH QP A=29HI.DImu IELP0HELhpMI}LHHH=#HHeH+Iu HCHP0MuLHAUI,$uIT$HD$LR0HD$HUHJHBHMHuHUHD$HR0HD$H([]A\A]A^A_fDDfFII LIl$HHIHHeDDfFII IIuIH/H 9{H=Z1fDfAMc@DfmH=,"@I.u1IFLP0HELDHPHM#H5H81HUHBHEHtSA ASDDH H=CYH(1[]A\A]A^A_DHt3AASDHEHA ASP0HEHAASP0H--&H;r#Hl$H;(#:IVBHZE1 uMnWL=#H QP A;HLH.H QP A=29HLH;#H;#HKQE1 HiuLkL=#H QP A;1LHH QP AH= @95IH9HuAH+ASE11sfDHI@$fAARINE1ARAI.u IFLP0H+u HCHP0HtHmu HEHP0MsImhIELP0YI.u IFLP0ARA8E1ARAk@@!DARA1DDH=.&H &H5 &HfDE1ASA@H=.&2H@ASAI@ED@$nf.LHLIH/fD1ARAdD3@$f.I/AASeH=|}E1ARA1fDCHHgH#H5ARAH8H=>@LAf.[@$fKHHLDH*DHL-7&H L=E#H QP A;1LHK@LLDHI.HMHt$L,HfDXLB1 uI~Ht$AHjD11HI+HHt$L+HdfDHH[#H5\H8LB1 uI}Ht$aAHDH=L\#H H#H5H8H@`HdHHTHIHCHPH;o#f`MeIL$HH5)HcHEeAMcImIULR0@EeAEII I@EeImtnEeAEII ImLE1R08f.H5#HIHLHP@LIBL1HIhHH=AHH#H51H8H#H5H8ؿpHB`HHHLHHH#H9EHEt#LeID$HHHcHH|BIHmHHEHP09DeAMcDeEII IDeDeEII HH5+HH[ImIELP0DHXIg1ɺAHHuH#H5H8莾1ɺAHf.AWAVAUATUSHXL-#&L%#&H#H^H|$Ll$~D$Ld$HD$@D$)D$0H H ~0HHHF(HD$Lf LnfHD$HHs2& H(hE111AHLHH H8H/2& H(hE111AHLHHT H8zE;CH1&H &H9P>H&HHL-&M IEH5#&LHHIIEHM>IEHI@H;#xE1E1AH;c# H;#LD$FLD$HIMtLxIHEKlHK\I@LM!L\$ LD$LD$L\$ P L5>#A;P o 1LL\$(LLD$ AHD$оLD$ L\$(P P A=@9 H|$=I+uICLD$ LP0LD$ I(u I@LP0HD$HHH0&0IHn H8u H@LP0H/&H&H9Pf H&H HL=&Mj IGH5/*&LHH IM I/u IGLP0H_/&H&H9P Hw&HHL5c&MIFH5W&&LHHIMI.uIFLL$ LP0LL$ IAH;# H;#Ld$0H;# IQBHrE1Ht$( uMyLL$ ߼L5#LL$ p VA;P LL$ LLHD$(I觼LL$ P P A=k29 MMMI.u IFLP0H#I9E LLMII/uIGL\$ LP0L\$ IHMIHu ICLP0L;5#L;5D#u L;5#DI.u IVLR0EHT$HIAH=j#LHrIEH (&L52#jP5&jPATjPHT$`+&IHPHImu IELP0H+LHmu HEHP0MtI,$u ID$LP0HL$H1HHD$HHHAHP0 fDH@HP0CH@HP0E;C|tLڻf. D$vL辻f. \D$H ,&Hl&D$ H9PHM&H HL-9&M IEH5"&LHH IIEHM IEHu IELP0D$ 薸IH H#I9F1 LLM+II/u IGLP0M Imu IELP0L;%O#L;%#u L;%#yDI,$u ID$LP0E HD$D$LIL\$(ڷL\$(HID$ L\$蹷L\$HIHt$HLMHR%&5|#AHH=#jP5R&jPATjPHT$`L\$X")&HPL\$HIIbHIUIm:I,$HD$E1 fDHD$[fDHHIH H-HIHH#I?SIH5H8L A1ZX%ZH MH=(1yFHXH[]A\A]A^A_IELD$LP0LD$I@@= L|$~D$Ht0HHl$LLD$ H\$@D$)D$0GLD$ HHD$D$&@MIME1E1HD$HD$f2?D$E11E1HD$E1D$%E1MtImu IELP0MtI/u IGLP0MtI.u IFLP0T$t$H :H=EHtH+OE1HCHLP0HHD$GfDHH3HtHHF(HD$@HF HHD$8HFHD$0:IHHM~.H5&HHV{H HD$@IM HD$@Ll$0Ld$8HD$H/H迯IM~H5`&HHVHtHD$0IM~H5z&HHVHWHD$8ID1fHD$E1E1E1D$D$& fL\$(LD$ 豴L\$(LD$ @$fDL|$~D$Ht0HHl$LLD$ H\$@D$)D$0LD$ HHD$ MI/IGLD$ LP0LD$ D@DLXAŅ)MD$E1D$7'&fL(AŅxI$ME1E1D$`&E1D$HHD$IHE1ICLP0MIHIHcIGLE1P0fID$LE1P0HD$@IELP0ICLP0腳HvHD$E1E1E1D$D$,&DZD$ ?D$ H@HD$E1E1E1D$D$6&fH=LD$L\$ sIME1E1D$&HD$HD$@H=&H* &H5+ &IfDE1GHD$E1E1D$D$& @H=&H &H5 &nIfDHFfLL$ 薱LL$ @$D$D$&ME1E1E1HD$fDH= &$IA@3I\MxMM`II$I(u I@LP0ID$MA1ҿATfDE1E1D$D$&DH=q&H &H5 &NIfDE1D$D$'D$&;LLLL$ /LL$ IH=&I)@#IDD$D$'G1LLL\$(LD$ )LD$ L\$(HHD$IfDIEMD$'E1D$HDL\$LD$ɯLD$L\$HIIE1ME1D$&HD$nfDHD$E1E1D$D$I&(@HFHHD$0/IH=y&I!@IED$'MMD$E1HIE1HkIH=&4I@D$D$K&+IIIHMqHII)uIAHL$ LP0HL$ HLLHL$ :HL$ IH)THAHP0EfHD$E1MD$D$N&@LHt$0LL$ LL$ I@E1D$4'D$MMMM]IIImuIEL\$(LLL$ P0LL$ L\$(LLLLL$(L\$ JLL$(L\$ II)IAL\$ LP0L\$ f.HD$E1D$D$]&INHMnHIEI.uIFHL$(LP0HL$(HLLHL$(HL$(IH)HAHP0xLB1 uIyLL$ Ht$0KALL$ IlH5a &H=r&1IHHWImIELE1E1P0D$D$G'H5 &H=&1+IHaH Imu IELP0HD$E1E1E1D$D$p&cH=9蜪LL$ >IEMMD$$'D$E1H9fLL$FLL$HIEHMME1D$$'D$fD$D$d'IE1E1HD$D$&HD$DIE1HD$D$&HD$MHE1HD$MD$&D$nHT$0HHLH5,% ?%D$&D$E1E1D$G'IEMD$$'E1D$HAE1H#H5L\$E1LD$H8OL\$LD$D$&D$IMHvE1D$D$C'BHD$E1E1D$D$l&H#H5LL$H8ϥIELL$H1ɺALL$ IHD$E1E1MD$AWI1AVAUATUH1SHxH= &HD$8HD$@HD$HHD$8HH\Iw`HУHD$8IH趢H #IHHHHT$H9t HHPHuHHH|$LpHL$t HD$HHD$HtHMtIHCH5 &HHHCILD$@M@Ip迧IHHD$@HHH; #}LHMH@IHH|$@HD$@H/XHD$@E1ۿHHH; #sH; y#LL$ LD$t$(蘦LD$LL$ HHD$HMHct$(tLHHLcLDI$Ht$HNdLD$@I@HHLD$ Ht$OHt$LD$ H QH x#P ;HL$1LHH QHL$P =@9HHl$8H|$HH/uHGP0HD$HH|$@H/uHGP0IpHl$8HD$@HD$8eHkHEII~D$H8D$HPLhLpHtH/uHGHT$P0HT$HtH*u HBHP0MtImu IELP0H+uHCHP0MtI,$u ID$LP0HtHmu HEHP0HxL[]A\A]A^A_fHHLpHL$fDHGLL$ LD$P0HD$@E1ۿLD$LL$ HHH; K#LL$~D$HJtPLD$HLL$(LD$ D$Ld$`)D$P LD$ LL$(HHD$84MtI)uIALD$LP0LD$I($I@LP0@HPR⍁LL$~D$JtPE1LD$Ld$`D$)D$PHPLRR uLXLL$ LD$ZHLALL$ LD$HD$8H?D$tdfD29E0@$7HEH;ݭ#H;#H@hHH@H1HIL|$8MHD$8?fD$tD$ I1E1H|$@Ht H/uHGP0H|$HHt H/uHGP0T$ t$H H=1HNH+A>/D$tD$ {#ID$tE1H|$8Ht!H/uHGLL$(LD$ P0LL$(LD$ HD$8H|$@Ht!H/uHGLL$(LD$ P0LL$(LD$ HD$@MtI(uI@LL$ LP0LL$ MtI)u IALP0H|$HHt H/uHGP0IEXfH5; &HHD$8IE`AEXHD$@IEhIEhHD$HHCHHHHH|$8AH9Hmu HEHP0HL$8I}XIU`ImhIMXHL$@IM`HL$HIMhHtH/uHOHT$ Q0HT$ HtH*u HJHQ0HtHmu HUHR0HD$8HD$@HD$HEt$H H=.HL$8HT$@LHt$H H-&H5z&HELMHt$Ht$H QH #P ;!HL$1HAI貟H QHL$P H=\9dMLI/D$Qu1D$ DD$ 1I~D$H8D$LxLhLpHt H/uHGP0MtI/u IGLP0MtImu IELP0H|$8HH/I*HGP0fDE1D$tA1E1ɿfDA1fHEL8IIGL1P0D$QuD$  @D#@$H1LALD$LL$ D$tD$Au1D$ fL1IHD$8HE1D$tDH=HL$(Ht$LD$ HL$(KD$tE1E1{DӝHuH#H5H8HfDL}ISD$9uD$ HHG@HEH@HXHt;HJH~&H9j1@H;lAHH9uE1@HH9HuE1H;-a#AZ1HHHHD$PHT$IH*0HBHP0!D$uD$ D$t1H IH:D$Mu1D$ XH=ǧHL$ Ht$ Ht$HL$ HHuH#H5H8iD$MuD$ AKH1A;tHA$HD$8D$uD$ IDff.HHHtHHt&HÐKHuf.؇H H=H3)1Df.AWAVAUATUHSHL5%H^H|$HDŽ$L$HgHHHHH HOHL LOL@HHע#SHH5аH816XWZH H=E1T(HĨL[]A\A]A^A_Lv H]HD$PHHD$XHD$`HD$hHD$pHD$xHIJHD$H3H &H -%H9H;H%H#HL%%MH &H %H9H'H%H_HL-%Ll$XM&IEH5%LHHILl$`MH|$XH/uHGP0H|$`H#HD$XH9GHHH|$XHt H/HD$XHH|$`H/HD$`ID$H;O#!E1H;#bH;s#t$蜗IHD$XH[HD$`Hct$Ht IEHD$`IIOtIlID$HH0cL=#H QP A;1LLH8H QP A=29HHl$PH|$XH/uHGP0HD$XI,$u ID$LP0HD$PI.HD$u IFLP0HCH&HD$PH9T HXHHqH~'H;Q!1DH;T HH9uH&H %H9H"H%HB#HL-%Ll$XM"LH8Aƃ&#H|$XH/=HD$XE%H&H }%H9H%Hd%H%HL-P%Ll$XMU%H5%L HD$PH%H|$XH/uHGP0HD$X}IHD$XH;&H%H5%HF$"H|$PHT$XH5%H|$PIHD$`H(H/uHGP0HD$PH|$XH/uHGP0HD$XH|$`H/uHGP0HD$`H5?%H9t$HL$HAH;Ԟ#%HyL-d#IELl$0Ll$`Imu IULR0HD$`$HD$H52%HIH&HD$H56%HHD$XH&HD$PH T#H9H HPHT$PH H@HHH|$XHD$XH/uHGP0Ht$PHD$XH H"H|$PHD$`HtH/uHGP0HD$`HD$PH&H|$XH/uHGP0HD$XH|$`H/uHGP0HD$`HL$hHT$pHt$xHHD$ HHl$Ld$HIH HLB11HHIHD$`H=11HHHD$XH!HCL=r#HT$`L9,H@hHH@(HHHЅm!H|$`H/uHGP0HCHT$XHD$`L9EH@hHH@(HLHЅb!H|$XH/HGP0HD$XHH|$xHt H/uHGP0HD$xH|$pHt H/uHGP0HD$pH|$hHt H/uHGP0H5,%1LHD$hAHD$hImu IELP0Ll$hM:,Imu IELP0L#Lt$HD$hIMHGP0@HGP0@ID$@=-HD$`HHLL$H$H$HD$PHD$4XA-fDE1@gDHH9tHuH;x#fH5%HIH~ H5%1HIHD$`He!I,$u ID$LP0H#H|$`L5V#H9HD$0@L9@H;=#!H|$`Hc!H/uHGP0HD$`HD&H e%H9H#HL%H$HL%8%M#H5%LIHD$XH$I,$u ID$LP0LL$XIAH;}#$AE1H;#!H;#t$ĎHD$PHF'MHct$tLhHIcH\H5%HHT$PHDHD$1HHt$PHDH|$XHH|$PIHD$`H'H/uHGP0HD$PH|$XH/uHGP0HD$XHl$`H+u HCHP0H%H %HD$`H9H#H%H:&HL-%Ll$XM#H5%LCHD$PH|&H|$XH/uHGP0HEH5%HHD$XH@pH!H@H!ILl$XH|$PMd&H#H9G&LHD$`H|$XH/uHGP0Ll$`H|$PHD$XMC&H/uHGP0HD$H5%HD$PLl$`HD$`HIH&HD$H5%H^HD$PH&HD$XH #H9H HPHT$XHn H@HHH|$PHD$PH/uHGP0Ht$XHD$PH8 HH|$XHD$`HtH/uHGP0HD$`HD$XH#&H|$PH/uHGP0HD$PH|$`H/uHGP0HD$`蘆HL$xHT$pHHt$hHD$HČH%HXHHD$HHD$H|$HҍIH911HHGHD$`Hh!H5#HLW $H|$`H/uHGP011HHHD$`HD$`H$HLHi$H|$`H/uHGP0LHHHD$`8p$H'H|$hHt H/uHGP0HD$hH|$pHt H/uHGP0HD$pH|$xHt H/uHGP0H5%1LHD$xHD$xI/u IGLP0H|$xH%H/uHGP0HD$xH#HD$(HM$Lt$HI H=%I@IH# H HHH5a%LIHVIVH$H#MH$L$HH5r%HHHH|$PHsH5%H9t'HGH;<#Hu?u9fL%#Ld$0I$;f.Gz tL5#H#II9MHD$0H/Am HD$PI,$uIT$D$ LR0D$  H5%HIH1L5#H;D$0M9 L;%ӑ# LeŅdI,$u IT$LR0 H#HD$(H9 HCH5%HHD$ HCHHU IM' ID$H;c#H;# H@hHH@H1LHHl$PHI,$u ID$LP0H|$PHD$8HH|$PH/uHGP0HCH5^%HHD$PHHHD$PHHPH5%HHHIH|$PMH/uHGP0HD$PLIHImu IELP0H%H W%H9HH>%H HL%*%MID$H5]%LHH HHl$PHI,$u ID$LP0L݄IH跅IHD$XH@L`͇IHEHR%H %H9HjHj%HHH-V%HhHEH5j%HHHILl$`MHmu HEHP0HT$`H5w%LH|$`H/uHGP0Ht$XH|$PLHD$`IHD$`HdH|$PH/uHGP0HD$PH|$XH/uHGP0HD$XI,$u ID$LP0Ll$`HD$`L;l$( IEH5%HHD$@HCHHBHD$`HH5%HIHPH|$`H/uHGP0HD$`L;d$0M9L;d$(L2AƅhI,$u ID$LP0HD$H5%HEDHD$0HFHD$H5%HHD$`HHD$XH #H9H`HPHT$XHNH@HHH|$`HD$`H/uHGP0Ht$XHH|$`艽HH|$XHt H/uHGP0HD$XHH|$`H/uHGP0HD$`Hmu HEHP0HD$Hl$HHHD$I H~HL$8HT$ Ll$8Ll$@H\$HHHL$H|$H裄HL$ LLHL4L訁LLL蚁LLL茁I)HuH\$Ll$8L|$0H5%1LHD$xIHD$HIu H|$0HGP0H|$xHH/uHGP0HD$xHD$(HImLt$ Hl$(Bf.{@$\fHD$`HHLL$H$H$HD$PH H|$`Ht H/NHD$`HmHEHP0D$WH|$PA)E11E1Ht:H/uHGP0MtI,$u ID$LP0HtHmu HEHP0H|$XHt H/uHGP0H|$`Ht H/uHGP0t$H 5DH=SMtImuJ1IELIP0HtH+u HCHP0MyI.oIFLP0`@E1H|$PE1D$XA-DH=%H%H5%nIfDH=i%H%H5%FIfDD$X1A-H|$PHHMHPH,#HI9HD$0L;-#AA L;-ވ#A HuHWD$ R0D$ HD$PE{LGkLt$A/1E1D$aXZfHGP0@HGP0@ID$HHHD$PDf.苂I1D$ XA-H=!%D$+ZI/u IGLP0H|$PLt$HALD$9ZANZMLt$XH\$PeLLHHD$ZHD$`HD$PHD$XD$ZD$Z{D$ZnH|$PLt$D$G[AahA)D$YH|$PLt$D$[Ac$H|$PLt$HD$ZALHn#I9HD$0L;-%n#GL;-hn#:LeLl$`Ņ#H|$PLt$A`E1D$<[f.AWAVAUATIUSHXH-%H^H<$HD$0Hl$8HI HHHH٢H ɢHOHL LOL@HHl#SHH5zH81@gXP\ZH hH=ޗ1_HXH[]A\A]A^A_DHn Md$HEID$HHL$H%H %H9HH%HuHL5%M IFH56%LHH3IIHM~IHrH Ck#I@HL$H9H;l#Ld$07H;hm#IPBHZE1 uMxLD$bL k#LD$H QA;P TLL$LLLD$HZbLL$LD$x WP A= 29 HMHI.u IFLP0H<$H5v%HGHH:IM HD$I9F MnM MfIEI$I.u IFLP0HLLwImIuIEL$LP0L$M?I,$uID$L$LP0L$I(u I@LP0HHPHHHuHIE1E1HCL$HLP0L$MtI*u IBLP0MtI/u IGLP0Hm1HEHP0"H%H9SHXHHqH~+H;Q01fH;THH9uH%H ޾%H9H\Hž%HHL5%MIFH55%LHHjIMlI.jH [h#I@HL$H9H;i#Ld$0wH;j#2IPBHZE1 uMxLD$_L h#LD$H QA;P LL$ LLLD$Hr_LL$ LD$H QP A=29H5MHI/u IGLP0H%H=s%H9xHZ%HHL5F%MEHCH5 %HHHIMIFH;D$E1E1ҿH;nh# H;)i#LD$(t$ LT$H^LT$Hct$ HILD$(MtLPIHEKlMDIFLM^L Qg#p VP A;LL$ 1LLAHD$]LL$ p VP A= 29 H|$Imu IELP0I.u IFLP0Hmu HEHP0HCH5%HHHIMH5ſ%L9 IFH;ig#+I~u A~ L qf#H-f#1II9MI.IvD$(LT$ V0D$(T$ qL^aD$;]AHl$IE1E1E1HfDIHl IGL$LE1P0L$E1Mt"I.uIFLD$LL$P0L$LD$MtI(uI@L$LP0L$MtImuIEL$LP0L$t$DL$H КH=!HL$H+ E1DHH9SHuH;e#2LD$ ~D$ HLH\$ HD$LD$(Ht0Ld$@D$ )D$0肕LD$(HI M[I(QI@LP0BL$KL$HIME1E1E1E1AD$\DL$KL$HIIME1E1E1AD$\H1fE1E1Hl$AD$6]fNI6IMAMD$]MHLLM߄I1LLMHD$HDIME1E1AD$']HuDH;qR#LFIIMD$8]HMAf.IH E1E1I@LP0MIHl$E1HIH=ULL$HLL$SIMAE1D$']E1HIHH$HOQ#MH5MUAH8FIL$E1D$']HDLLL$MJL$I:IFLLD$ MLT$P0IG1ҾALT$LD$ LD$ ~D$ HLH\$ HD$LD$(Ht0Ld$@D$ )D$0詮LD$(HID$Z]M]IAHULD$LD$I_H=%H8%H59%蔒IE1E1Hl$AD$F]E1E1Hl$AD$]H=Y%H%H5%6I&E1E1E1E1AD$\D$\AMAD$H]v1KIHMHl$E1E1AD$]pKLD$IMEMpMuIIImIFMAE1E1Hl$E1AD$]!JIILHl$HIfpMHl$E1AD$]LJ1 uIxLD$Ht$0ALD$HLJ1 uIxLD$Ht$0ALD$HAD$x]E1Hl$E1AD$]>IHl$E1AD$]HD$h]SIHl$AD$]HE1Hl$E1AD$s]H=%HP%H5Q%܏HIHl$E1AD$]HjE1E1LHl$AD$]HIHIH=%蛯HHAD$]LME1E1Hl$E1AD$]I\$AE1E1Hl$AD$]6H=%Hr%H5s%ގIIHl$E1AD$]HlH=%خIvIELMLD$ AP0IFLD$ )GIeE1E1Hl$AD$]eInHcMfHEI$I.u IFLP0HHLYHmI:HEHP0+E1Hl$AD$^E1xME1E1Hl$E1AD$]uH"K#L$E1AH5OH8?L$D$\IME1HHJ#L$E1AH5NH8?L$E1D$\ME1E1Hl$AD$^ LHL$L$IE1Hl$AD$^E1Hl$AD$^IME1MAMD$]HAHl$AD$!^tHl$AD$1^Hl$AD$;^Hl$AD$=^IA1HD$D$b]!1ɺALD$H1ɺALD$HIAD$]_H-J#HpMI6I9@L;-FJ#@ L;-J#@ HE1E1Hl$AE1Hl$E10Hl$E1E1d@HHH?Pf *YHÐf.HGH?H~3ATL$UHSHDH}HUCI9u[]A\fDH~CATL$UHSHDH}HUf *YJCI9u[]A\AUL-'ATL%UH-SHH(H;SfHH HH*@AY HH9DH;HC@A\L$HcAD\$\$L$D$f(fW%yf(:$YT$\$L$Xf/MH(f([]A\A]@ ֍\f(< QH([]\A\A]f(fDH~3ATL$UHSHDHH ;CI9u[]A\DAVIAUL-ATL%UH-SHI>AVfɉ *@AY H9DI>IF@A\L$HcAD\$ \D$L$(W-1 (=f\$ L$*Y YT$X/KH([]A\A]A^f *Y \*? H[]\A\A]A^(@f.H~3ATL$UHSHDHH,>CI9u[]A\DH~KATL$UHSHDH}HU \f(:fWCI9u[]A\ÐDf.H~kATL$UHSHDH}HUf Y *YZ\f(A:ZWCI9u[]A\Df.AWAVIAUL-`ATL%WUHSHDH(I>IFL$Hc\$\$L$%4D$Yf(Y6$YT$\$L$Xf/wAI>AVfII HLH!H*AYLtfW uI94CH(f([]A\A]A^A_I>IF5\f(8 jI>Y $AV=\f(8 $fWf(XYf/vX &AffW Y@H~3ATL$UHSHDHH<CI9u[]A\DAVIAUL-ATL%yUH-qSHI>IFTHcDT$ \D$%efZL$Y f(Y5fT$ *Y YL$XZf/wCI>AVf H*AYDD$t WD$A98D$H[]A\A]A^DI>IFf5o *Y\\(:TI>YT$AVf/ *Y \:T$(W (YX/oXT$@WT$.fDH~3ATL$UHSHDHH9CI9u[]A\Df.Rff.4SHH0=D$f/@H;SHD$L4 l$T$\f/r. D$f(^5\$f/rH0[ÐD$jL$ \^D$]5t$L$ f(f(T$Y\f( '^5T$\$\f/,H0[fDf(\=Y|$(ff.Q5^t$fDH 9ff(D$YXf/sf(L$H;YYD$SL$$=Tf(YYY\f/wZL$ 74D$D$&4L$ =\T$YXYT$(YXf/L$0D$(YD$H0[fDfD52L$9L$Df..f.fSHH 5D$t$5/fH;SfH *YT$T$ ;6 wl$T$ \/r. ZD$ (^5\$ /rH [D$&L$\^D$}6t$L$((T$ Y\( ^i5T$ \$\/ H [f.(\-fYl$.Q-=~^|$=h|$fH5f(D$YXC/s(L$H;YYD$ SL$f' =(*YYD$YY\/wYL$C5D$D$ 25L$5\T$ YXYT$YX/L$%D$YD$ H [fDw4L$3L$Df.HHH?PHHÐf.HHH?PHff.HHH?PHHÐf.HGH?f.PE„f. D„wUSH(-f/?f1X D$^f(\$YYXY\YXY\YXY\YXY\YL$v/L$X \$52d$^f(\ f/YX dX\v@H~;\L$Hf(\$.L$H9\$\}H(f([]f(f\H,H*Dff(Df.HL$$2L$YX$HHD$,YD$HfDHHH?L$$PL$YX$H@HL$,L$HYfHL$ .L$ HYfSHH 5~D$f/L$rf/sBD$H+H$D$+ $H [X^f(ff/wnH;SH;$S$ P~^L$D$f(3-T$ -~^L$$f(-X$= ~f/r@<$H [^f(DHY*HXfDSHH $D$0 $Hf(Yf($0\$$H[Y^f(f.SHH0HD$0L$H[^f(ÐHD$*^D$)\}Hfff.zu fHD$i* |^L$H+fHD$A*fW $) |f(^L$H\f(+SHH$L$ ff/wFH;Sf/(r &\\f(E+YD$$H[\f(@X+YD$X$H[@f.SHH$L$DH;S{{\f/f(v*fW*YD$$$H[\f(fSHH$L$DH;Sff/v X{\^S*YD$X$H[fH.H'@f.HHH?$P z\f()Y)ff.Qw$HYL$/L$fSHH D$.L$HY dD$f(L$w'L$ff(f.Qw"f.L$YQw5f(H ^[D$f(T$8/f\$T$f(T$L$/T$L$Uf(HSHXf/+$stf.zu1HXH[]@$fW 1$& yD$@H $H}U $Yf/L$wHXH[]DQff.l$$N(D$(D$YXf(D$Yxf(\ |\5f(p\%X^ tf(d$0Xl$HXHD$8B^\L$@@H}UH}f(\aT$UT$ JD$f(fTx\D$H^L$XD$YX$X`,L$f/ H,\$r|$@f/?H\-f/v f/Df(L$ &D$D$8&L$ l$0D$D$Y^X&L$HCXL$\fH*L$fH*YL$(\ $L$(L$\f/L$HXH[]f(@,f. wSH\^f(S(H[$f.AWfAVH*AUIATUHSHHD$xt H9rx vl$xLkf(k\l$Hf/|$@$ \$HT$Yf(fD$@CXL$[(f($q*L$$YL$@L,fT$Lc0f(L$`Qf. Y -5v5f(L$@Y \f(f(fTf.1f-I*f(Xl$ Xf(L$X\K8f({@$\Xf(L$pKP .t$0^$sHXL$HYfD(D$8CXf(\f(\f(^YXYf(Y|$@\f(L$X^K`Yf(XYfA(AXXfA(^L$hKhYT$SpD^Xf(D$PCxfA(XD$@H}UL$H}Y $U $f/L$f(nf/L$"l$|$8fI*\Yf(^f(tXT$(XD$0\X\$ fTt^\f/ $X' $T$(H,IM)LH?HL1H)H~#\$`Y\$ fH*\f/IEfd$H^d$@H*YL96pf/I)l$xf/l$ IGHH[]A\A]A^A_fDfAf.DDf/L$Pwkf(L$($!^D$XXD$0&H,HPEGL$(\L$$YrYL$Xf(L$($|!l$p^D$h\f(&H,I9E$L$(\L$PY'rYL$hi@ID$H9fff(H*H^f(\YH9}DHCL9ff(H*H^f(\^L9~UDf(^lt$`LIX_f(XYHXP^^XT$ YfH*^T$($f(5 $T$(f(f(\f/Xl$(f/HCfEfML*ID$fM)H*fEIGL*IEH)H*fE(D$EYf(f($A^fE(D$YEYfD(,$DYD$$D$D$CD$$D$fA(^<$f(\$@4$D$Yt$H$AYf(^=͹D$l$(fA(f(5D$D^D$D$D$D$\f(f(^\f(%U^f(\f($^f(4fD(D\fI*XT$ Y$D^$Y$XfI*YfA(Xf(A^E^\f(f(A^DXfA(A^\f(f(A^E^\f(f(A^\f(f(A\\A^f(f(A^A^\f(f(A^\A^\f(f(A^\A^\f(A^\^$A^A^AXA^XXf/h$D$Y\f(X!H,df.H,ffUH*f(f(fT\f(fV@f(|$H\l$@f.B}wz8rj Lb0|$z@Yt$H5ֵ$zHl$@|$0zPYt$ |$pzX|$8z`|$XzhL$`|$hzp|$zx|$P|$f(\$ ${!T$\$ $PDAUIATIUHSHHD$t H9r_T$-!lfMeI*AE\AUAm f(l$L$L$YPT$L$d$f(AEfYYAUXX%kf.QY-ԴXf/VH,I]0\$H}U\$1f/f(vvfDHBH9}(\$H}U\$f/vN1f(HBH9|Lf\H)H*YT$YfH*YT$^f/v H@1HH[]A\A]f.Bb ZHZ0d$1f(T$8\$0l$(L$ d$l$(Y-T$8L$ d$\$0Xf/f(T$ \$>\$T$ fH,fDHff.Euj²fH*f/rYf/rI@iSH\Yf(гf/r"UH)H[D1DH)H[Ðf.SHH D$f(L$sL$ff.'id$f/v[\HL$f(HD$oL$ff(f.Q|Xf(YXD$H [Y Hf(dfHHH*XD$H [DH [fCD$H H[WD$f(\$R\$T$^SHH $f(D$$$Hf(Yf( $\$ $H[Y^f(ff(f(SHXf(H ^L$\$,$\$L$Y ʱf(YYYf(YXff.QwU\Y$\$H;X$S\$$f(f(X^f/s Y^f(H f([\$T$d$\$T$d$SHH@D$8f(L$ ff/D$ wt$ f/ffl$D$^XD$00f(^f(_XD$L$\f/D$syH;SYq\$0H;f(YXXL$f(L$ ^\d$(YL$SL$\Y\f/T$^H;SD$D$( wf/L$vfWT$8 ٯXf(fTeT$Xl$T$\f/v.fWH@[fDH;SX\&eY^H@[@H@[f8-df|$Yl$YXf.QwYXL$t$f(Xf.QwN\t$ f(f(X^f(YXXL$^L$0:L$vL$L$(T$]L$(T$Df.SHH05(dD$ \f(D$(H;Sf/D$ D$H;SYD$(^cT$\f(Yf/r~f(T$\$\$D$f(L$^cXH,HaT$ff.EфEH0[fDf/Ӹr@f.HcHH?D$\$PL$$f/vf(fYHXf/wHfHHH?$Pb\f(b\$D$f(L$^f(HH,f/r f.SHH \8bf(D$D$H;SH;$S%a\$$D$ b^L$f( b=f(f(fTf.v7H,f%afUH*f(f(fT\f(fVf/a^=naf/Lf(L$$^X@L$$f(\1al$Y^Yf(\a^f/H H,[ff(f(H8H\\H?T$L$D$(f(\$^l$ 4$P4$\$L$T$f/r3l$ fd$(YYf.QwHXH8f(@f(\ P`\fYYf.Qw*\H8f(d$$!d$$f(T$ $T$ $1HATIIUHI SHLHI LHL IIL III LH I ĸH9wfDH;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.Df.AWAVAUATIUSHHttIIHHH?H9wqIFAEJL$ Dl$ AME9v$1AAA9sI>AVAME9wI IHL[]A\A]A^A_@IFHEuTLbIHHI9v+H1HIIH9sfDI>AVIHI9wHL$DI>IFL!H9rL$pfDI>IFD!D9wL$PfDЉI>@I0fDAWAVAUATUSHteIẢAH?IFEucJL$ Dd$ IA9v%1AA9sI>AVIA9wH DH[]A\A]A^A_fDI>IFD!9rA\ff.AWAVAUATUSHH\$PfLAIE f AAEDrE T$ H?AUT$ E3EAfA9vY™AAf9r$FD3Ex}3AfA9v$uI}AUE3AfA9wA H[]A\A]A^A_Ð+EDHDMD!fA9s"EuI}AUED!fA9rHD[]A\A]A^A_fEuCH?AUEH[]DA\A]A^A_fD+Ex}+mDf.AWAVAUATUSHH\$PLAIE AAEDzE"T$ H?AUT$ E DA8vVE™AA@8r? ExD} A8v#uI}AUDE A8wfA4H[]A\A]A^A_f.+EDHDMD!A8s!EuI}AUED!A8rHD[]A\A]A^A_@EuCH?AUEH[]DA\A]A^A_fD+Ex}+mDf.USHHl$ tAtmA)EH[]@HLH?PEfAWAVAUATUSHHu]H~DHHLH4$$HHLDHH9uHHH9tI4H[]A\A]A^A_DLIHIH9EH~IDbH$MЉD$ I?AWID9s(D$ 1AA9sfDI?AWIA9wH HHHKH9$uP@HEH0ILbIH$DI?AWIIIL9s%L1III9sI?AWIII9wLHHHCH;$uDHM$I?HAWHHCL9uf.HM$I?HAWHHCL9u`@III LHI LHI LHI LHI LH I HM4I?AWL!I9rHHHCL9u@III LHI LHI LHI LHI HM4f.I?AWD!D9wHHHCI9ux1mDAWAVAUATUSHH~uHAHHʉ4$fn $LHHfpLfHH9uHHH9t(HxHA4H9~HAtH9~AtH[]A\A]A^A_ÐLAՉIEH~IADbH$MDl$ I?AWIA9v(D$ 1AA9sfDI?AWIA9wH HKH;$uH[]A\A]A^A_@HGM$I?HAWCL9uH[]A\A]A^A_@III LHI LHI LHI LHA HM4I?AWD!A9rHCL9uH[]A\A]A^A_1uf.AWAVAUATUSHfHHAHf4$HLHHfn$LfafpHH9uHHH9tcHxHfA4AH9}QHxfAtH9~BHxfAtH9~3HxfAtH9~$HxfAtH9~HfAt H9}fAt H[]A\A]A^A_fDALIfE H~DrIIE1H$A1D$ EI?AWAfA9vAD$ Af9s2EtE1fA9vI?AWȉfA9wAHDfKH;$'EE1fHI,IHDfCH9I?AWATfHSH9u@AHHH HHH HHH HH HM$I11t@1!fA9sI?AW!fA9rDHfSL9uH[]A\A]A^A_1DuH@HL@AWIAVAAUATUSLHE7HI, DjE1ɉD$ 1f.EI?AWAD@A8vk+D$ EݙAA8r3QI?AWD@A8vDA@A8v EtDA@A8wfHDKH9YH[]A\A]A^A_fH~I, 11HA KH9tuI?HAWASH9uAHHH HHH HH HlM, 11$I?AW!A8sH!A8st!A8r@DHSI9uH[]A\A]A^A_fDHSI9uf.AL@ADH~StWAT1I1UI, SL˅uI<$AT$#HH9t#HH9u[]A\D@HLAWIAVAUATM`UHSH(H|$LD$M~lIM1 OL$A\LHI9tBADH|$LLL$^I)HDMH([]A\A]A^A_H~HD$L|H([]A\A]A^A_f.DAWAVAUATUSHxMAML$AuHu1Hx[]A\A]A^A_fILLD$IH<HL$@HH$)IHE11H<$LL$@MffDI4H~JHEHKHT$D$HHHHH9uHHIH9tIIHH9uHH|$H?HIHHD$ H9H$HH\$(HK>> from numpy.random import Generator, PCG64 >>> rg = Generator(PCG64()) >>> rg.standard_normal() -0.203 # random See Also -------- default_rng : Recommended constructor for `Generator`. Gets the bit generator instance used by the generator Returns ------- bit_generator : BitGenerator The bit generator instance used by the generator __pyx_capi__name__loader__loader__file__origin__package__parent__path__submodule_search_locationsname '%U' is not definedMissing type objectcannot import name %Sendunparseable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'an integer is requirednumpy/random/_generator.c%s (%s:%d)stringsourceexactlyView.MemoryView.Enum.__init__at leastat mostlogseries_generator.pyxzipfpoissonnegative_binomialwaldrayleighlognormallogisticgumbellaplacepowerweibullparetovonmisesstandard_tstandard_cauchynoncentral_chisquarenoncentral_fbetaBitGenerator__pyx_unpickle_EnumtupleExpected %.16s, got %.200sassignmentdeletionbuffer dtypeBuffer not C contiguous.choice%d.%d%sbuiltinscython_runtime__builtins__4294967296complexnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillfloat_fillvalidate_output_shapecontdisccont_fcont_broadcast_3discrete_broadcast_iiinumpy.core._multiarray_umath_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointer__init__.pxdnumpy.import_arraygetbuffer(obj, view, flags)init numpy.random._generatorstandard_exponentialintegers__cinit__View.MemoryView._err'NoneType' is not iterableView.MemoryView._unellipsifydefault_rngformatpermutedView.MemoryView._err_dimDimension %d is not directView.MemoryView._err_extentsView.MemoryView.memview_sliceIndex out of bounds (axis %d)memviewsliceobjstandard_normalrandomtriangularmultivariate_normalvhudirichletmultinomialnumpy.PyArray_MultiIterNew1numpy.PyArray_MultiIterNew2multivariate_hypergeometricnumpy.PyArray_MultiIterNew3standard_gammauniformshufflepermutationbase__reduce_cython____setstate_cython__Tstridessuboffsetsndimitemsizenbytesis_c_contigis_f_contigcopycopy_fortrannumpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generator__getstate____setstate____reduce__PP`@0000PP0@p`@0P0P *l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+l+)l+l+,*l+l+l+l+l+<*L*l+l+\*l+l+l*|**l+l+*l+l+l+l+l+l+l+l+l+l+l+l+l+***l+* +,+<+l+l+L+l+l+l+)*l+)'))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))|&))&)))))D'4'))$'))'''))')))))))))))))''')t'T'&&))&)))&&)&,,,,,,,,,,,,,,,, * *,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,*++*++++++++++++)))++++++++++++++++**++x+H+++++++++*)+*)**)*****++**+**+++****************))+*,+++**+***)+*)/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,/,,,,,,x.,,,,,,,,,,,,,,,,,P.,,@./8-@.,8-,,,,,8-8-,,8-,,8-,8-,,-,,,,,x-,,,@.,,,8-8-8-,8-8-8-8-,,8-,,,8-8-,,,,,,/,,,,8/11s111<:99,::H;(; ;@;0;<<<<>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use ``default_rng`` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) Cannot take a larger sample than population when replace is FalseCannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose strides zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.default_rng().zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], ... 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() `x` isn't a recognized object; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling. weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.default_rng().standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 #random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> rng.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random` by `(b-a)` and add `a`:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destinaton of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() out must have the same shape as xnumpy.core.multiarray failed to import normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given 1-D array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement p : 1-D array_like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype=' 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : str String of length `length`. Examples -------- >>> np.random.default_rng().bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random binomial(n, p, size=None) Draw samples from a binomial distribution. Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in use) Parameters ---------- n : int or array_like of ints Parameter of the distribution, >= 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized binomial distribution, where each sample is equal to the number of successes over the n trials. See Also -------- scipy.stats.binom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the binomial distribution is .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N}, where :math:`n` is the number of trials, :math:`p` is the probability of success, and :math:`N` is the number of successes. When estimating the standard error of a proportion in a population by using a random sample, the normal distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be used in this case. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics with R", Springer-Verlag, 2002. .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BinomialDistribution.html .. [5] Wikipedia, "Binomial distribution", https://en.wikipedia.org/wiki/Binomial_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 39%. When method is 'count', sum(colors) must not exceed %dGenerator.permutation (line 4456)Generator.multinomial (line 3632)Axis argument is only supported on ndarray objects wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------- ValueError If any value in ``alpha`` is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") Unsupported dtype %r for randomGenerator.triangular (line 2680)Generator.standard_t (line 1672)unable to allocate array data.probabilities do not sum to 1a must an array or an integerGenerator.logseries (line 3346)Generator.lognormal (line 2431)Generator.geometric (line 3152)Generator.dirichlet (line 3999)Generator.chisquare (line 1459)Generator.vonmises (line 1766)Generator.rayleigh (line 2543)Generator.permuted (line 4197)Generator.logistic (line 2351)Generator.binomial (line 2780)nsample must be nonnegative.itemsize <= 0 for cython.arraya and p must have same sizeGenerator.weibull (line 1947)Generator.shuffle (line 4350)Generator.poisson (line 3000)Generator.laplace (line 2147)Generator.integers (line 442)nsample must be an integermean must be 1 dimensionalRange exceeds valid boundsGenerator.uniform (line 845)Generator.pareto (line 1849)Generator.normal (line 1022)Generator.gumbel (line 2232)probabilities contain NaNout must be a numpy arraynsample must not exceed %dInvalid shape in axis %d: %d.Generator.random (line 235)Generator.power (line 2046)Generator.gamma (line 1215)Generator.choice (line 598)Generator.zipf (line 3072)Generator.wald (line 2612)Generator.bytes (line 569)Cannot index with type '%s'p must be 1-dimensionalnumpy.random._generatornumpy.core.multiarraydefault_rng (line 4528)Generator.f (line 1293)normalize_axis_indexNotImplementedErrornsample > sum(colors)ngood + nbad < nsamplecline_in_traceback__pyx_unpickle_Enumascontiguousarraymay_share_memorysum(pvals[:-1]) > 1.0standard_normal__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectcollections.abcallocate_bufferView.MemoryViewMutableSequence__generator_ctorRuntimeWarning__reduce_cython____pyx_getbuffer_generator.pyxcount_nonzerobit_generatorOverflowErrorstringsourcesearchsortedreturn_index__pyx_checksumnumpy.linalgdefault_rngcheck_validUserWarningPickleErrorMemoryErrorImportErrorstacklevel__pyx_vtable____pyx_resultmode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexError__reduce_ex____pyx_statemarginalsleft > modehasobjectenumerateTypeErrorGeneratorwarningsswapaxessubtract__setstate__reversed__reduce____pyx_typepickleoperatoritemsizeisscalarisnativeisfiniteintegers__getstate__endpointcholeskyallcloseEllipsistobytesstridesshuffle__rmatmul__reshapereplacensamplememview__imatmul__greaterfortranfloat64float32castingcapsule at 0x{:X}asarrayalpha <= 0updateunpackuniqueuint64uint32uint16structreducerandom_picklenamemethod__matmul____import__ignoreformatencodedoublecumsumcopytocompatcolorsastypearangezerosuint8statestartsigmashapescalerightravelrangeraisepvals_pcg64ordernumpyngoodkappaisnanint64int32int16indexflagsfinfoerrorequal__enter__emptydtypedfnumdfdencount__class__arrayalphaPCG64ASCIIwarn__test__takestopstepsqrtsortsizesideseedsafertolprodpacknoncndimnbad__name__modemean__main__longlocklessleftitemintpint8highfull__exit__eigh__dict__copybool_baseaxisatolzigtolsvd__str__outobj__new__maxlowloclamepsdotcovanyalladd??/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+ ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: Aޓ=?~)@ lѿ3 ; @UUUUUU?"@m{??@@5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg?$@= ףp=@n?[ m?h|?5?333333 @r?$~?B>٬ @r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@-DT! @h㈵>-DT!@3?r?q?0@9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L&0A|'D(F(PJX)0M)O|*R(+U+Yx, ]$-p`-cH.f.j|/o/p0qD0u0x0 { 1}`11p11P2`2p2@2М(3x33,4h44@45PX50550<6066 7P\8(99:0 :p ;$P; %;+;p7H<8d<F<0N=`YX=Pn=8>М>,?x?@@`A$B*BPKTCWxD`D LE pF`FpF G4G`"G`8HPH@KBA A(G0 (A ABBD B (F ABBC D (G ABBH F0$.?daAA ~AAH.?BEE B(A0A8DP8D0A(B BBB4/@(BDB E(D0A8J 8D0A(B BBBH TpH]AHM]AY&^SB/BEB B(A0D8GJIAD 8A0A(B BBBA IYF\ 8C0A(B BBBJ @@0`A,BBB A(A0Jr,0A(A BBBX0BBB E(A0A8Dp< 8D0A(B BBBF SxL`xFp0t'BBB B(A0D8DYLB 8D0A(B BBBF HYFYQA5YODzYRB\MB DQASBODERB%DLAd14iBBE B(D0A8D`hEpkhF`c 8D0A(B BBBJ hWp_hA`H2<;DvH`2dBBB B(D0A8GPF 8F0A(B BBBG \2BBB B(A0A8D@ 8C0A(B BBBC D8F0A(B BBBD 3hAAG DAE Q DAJ B DAI LT3 BBG G(D0A8Du 8D0A(B BBBC 3 Dj B L3BEB B(A0A8D3 8D0A(B BBBG H4$ CBBE B(A0A8DP' 8C0A(B BBBD T\4() BBB B(A0A8D`hHpYhF`^ 8D0A(B BBBE |4BBE B(D0A8DDlFh 8D0A(B BBBF W_F-VaG\45p0*BBB E(A0A8D V_F_ 8D0A(B BBBE H5ZBBB B(D0D8FP 8F0A(B BBBE 5D^@7BHB E(A0A8I: 8D0A(B BBBE D_B] ISBA}A-B{COA|DH6ܔ BBB E(D0A8Dp 8D0A(B BBBA (6PBIE B(A0A8GBGGGGGGGGGGGGGGGGGGGGGGGGGS 8D0A(B BBBH lGGGGGGGGGGGGGGGGGGGGGGGGGSL8IBB A(A0 (A BBBB ` (A BBBI P8EBFB B(A0D8DeFBBFBBRyDkF^ 8D0A(B BBBC HSEBFBBFBYjW_FVaGX$9G BBB B(A0A8Dpg 8D0A(B BBBF xL`xFpX9G BBB B(A0A8Dpg 8D0A(B BBBF xL`xFp9xJ!BFB B(A0A8GeBBBBBBRDkF^ 8D0A(B BBBC `SSABBABBATV`GW`G :t BBB B(D0A8J)GGGGGGGGGDDDDDDDDDDDDDDDCGGGGGGGGGGDDDDDDDDDDDDDDDCLX 8A0A(B BBBG p;PcBFB E(A0A8G 8D0A(B BBBD }ElF0*W_F\H<lv(BBB B(A0D8GAHYFa 8D0A(B BBBF <̞ BDE B(I0A8J 8A0A(B BBBK GGGGGGGGGGGGGGGGGGGGGGGaAGGGGGGGGGGDDDDDDDDDDDDDDDCSL=8AAJtHKA AAJ d CAA >H0>AAJpKKA AAI d CAA |>hl>d'BFB E(A0A8G DkFa 8D0A(B BBBH <V`G?p>BFB B(D0A8GjDlFb 8D0A(B BBBI dEXBNW`F@ELAl?z%BFE B(A0A8GEkFb 8D0A(B BBBF W_F@= BEB B(A0A8Dp$xoBAABADBFUpq 8D0A(B BBBF mxBLxApxHYxFpd@GBBB B(A0A8G` 8A0A(B BBBG F 8C0A(B BBBF ADWBBB B(A0A8DpBAFBABBARSSAFBABBATL`F^ 8D0A(B BBBH LA|o BGB B(A0F8D 8D0A(B BBBJ B|aDZ B X$B}5BBB B(A0D8GvHYFb 8D0A(B BBBH XB#BBB B(D0A8DoHYF^ 8D0A(B BBBF BQ[ B %G] C8 , C49GED ^ABG,PCDIGED qABDHCdBIH H(GP (E ABBE c(A AFB,C89GED _ABFTCH2BEI H(H0D@ 0D(A BBBH r0A(A FBB,TD09GED _ABF,D@QGED {ABB,DpqGED UABHHDBBE I(H0K8K` 8E0A(B BBBI ,0E9GED _ABF@`E$BEI H(H0D@ 0A(A BBBF ,E9GED _ABF8E]G@y AB x AG (AG[@8F[G0 AD t AK ;AD[0LFGJdFGJ|FGJF 0FrAD@C EAH `F8(D cFPD U GX,D g$GpD U\ ]H?D n( HAG R AM XALHhgAG UAlHNAG DAHDIH^D B E H4AG0e EA DHAHDpa DAE M DAF ! DAA ,IX&IXLHIl BFG E(A0D8J 8D0A(B BBBG 8I:BED D(Dpk (A ABBD IYiFPL<IL/AG0 AD m AJ L AC P DE 8J>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use ``default_rng`` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> rng.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destinaton of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------- ValueError If any value in ``alpha`` is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8, *, method='svd') Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. method : { 'svd', 'eigh', 'cholesky'}, optional The cov input is used to compute a factor matrix A such that ``A @ A.T = cov``. This argument is used to select the method used to compute the factor matrix A. The default method 'svd' is the slowest, while 'cholesky' is the fastest but less robust than the slowest method. The method `eigh` uses eigen decomposition to compute A and is faster than svd but slower than cholesky. .. versionadded:: 1.18.0 Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.default_rng().zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], ... 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 39%. triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.default_rng().standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None, dtype=np.float64, out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use one of:: mu + sigma * gen.standard_normal(size=...) gen.normal(mu, sigma, size=...) Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 #random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given 1-D array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement p : 1-D array_like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> np.random.default_rng().bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random` by `(b-a)` and add `a`:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) ),/,p+,1,1,),),),),/,,,p+,@-,.,),/,H/,1,),0*,X+,1,),@-,.,),),/,p+,-,),),),),/,p+,),),),/,/,),/,/, ,,),/,),/, ,,),),/,),,,-,),1,),1,),1,),-,),),-,),),-,),),-,),),),),-,),),-,,,*,),,,X+,),,,X+,),-,),1,),X+,),@,,p,,+,),X+,),-,0,),0,(,,,,,*,),H0,+,),,,X1,),',1,p+,',1,',1,0,),-,.,,,`1,x,,+,/,x/,),*,*,*,4,/ 4, 4,3x4,`.$p4, .7h4,-&`4,-=X4, P4,@-BH4, # @4,x 84,"#04,"&(4,P  4,  4,` 4, 4, 4,` 3, 3, 3,@ 3, 3,`"%3,  3, 3, 3,  3, 3,"3, "23,!*3,!(3,`!+3, !#x3, p3, h3,`"`3, X3, P3, H3, @3, 83, 03, &(3, * 3,` %3, %3,` !3,  !3, 2, 2,@ 2, 2, 2,  2,22, 2,"2,@[2,?2,02, 2,- 2, 2, 2, x2, p2, h2,+ `2,)X2,p P2, H2, @2,82, 02, (2,)  2,@ 2,!2,`"2, 2, .1,)1,(1, 1, 1, 1, 71,F1, 1, 1, 1,' 1,' 1, 1,-1, 1,@8x1, p1, h1,h `1, X1, P1,( H1, @1, 81, 01,  (1,  1, 1, 1, 1, 1,% 0,% 0, 0,0,` 0,` 0, 0,)0,s0,# 0,# 0, 0, 0, 0, 0,40,`x0,q p0,X h0,X `0, X0, P0, H0, @0,`T80, 00, (0,  0, 0, 0, 0,P 0, /, %/,)/, /, /,` /, /, /, /, /, /, /, /,1 /, /, /, x/, p/, h/, `/, X/, P/, H/,H @/, 8/,0 0/, (/,  /, /, /, /,| /,v ., ., ., ., ., ., ., ., .,@ .,@zJ.,8 .,6., .,h).,  .,| x.,`Up., h., `., X., P.,p H.,j @.,d 8.,^ 0.,w (.,(  .,H .,r ., .,X ., -, -, -,m -, -,` -,R -,R -, -, -, -,h -, -, -,c -, -, x-, p-,^ h-,p `-,=d X-,,P-,! H-,Y @-, 8-,P 0-, (-,  -, -, -,F -,F -,`#,,` ,, %,, ,, ,,',,2,,A ,,` ,, ,, ,,< ,, ,,`,,! ,,! ,,8 x,, p,,/ h,,/ `,,* X,,B P,,`$H,, @,,L 8,,L 0,,` (,, 3 ,,% ,,% ,,@ ,,= ,,@+, +,  +, +, +,@ +,@ +,` +,@ +,F +,@ +,'+,"+, +, +, +, x+,@ p+, h+,@ `+,"X+, P+, H+, @+,  8+,0+,9 (+, +,+,x +, +, +,p *, *,#*,  *, *, *,3 *,3 *,P *, *,0 *,P *, *, *, *,@ *,- x*,k p*,#h*,' `*,! X*, P*,d H*, @*, 8*, 0*, (*,  *, *, *, *, *, ), ), ), ), ), ),  ), ),0 ), ), ), ), {B), ),  ),  ), x), p), h),0 `), X),tP), H), @),`r8),e 0), (),  ), ), ), ), ),!(, (, (, (,] (, (,@N(, (, (, (,p (, (, (, (, (, \Y (, x(,V p(,O h(,H `(, X(, P(,&H(,@R @(,A 8(,: 0(,3 ((,@F  (, D (, (, (,` (,@9 ', ',8', ', ',. 7$,,,1D.@/@ ,,\ pa [s PZP@` ,@ ,Pr0 ,D0 ` , ,z pV - \ `Rb  p`  ` _ ^ ] 0 P p] @Wa ns @m 0 D0 P ,t a  s > pF,,Pz,,`,@` {z  0v @zHa ws v`D@ P `,,   * "9 F S   ++K+BC +WR@+  +:0?@+@ `+p @xx+y Pi+1 0^+: R+E+9+е`1+p&++|0+sЩ+l*d*^0*V *O0*F`*<0`*3@*. * *%`u*Љi*  `*`@V* O* X@=*~@2* * ]@* @) @`)0)H * )P `)/)_UGCC: (GNU) 4.4.7 20120313 (Red Hat 4.4.7-23)GCC: (GNU) 8.3.1 20190311 (Red Hat 8.3.1-3)H1384   ` t b k p)x)))h))), *7 K  f   P6, E' P y\   H 0  P =  `  pC [ 0(v `_  p~  6, 2 dF ` `2,@',@2,8',x',',0',1,- ',=1,i',y1,',H+,',1,',*,D&,T*,&,*,&,P4,&,P,,1&,A04,m&,}&,&,82,&,-,&,,,&,-,4&,D0,,b&,r,,&,,,&,/,&, -,Lx&,\(',l0,p&,4,/,h&, `&, (,, X&,< ,,h P&,x +, H&, +, @&, 1, 8&,! +,? 0&,O P1,b (&,r h+,  &, `+, &, ,, &, &,. 4,H ',s &, 4, %, +, %, +,% 84,Q %,a -, %, P(, %, X(, %, p4,9 %,I (,,u %, %, h4, %, 2, %, `4,9%,Ix4,u%,%,p',%,%,2,x%,p%,h%,!),06,B/,X.,q),`%,),X%,(,P%, 00,*H%,:(0,]@%,m*,*,*,*,*,*,(, 0s$ [ Pw@5,5,@ G P   v( P[Y lgi*,~ S,, & {     6, b%)? Q 0e  0f | d " D "g p# $Y p%[ ' ( )E +hp -| -d - .u @/ 0m#6,+ 0B @1pS 1u 03 4 7 >^ Ch  `E/ FF H^ L0t M `O P R Sp6,6,6,0,-(,KX0,h PZR4, [R ]| ', ^<<),K _Is `I p`  bV cp5,0,+ kTS @mR nR pBx5, Pr`0,2,% @tF t_ax,,r+ 0vA vR wR @y<,,N @zf PzG~ z  { |" ~',1,%P+,15,VX+,bp+y  + `1,1,+2 l',|-,+-, ЉH,,,, + " ^Y),i-,x5,-,),@+    +%  0ya ),q ), +  y x-, -, + ! 0y?!+ V! y!+ ! 0!+! 0"`+G" "@+" Щ^"-,",,",,"-, # + ## 0`#/,m#/,z#+# Z#+# p^1$,,@$ ,,O$+ f$ е$+$ $/,%/,%/,(%`+(?%/,O% ^%@+ % P%),%),% + & PyB&+ Y& &+& ^&0,&1,&+ ' Q'.,j'+,{'0,'(),'0,' ' 7( p(1,~(1,( (4,( j( ) +) v) P) `) 0) @ *4,&*2,I* `_*0,k*.,}* * * ` *), +1,+.,0+ [j+0,|+p-,+++ + + p+ #,/,2,#,K,#,i,',},#,,#,, W, 0, ', )-0(,&- /Z-H2,p-+,-2,-5,-H,,-`+ - >. >>G. dh. Z{..,.8*,.H*,.@*,.),.),. A(3/,L/,j/81,z/ 0,/`,,/,/,/P.,/-,/,0,%0*,40,M0,k0p),z0,0,0/,0,0,0., 10/,1`6,31,L1,j1-,1/,1P6,1,1x,1p,1h,26,%25,O2`,h2X,2.,2P,2H,2h-,2P*,2+,3,3,73@,P38,n30,3(,3.,3/,3x*,3),3*,3), 4 ,%4,C4,\4,z48.,4`,4X,4`/,4+,4,4,50,35,L5,j5',z5,5,5`*,5,5,5,6,/6@(,@6 *,W6x),f6(,u6(.,6,6,6',6/,6@/,6P,7H,"701,47@,M78,k71,z7,7,7,7,7,8x,8.,.8p,G8h,e8h(,v8,h8',8 0?80*,8),8@+89 ,,.96,B9+?S9',c9',w9',9',98-,9h*,9*,91,9p.,9 2,:X2,:4,4:02,M:2,c:4,}:1,:p2,:4,:2,:4,;8/,;@4,*;4,A;2,V;4,o;@,;h5,`5,}X5,;P5,;H5,;(4,;8%,;@,;5,,<6,@<@,]<5,n<%,8< 6 <6,< ,< 0t =  /=  X=$,8v=@,=6,= P*a= P>x6,*>p6,F>h6,c>X6,~>6,>5,>5,?H6,H?@6,?86,?06,?(6,%@ 6,\@6,@6,@6,A5,1A5,hA5,A5,A5,A5,B5,MB5,B(,Bx2,BP0,B+,B+,B+,CP2,*C0+,:C+,TC$,mC$,Ch',Cx$,Cp$,C`',Ch$,C`$,DX',DX$,3DP$,QDP',]DH$,vD@$,D+,D`, DH',Dp*,!EH3,FEX),pE(3,E .,E3,E0,F4,=Fx0,hF4,FH(,F3,F@), G3,5G,,`Gx3,GP),G 3,G.,H3,,H/,WH3,xH,,H3,H0,H4,#I,,NI3,zI`),I03,I8),I3,%J((,PJ2,xJ8+,Jp3,J(,J2,K*,FKP3,kK-,K3,K.,K3, L`-,8L3,`LX-,L3,LX*,L@3,M (,1M2,UM(,M3,M0,M 4,MX,,(N3,TN+,~NX3,N',N2,N.,O3,HOx.,sO3,OP-,O3,O,,P3,JP,,uP3,P,,P3,P/,!Q4,JQ +,uQ`3,Q),Q83,Q(+,Rh3,ERH4,qR/,R(,R*,R$,@R1,R@, S C`S',nSp,Sh,S`,SX,S.,Sp+,S,, T2,9T+(PT R'T ,T,T@.,T@-,T,T,U,0Ux,NU,gU,UH.,U,U,U80,UH-,U.,UH/,V,'V,EV0.,TV+0kV,V,V,V,Vp(,V,W,!Wx(,2W,KW,iW`(,yW,W,W0,W.,W2,W ziX+,$X/,4Xx/,NX + eX ;X PX X X(,X@+,X XX4,#Y CEY ) wY0,Y#,Y#,Y@+Y @Y0,Y2,ZP/,,Z4,hH",\h@",uh8",h -,h0",h(",hX/,hX1,h0+i G 5i Q8i @Wi PWi p]i ]'7j*,Gj!,`j!,~j!,jx!,jp!,jh!,j`!,kX!,#kP!,=l0-,Ql0,al ",zl",l",l",l",l!,m!,m!,=m!,Vm!,tm(1,m!,m!,m!,m!,m-,n!,*n!,Hn!,an!,nH0,n@0,n+,n+(n(,$o1,Oo2,{o z%o ,o,o,p,$p@ ,=p8 ,[p0 ,tp( ,p ,p ,p ,p ,q+ q 0 Xq,qqx,qp,qh,q1,q+( r Cr0,\r(,zr(,r(,r r0,r(, s(,s ,7s,Usp1,cs,|s,s.,s@,s8,s+ s8(, t /,t *5Vt@#,ot8#,t0#,t(#,t",t",t",u",2uh),Gu#,`u",~u(,u",u",u #,u#,u#,v#,6v+Mv `#v#,v#,v@1,v#,v#, w#,#w#,Aw#,Zwx#,xw-,wp#,wh#,w`#,wX#,xP#,xH#,8x+Ox,h_x / ix  wx 3x `.$x .7x -&y -=Cy dy @-By # y x y "#y "&z P +z  Pz ` qz  z z ` z z  { @ E{  h{ `"%{  {  {  {  $|  J| "r| "2| !*| !(| `!+} !#?}  b}  } `"}  }  }  ~  :~  _~  ~ &~ *~ ` %~ %' ` !N  !u     @    #  7 2`  s " @[ŀ ? 0  9 - C  W w   ʁ + ԁ ) p   !  5 ^    )  @  !݂ `"  - .V ) (   Ӄ  7 F<  G  R  ] ' g   -  ڄ @8     h , D  R ( b  n  }       ą  ԅ     %    - ` C  P )y s #     ˆ ߆ 4 `0 q X X i  w     `T    /  <  K  Y P o  { % )͈  ܈  `     '  5  B 1 i  u         ʼn  ؉   H    0   $  2  @  M  u |  v         Њ  ݊    @ 2 @zJZ 8 k 6   h)̋  ދ |  `U    -`.,?  OX.,`  o p } j  d  ^  w  ( Ō H  r    X   *  ;  N m [  l `  R     э h ލ     c   #  / ^ < p O =d w , ! ǎ Y Ԏ   P   (-,    + D F Q `#z `  %Ə  ֏   ' 27 A D ` W  b <   `ڐ !  8    /   *  B B `$k  w L  `  3ɑ % ֑ @  = & @N k  v   @  @ ͒ `  @   F  @ 6 '^ "    ȓ  ٓ @    @  "=  G g  t  9  Ҕ  x     A p Y   #  ̕     3   P % : 0 P P c  u    @  -  k Ж # '  !   < d K  \  r         ʗ  ؗ*,        " 7  D  U 0 m  {   {B    Θ  ۘ     0  / tV  }  `r e           ' B !i     ]   ˚ @N     p )  6  C  S  _ \Y    V  O  H   ͛   & @R D A S : b 3 q @F  D   ͜ ` ޜ @9    88  F  R . z$, ,0@ ,`,Pܝ` ,P@ ,0 ,9` ,R ,k,`~,P,,̞,`,P`,(,x\ +#+@Ο+5  +tU@+ +sʠ@+q `+ ?x+i+^+ R+ 7E+ l9+= `1+&+ 1+t+ + *(* c*  * פ*)`*d M`*@* ƥ*D *Y <`u*xi*B  `*@V* 0O*Jm@=*@2* *3@*< r)`)1 ): )Bu))     P ,+x)R ^p)}  (  0       ƪ L Ъ T ڪ D  <  @  8 +CR ^ Zh h)u)~b ,)ȫګ (=O[ `Gx p`Ƭ 0>լ pS (5CRn Lɭԭ & Ж/+=QbyӮ 91>Ub x, @ Ư ,  1CU ^e p , @ tŰٰ  0L\ wֱ  (AT Ndr Iβ Z   1 I @ [ `zͳ p?ڳ @K W#> qexδݴ % 2COcq͵ `ٵ  Д )ASgv P Ͷ %  *  <J`s @ Nͷ߷ І21 '?Nfw6,|ʸ߸ p  W$2 DV Pf    Є ȹ׹, ( P$/@L_u 9 Pк `ܺ Ъ/) 0@O PQt  ڻ (:I В Uf{ @g 9ʼ 9 )6 oOdp :ǽ  :'6GY бj{ľѾ"  Њ92J]jп/usr/lib/../lib64/crti.ocall_gmon_start_generator.c__pyx_array___len____pyx_MemviewEnum___repr____pyx_memoryview___len____pyx_memoryview_refcount_objects_in_slice__pyx_tp_new_5numpy_6random_10_generator_Generator__pyx_empty_tuple__pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_tp_clear_5numpy_6random_10_generator_Generator__pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__pyx_tp_new_Enum__pyx_tp_traverse_Enum__pyx_tp_clear_Enum__pyx_tp_clear_memoryview__pyx_getprop___pyx_memoryview_base__pyx_getprop___pyx_memoryviewslice_base__Pyx_ErrRestoreInState__Pyx_PyCFunction_FastCall__Pyx__ExceptionSave__pyx_typeinfo_cmp__Pyx_PyNumber_IntOrLongWrongResultType__Pyx_PyObject_Call__Pyx_PyFunction_FastCallNoKw__pyx_pyframe_localsplus_offset__Pyx_PyObject_GetAttrStr__pyx_sq_item_array__Pyx_InitCachedConstants__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_tuple___pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_tuple__8__pyx_int_4294967296__pyx_int_0__pyx_tuple__9__pyx_kp_u_a_must_an_array_or_an_integer__pyx_tuple__10__pyx_kp_u_a_must_be_a_positive_integer_unl__pyx_tuple__11__pyx_kp_u_a_cannot_be_empty_unless_no_samp__pyx_tuple__12__pyx_kp_u_p_must_be_1_dimensional__pyx_tuple__13__pyx_kp_u_a_and_p_must_have_same_size__pyx_tuple__14__pyx_kp_u_probabilities_contain_NaN__pyx_tuple__15__pyx_kp_u_probabilities_are_not_non_negati__pyx_tuple__16__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_tuple__17__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_tuple__18__pyx_kp_u_negative_dimensions_are_not_allo__pyx_tuple__19__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_tuple__20__pyx_tuple__21__pyx_tuple__22__pyx_kp_u_Range_exceeds_valid_bounds__pyx_tuple__23__pyx_kp_u_left_mode__pyx_tuple__26__pyx_kp_u_mode_right__pyx_tuple__27__pyx_kp_u_left_right__pyx_tuple__28__pyx_kp_u_ngood_nbad_nsample__pyx_tuple__29__pyx_kp_u_method_must_be_one_of_eigh_svd_c__pyx_tuple__30__pyx_kp_u_mean_must_be_1_dimensional__pyx_tuple__31__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_tuple__32__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_tuple__33__pyx_slice__34__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_tuple__35__pyx_builtin_RuntimeWarning__pyx_kp_u_covariance_is_not_positive_semid__pyx_tuple__36__pyx_tuple__37__pyx_kp_u_sum_pvals_1_1_0__pyx_tuple__38__pyx_kp_u_method_must_be_count_or_marginal__pyx_tuple__39__pyx_kp_u_nsample_must_be_an_integer__pyx_tuple__40__pyx_kp_u_nsample_must_be_nonnegative__pyx_tuple__41__pyx_kp_u_When_method_is_marginals_sum_col__pyx_tuple__42__pyx_kp_u_nsample_sum_colors__pyx_tuple__43__pyx_kp_u_alpha_0__pyx_tuple__44__pyx_kp_u_out_must_be_a_numpy_array__pyx_tuple__45__pyx_kp_u_out_must_have_the_same_shape_as__pyx_tuple__46__pyx_kp_u_memory_allocation_failed_in_perm__pyx_tuple__47__pyx_tuple__48__pyx_builtin_UserWarning__pyx_kp_u_x_isn_t_a_recognized_object_shu__pyx_tuple__49__pyx_kp_u_Axis_argument_is_only_supported__pyx_tuple__50__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__51__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_kp_s_Empty_shape_tuple_for_cython_arr__pyx_tuple__53__pyx_kp_s_itemsize_0_for_cython_array__pyx_tuple__54__pyx_kp_s_unable_to_allocate_shape_and_str__pyx_tuple__55__pyx_kp_s_unable_to_allocate_array_data__pyx_tuple__56__pyx_kp_s_Can_only_create_a_buffer_that_is__pyx_tuple__57__pyx_kp_s_no_default___reduce___due_to_non__pyx_tuple__58__pyx_tuple__59__pyx_kp_s_Cannot_assign_to_read_only_memor__pyx_tuple__60__pyx_kp_s_Unable_to_convert_item_to_object__pyx_tuple__61__pyx_kp_s_Cannot_create_writable_memory_vi__pyx_tuple__62__pyx_kp_s_Buffer_view_does_not_expose_stri__pyx_tuple__63__pyx_tuple__64__pyx_int_neg_1__pyx_tuple__65__pyx_tuple__66__pyx_kp_s_Indirect_dimensions_not_supporte__pyx_tuple__67__pyx_tuple__68__pyx_tuple__69__pyx_n_s_seed__pyx_empty_bytes__pyx_n_s_default_rng__pyx_kp_s_generator_pyx__pyx_kp_s_strided_and_direct_or_indirect__pyx_tuple__72__pyx_kp_s_strided_and_direct__pyx_tuple__73__pyx_kp_s_strided_and_indirect__pyx_tuple__74__pyx_kp_s_contiguous_and_direct__pyx_tuple__75__pyx_kp_s_contiguous_and_indirect__pyx_tuple__76__pyx_n_s_pyx_result__pyx_n_s_pyx_PickleError__pyx_n_s_pyx_state__pyx_n_s_pyx_checksum__pyx_n_s_pyx_type__pyx_n_s_pyx_unpickle_Enum__pyx_kp_s_stringsource__pyx_tp_dealloc_Enum__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks_copy_strided_to_strided__pyx_memoryview__slice_assign_scalar__Pyx__GetException__Pyx_PyObject_LookupSpecial__pyx_f_5numpy_6random_10_generator__shuffle_int__Pyx_SetVtable__pyx_n_s_pyx_vtable__Pyx_setup_reduce_is_named__pyx_n_s_name__Pyx_ImportType__Pyx_copy_spec_to_module__Pyx_ImportVoidPtr__Pyx_ImportFunction__Pyx_Import__pyx_m__pyx_pymod_createmain_interpreter_id.25175__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__pyx_tp_traverse_memoryview__Pyx__ExceptionReset.isra.11__Pyx_IsSubtype__Pyx_PyInt_NeObjC.isra.31__Pyx_PyUnicode_Equals__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_SetItemInt_Fast.constprop.73__Pyx_BufFmt_TypeCharToAlignment.constprop.77__Pyx_GetItemInt_Fast.constprop.80__Pyx_ParseOptionalKeywords.constprop.81__Pyx_Raise.constprop.82__pyx_fatalerror.constprop.84__Pyx_PyObject_GetSlice.isra.36.constprop.86__Pyx_PyFunction_FastCallDict.constprop.88__Pyx_PyInt_EqObjC.isra.29__pyx_sq_item_memoryview__Pyx_PyErr_GivenExceptionMatchesTuple__pyx_tp_traverse__memoryviewslice__pyx_tp_clear__memoryviewslice__Pyx_GetBuiltinName__pyx_b__Pyx_TypeTest.isra.16__Pyx_ImportFrom__pyx_tp_dealloc__memoryviewslice__Pyx_PyErr_GivenExceptionMatches.part.43__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__PyObject_CallOneArg__Pyx_PyInt_As_Py_intptr_t.part.21__pyx_tp_dealloc_array__Pyx_PyObject_GetIndex__Pyx_PyInt_As_size_t__Pyx_PyInt_As_int64_t.part.22__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_PyObject_CallNoArg__Pyx_AddTraceback__pyx_code_cache__pyx_d__pyx_cython_runtime__pyx_dict_version.26067__pyx_dict_cached_value.26068__pyx_n_s_cline_in_traceback__pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_builtin_TypeError__pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_getprop___pyx_memoryview_size__pyx_int_1__pyx_getprop___pyx_memoryview_nbytes__pyx_n_s_size__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_shape__pyx_memoryview_fromslice__pyx_memoryviewslice_type__pyx_n_s_base__pyx_memoryview_copy_object_from_slice__pyx_pw___pyx_memoryview_3__setstate_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_memoryview_new__pyx_memoryview_type__pyx_memoryview___str____pyx_n_s_class__pyx_kp_s_MemoryView_of_r_object__pyx_memoryview_setitem_indexed__pyx_MemviewEnum___init____pyx_n_s_name_2__pyx_pyargnames.22687__pyx_getprop___pyx_array_memview__pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_array_1__reduce_cython____pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr____pyx_n_s_memview__pyx_array___getattr____pyx_tp_getattro_array__pyx_mp_ass_subscript_array__pyx_array___getitem____pyx_array_get_memview__pyx_pw_5numpy_6random_10_generator_9Generator_83logseries__pyx_float_0_0__pyx_kp_u__5__pyx_n_u_p__pyx_f_5numpy_6random_7_common_disc__pyx_n_s_p__pyx_pyargnames.20028__pyx_pw_5numpy_6random_10_generator_9Generator_79geometric__pyx_pyargnames.19773__pyx_pw_5numpy_6random_10_generator_9Generator_77zipf__pyx_n_u_a__pyx_n_s_a__pyx_pyargnames.19718__pyx_pw_5numpy_6random_10_generator_9Generator_75poisson__pyx_float_1_0__pyx_n_u_lam__pyx_pyargnames.19661__pyx_n_s_lam__pyx_pw_5numpy_6random_10_generator_9Generator_73negative_binomial__pyx_n_u_n__pyx_n_s_n__pyx_pyargnames.19603__pyx_pw_5numpy_6random_10_generator_9Generator_67wald__pyx_n_u_scale__pyx_n_u_mean__pyx_f_5numpy_6random_7_common_cont__pyx_n_s_mean__pyx_n_s_scale__pyx_pyargnames.19059__pyx_pw_5numpy_6random_10_generator_9Generator_65rayleigh__pyx_pyargnames.19001__pyx_pw_5numpy_6random_10_generator_9Generator_63lognormal__pyx_n_u_sigma__pyx_n_s_sigma__pyx_pyargnames.18939__pyx_pw_5numpy_6random_10_generator_9Generator_61logistic__pyx_n_u_loc__pyx_n_s_loc__pyx_pyargnames.18876__pyx_pw_5numpy_6random_10_generator_9Generator_59gumbel__pyx_pyargnames.18813__pyx_pw_5numpy_6random_10_generator_9Generator_57laplace__pyx_pyargnames.18750__pyx_pw_5numpy_6random_10_generator_9Generator_55power__pyx_pyargnames.18694__pyx_pw_5numpy_6random_10_generator_9Generator_53weibull__pyx_pyargnames.18639__pyx_pw_5numpy_6random_10_generator_9Generator_51pareto__pyx_pyargnames.18584__pyx_pw_5numpy_6random_10_generator_9Generator_49vonmises__pyx_n_u_kappa__pyx_n_u_mu__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.18526__pyx_pw_5numpy_6random_10_generator_9Generator_47standard_t__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.18470__pyx_pw_5numpy_6random_10_generator_9Generator_45standard_cauchy__pyx_pyargnames.18418__pyx_pw_5numpy_6random_10_generator_9Generator_43noncentral_chisquare__pyx_n_u_nonc__pyx_n_s_nonc__pyx_pyargnames.18361__pyx_pw_5numpy_6random_10_generator_9Generator_41chisquare__pyx_pyargnames.18305__pyx_pw_5numpy_6random_10_generator_9Generator_39noncentral_f__pyx_n_u_dfden__pyx_n_u_dfnum__pyx_n_s_dfnum__pyx_pyargnames.18244__pyx_n_s_dfden__pyx_pw_5numpy_6random_10_generator_9Generator_37f__pyx_pyargnames.18184__pyx_pw_5numpy_6random_10_generator_9Generator_35gamma__pyx_n_u_shape__pyx_n_s_shape__pyx_pyargnames.18123__pyx_pw_5numpy_6random_10_generator_9Generator_31normal__pyx_pyargnames.17974__pyx_pw_5numpy_6random_10_generator_9Generator_17exponential__pyx_pyargnames.16657__pyx_pw_5numpy_6random_10_generator_9Generator_15beta__pyx_n_u_b__pyx_n_s_b__pyx_pyargnames.16599__pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____pyx_n_s_generator_ctor__pyx_n_s_pickle__pyx_n_s_bit_generator__pyx_n_s_state__pyx_n_u_bit_generator__pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_kp_u__2__pyx_kp_u__3__pyx_getprop___pyx_memoryview_strides__pyx_builtin_ValueError__Pyx_PyObject_Call2Args__pyx_memoryview_getbuffer__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_memoryview___repr____pyx_builtin_id__pyx_kp_s_MemoryView_of_r_at_0x_x__pyx_array_getbuffer__pyx_n_u_c__pyx_n_u_fortran__pyx_memoryview_setitem_slice_assign_scalar__Pyx_PyObject_CallOneArg__pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_n_s_str__pyx_kp_u_at_0x_X__pyx_n_s_format__pyx_pw_5numpy_6random_10_generator_9Generator_1__init____pyx_n_s_capsule__pyx_n_s_lock__pyx_pyargnames.16287__Pyx__GetModuleGlobalName__Pyx_PyInt_As_Py_intptr_t__Pyx_IternextUnpackEndCheck__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_n_s_dict__pyx_dict_version.22748__pyx_dict_cached_value.22749__pyx_int_184977713__pyx_dict_version.22753__pyx_dict_cached_value.22754__Pyx_IterFinish__pyx_memoryview_is_slice__Pyx_PyInt_As_int64_t__pyx_unpickle_Enum__set_state__pyx_n_s_update__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_n_s_PickleError__pyx_n_s_pickle_2__pyx_kp_s_Incompatible_checksums_s_vs_0xb0__pyx_MemviewEnum_type__pyx_n_s_new__pyx_pyargnames.24669__pyx_pw___pyx_MemviewEnum_3__setstate_cython____Pyx_PyErr_ExceptionMatchesInState.isra.44__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce__pyx_n_s_getstate__pyx_n_s_reduce_ex__pyx_n_s_reduce_2__pyx_n_s_reduce_cython__pyx_n_s_setstate__pyx_n_s_setstate_cython__pyx_pf_5numpy_6random_10_generator_9Generator_24choice__pyx_dict_version.17163__pyx_dict_cached_value.17164__pyx_n_s_array__pyx_n_s_copy__pyx_n_s_ndim__pyx_dict_version.17175__pyx_dict_cached_value.17176__pyx_n_s_index__pyx_n_s_item__pyx_dict_version.17229__pyx_dict_cached_value.17230__pyx_n_s_prod__pyx_dict_version.17241__pyx_dict_cached_value.17242__pyx_n_s_sqrt__pyx_dict_version.17244__pyx_dict_cached_value.17245__pyx_n_s_finfo__pyx_dict_version.17247__pyx_dict_cached_value.17248__pyx_n_s_float64__pyx_n_s_eps__pyx_ptype_5numpy_ndarray__pyx_dict_version.17265__pyx_dict_cached_value.17266__pyx_n_s_issubdtype__pyx_n_s_dtype__pyx_ptype_5numpy_floating__pyx_dict_version.17282__pyx_dict_cached_value.17283__pyx_dict_version.17285__pyx_dict_cached_value.17286PyArray_API__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_dict_version.17325__pyx_dict_cached_value.17326__pyx_n_s_isnan__pyx_dict_version.17337__pyx_dict_cached_value.17338__pyx_n_s_logical_or__pyx_n_s_reduce__pyx_n_s_np__pyx_dict_version.17213__pyx_dict_cached_value.17214__pyx_dict_version.17353__pyx_dict_cached_value.17354__pyx_dict_version.17356__pyx_dict_cached_value.17357__pyx_n_s_intp__pyx_n_s_cumsum__pyx_n_s_random__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_dict_version.17386__pyx_dict_cached_value.17387__pyx_dict_version.17389__pyx_dict_cached_value.17390__pyx_n_s_int64__pyx_dict_version.17637__pyx_dict_cached_value.17638__pyx_n_s_empty__pyx_n_s_operator__pyx_dict_version.17411__pyx_dict_cached_value.17412__pyx_n_s_count_nonzero__pyx_dict_version.17432__pyx_dict_cached_value.17433__pyx_n_s_zeros__pyx_dict_version.17435__pyx_dict_cached_value.17436__pyx_n_s_ravel__pyx_dict_version.17462__pyx_dict_cached_value.17463__pyx_dict_version.17483__pyx_dict_cached_value.17484__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_n_s_integers__pyx_dict_version.17399__pyx_dict_cached_value.17400__pyx_int_20__pyx_n_s_exit__pyx_n_s_enter__pyx_dict_version.17648__pyx_dict_cached_value.17649__pyx_n_s_asarray__pyx_dict_version.17651__pyx_dict_cached_value.17652__pyx_n_s_axis__pyx_dict_version.17562__pyx_dict_cached_value.17563__pyx_dict_version.17565__pyx_dict_cached_value.17566__pyx_dict_version.17572__pyx_dict_cached_value.17573__pyx_n_s_full__pyx_dict_version.17575__pyx_dict_cached_value.17576__pyx_n_s_uint64__Pyx_TypeInfo_nn_uint64_t__pyx_int_50__pyx_pw_5numpy_6random_10_generator_9Generator_25choice__pyx_n_s_replace__pyx_n_s_shuffle__pyx_pyargnames.17063__pyx_pymod_exec__generator__pyx_empty_unicode__pyx_string_tab__pyx_float_0_1__pyx_float_1eneg_8__pyx_int_2__pyx_int_1000000000__pyx_n_s_main__pyx_n_s_range__pyx_n_s_reversed__pyx_n_s_ValueError__pyx_n_s_id__pyx_n_s_TypeError__pyx_n_s_OverflowError__pyx_builtin_OverflowError__pyx_n_s_RuntimeWarning__pyx_n_s_MemoryError__pyx_builtin_MemoryError__pyx_n_s_UserWarning__pyx_n_s_NotImplementedError__pyx_builtin_NotImplementedError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_n_s_enumerate__pyx_n_s_Ellipsis__pyx_builtin_Ellipsis__pyx_n_s_IndexError__pyx_builtin_IndexError__pyx_type_5numpy_6random_10_generator_Generatorgenericindirect_contiguous__pyx_n_s_Generator__pyx_vtable_array__pyx_type___pyx_array__pyx_ptype_5numpy_6random_10_generator_Generator__pyx_vtabptr_array__pyx_type___pyx_MemviewEnum__pyx_array_type__pyx_vtable_memoryview__pyx_memoryview_get_item_pointer__pyx_vtabptr_memoryview__pyx_type___pyx_memoryview__pyx_memoryview_setitem_slice_assignment__pyx_memoryview_convert_item_to_object__pyx_memoryview_assign_item_from_object__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vtabptr__memoryviewslice__pyx_memoryviewslice_convert_item_to_object__pyx_memoryviewslice_assign_item_from_object__pyx_ptype_5numpy_dtype__pyx_ptype_5numpy_flatiter__pyx_ptype_5numpy_broadcast__pyx_ptype_5numpy_integer__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_f_5numpy_6random_7_common_check_constraint__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_double_fill__pyx_f_5numpy_6random_7_common_float_fill__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_f_5numpy_6random_7_common_cont_f__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_n_s_warnings__pyx_n_s_MutableSequence__pyx_n_s_collections_abc__pyx_n_s_numpy__pyx_n_s_normalize_axis_index__pyx_n_s_numpy_core_multiarray__pyx_n_s_PCG64__pyx_n_s_pcg64__pyx_n_s_poisson_lam_max__pyx_dict_version.25223__pyx_dict_cached_value.25224__pyx_k__4__pyx_dict_version.25226__pyx_dict_cached_value.25227__pyx_k__6__pyx_dict_version.25229__pyx_dict_cached_value.25230__pyx_k__7__pyx_dict_version.25232__pyx_dict_cached_value.25233__pyx_k__24__pyx_dict_version.25235__pyx_dict_cached_value.25236__pyx_n_s_numpy_random__generator__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_k__25__pyx_kp_u_random_size_None_dtype_np_float__pyx_kp_u_Generator_random_line_235__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_Generator_standard_exponential_l__pyx_kp_u_integers_low_high_None_size_Non__pyx_kp_u_Generator_integers_line_442__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_Generator_bytes_line_569__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_Generator_choice_line_598__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_Generator_uniform_line_845__pyx_kp_u_standard_normal_size_None_dtype__pyx_kp_u_Generator_standard_normal_line_9__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_normal_line_1022__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_Generator_standard_gamma_line_11__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_Generator_gamma_line_1215__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_Generator_f_line_1293__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_Generator_noncentral_f_line_1381__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_Generator_chisquare_line_1459__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_Generator_noncentral_chisquare_l__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_Generator_standard_cauchy_line_1__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_Generator_standard_t_line_1672__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_Generator_vonmises_line_1766__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_Generator_pareto_line_1849__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_Generator_weibull_line_1947__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_Generator_power_line_2046__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_laplace_line_2147__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_gumbel_line_2232__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_logistic_line_2351__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_Generator_lognormal_line_2431__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_Generator_rayleigh_line_2543__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_Generator_wald_line_2612__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_Generator_triangular_line_2680__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_Generator_binomial_line_2780__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_Generator_negative_binomial_line__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_Generator_poisson_line_3000__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_Generator_zipf_line_3072__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_Generator_geometric_line_3152__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_Generator_hypergeometric_line_32__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_Generator_logseries_line_3346__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_Generator_multivariate_normal_li__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_Generator_multinomial_line_3632__pyx_kp_u_multivariate_hypergeometric_col__pyx_kp_u_Generator_multivariate_hypergeom__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_Generator_dirichlet_line_3999__pyx_kp_u_permuted_x_axis_None_out_None_R__pyx_kp_u_Generator_permuted_line_4197__pyx_kp_u_shuffle_x_axis_0_Modify_an_arra__pyx_kp_u_Generator_shuffle_line_4350__pyx_kp_u_permutation_x_axis_0_Randomly_p__pyx_kp_u_Generator_permutation_line_4456__pyx_kp_u_Construct_a_new_Generator_with_t__pyx_kp_u_default_rng_line_4528__pyx_n_s_test__pyx_n_s_pyx_getbuffer__pyx_t_4.25204__pyx_n_s_View_MemoryView__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_pw_5numpy_6random_10_generator_9Generator_19standard_exponential__pyx_n_u_zig__pyx_dict_version.16761__pyx_dict_cached_value.16762__pyx_dict_version.16773__pyx_dict_cached_value.16774__pyx_n_s_float32__pyx_n_s_out__pyx_n_s_method__pyx_kp_u_Unsupported_dtype_r_for_standard__pyx_pyargnames.16716__pyx_pw_5numpy_6random_10_generator_9Generator_21integers__pyx_dict_version.16868__pyx_dict_cached_value.16869__pyx_n_s_int32__pyx_n_s_low__pyx_dict_version.16875__pyx_dict_cached_value.16876__pyx_dict_version.16938__pyx_dict_cached_value.16939__pyx_dict_version.16881__pyx_dict_cached_value.16882__pyx_n_s_int16__pyx_dict_version.16931__pyx_dict_cached_value.16932__pyx_n_s_compat__pyx_n_s_long__pyx_n_s_high__pyx_n_s_endpoint__pyx_dict_version.16887__pyx_dict_cached_value.16888__pyx_n_s_int8__pyx_pyargnames.16811__pyx_dict_version.16893__pyx_dict_cached_value.16894__pyx_dict_version.16899__pyx_dict_cached_value.16900__pyx_n_s_uint32__pyx_dict_version.16905__pyx_dict_cached_value.16906__pyx_n_s_uint16__pyx_dict_version.16911__pyx_dict_cached_value.16912__pyx_n_s_uint8__pyx_dict_version.16917__pyx_dict_cached_value.16918__pyx_n_s_bool__pyx_n_s_isnative__pyx_kp_u_Unsupported_dtype_r_for_integers__pyx_tp_new_memoryview__pyx_n_s_obj__pyx_n_s_flags__pyx_n_s_dtype_is_object__pyx_pyargnames.22812__pyx_tp_new__memoryviewslice__pyx_memoryview_err__pyx_memslice_transpose__pyx_getprop___pyx_memoryview_T__pyx_n_s_struct__pyx_n_s_pack_unellipsify__pyx_kp_s_Cannot_index_with_type_s__pyx_mp_ass_subscript_memoryview__pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_n_u_capsule__pyx_dict_version.22027__pyx_dict_cached_value.22028__pyx_pyargnames.21989__pyx_tp_new_array__pyx_n_s_c__pyx_kp_s_Invalid_shape_in_axis_d_d__pyx_n_s_encode__pyx_n_s_ASCII__pyx_n_s_fortran__pyx_n_b_O__pyx_n_s_itemsize__pyx_n_s_mode__pyx_n_s_allocate_buffer__pyx_pyargnames.22316__pyx_kp_s_Invalid_mode_expected_c_or_fortr__pyx_pw_5numpy_6random_10_generator_9Generator_93permuted__pyx_dict_version.21290__pyx_dict_cached_value.21291__pyx_dict_version.21312__pyx_dict_cached_value.21313__pyx_n_s_copyto__pyx_n_u_safe__pyx_n_s_casting__pyx_dict_version.21357__pyx_dict_cached_value.21358__pyx_dict_version.21359__pyx_dict_cached_value.21360__pyx_n_s_strides__pyx_n_s_hasobject__pyx_n_s_x__pyx_pyargnames.21241__pyx_n_u_K__pyx_n_s_order__pyx_n_u_A__pyx_memoryview_err_dim__pyx_memoryview_copy_contents__pyx_kp_s_got_differing_extents_in_dimensi__pyx_kp_s_Out_of_bounds_on_buffer_access_a__pyx_memview_slice__pyx_n_s_start__pyx_n_s_stop__pyx_n_s_step__pyx_memoryview___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_81hypergeometric__pyx_dict_version.19920__pyx_dict_cached_value.19921__pyx_n_s_any__pyx_dict_version.19932__pyx_dict_cached_value.19933__pyx_dict_version.19945__pyx_dict_cached_value.19946__pyx_dict_version.19948__pyx_dict_cached_value.19949__pyx_n_s_less__pyx_dict_version.19951__pyx_dict_cached_value.19952__pyx_n_s_add__pyx_n_u_ngood__pyx_n_u_nsample__pyx_n_u_nbad__pyx_n_s_ngood__pyx_pyargnames.19830__pyx_kp_u_both_ngood_and_nbad_must_be_less__pyx_n_s_nbad__pyx_n_s_nsample__pyx_pw_5numpy_6random_10_generator_9Generator_29standard_normal__pyx_dict_version.17932__pyx_dict_cached_value.17933__pyx_dict_version.17941__pyx_dict_cached_value.17942__pyx_kp_u_Unsupported_dtype_r_for_standard_2__pyx_pyargnames.17892__pyx_pw_5numpy_6random_10_generator_9Generator_13random__pyx_dict_version.16557__pyx_dict_cached_value.16558__pyx_dict_version.16566__pyx_dict_cached_value.16567__pyx_kp_u_Unsupported_dtype_r_for_random__pyx_pyargnames.16517__pyx_pw_5numpy_6random_10_generator_9Generator_69triangular__pyx_dict_version.19206__pyx_dict_cached_value.19207__pyx_dict_version.19209__pyx_dict_cached_value.19210__pyx_n_s_greater__pyx_dict_version.19232__pyx_dict_cached_value.19233__pyx_dict_version.19235__pyx_dict_cached_value.19236__pyx_dict_version.19258__pyx_dict_cached_value.19259__pyx_dict_version.19261__pyx_dict_cached_value.19262__pyx_n_s_equal__pyx_pyargnames.19119__pyx_n_s_left__pyx_n_s_right__pyx_pw_5numpy_6random_10_generator_9Generator_85multivariate_normal__pyx_n_u_svd__pyx_n_u_warn__pyx_n_u_eigh__pyx_dict_version.20161__pyx_dict_cached_value.20162__pyx_dict_version.20172__pyx_dict_cached_value.20173__pyx_n_u_cholesky__pyx_n_s_standard_normal__pyx_n_s_reshape__pyx_n_s_astype__pyx_dict_version.20225__pyx_dict_cached_value.20226__pyx_n_s_double__pyx_n_s_svd__pyx_n_s_numpy_linalg__pyx_n_u_ignore__pyx_n_u_raise__pyx_dict_version.20286__pyx_dict_cached_value.20287__pyx_n_s_allclose__pyx_dict_version.20289__pyx_dict_cached_value.20290__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_rtol__pyx_n_s_atol__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.20087__pyx_n_s_eigh__pyx_n_s_cholesky__pyx_dict_version.20330__pyx_dict_cached_value.20331__pyx_dict_version.20310__pyx_dict_cached_value.20311__pyx_dict_version.20341__pyx_dict_cached_value.20342__pyx_dict_version.20322__pyx_dict_cached_value.20323__pyx_n_s_warn__pyx_pw_5numpy_6random_10_generator_9Generator_91dirichlet__pyx_dict_version.21043__pyx_dict_cached_value.21044__pyx_dict_version.21046__pyx_dict_cached_value.21047__pyx_n_s_less_equal__pyx_dict_version.21071__pyx_dict_cached_value.21072__pyx_dict_version.21113__pyx_dict_cached_value.21114__pyx_dict_version.21116__pyx_dict_cached_value.21117__pyx_n_s_max__pyx_dict_version.21143__pyx_dict_cached_value.21144__pyx_n_s_empty_like__pyx_n_s_alpha__pyx_pyargnames.20971__pyx_memoryview_copy_new_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_pw_5numpy_6random_10_generator_9Generator_87multinomial__pyx_n_u_pvals__pyx_dict_version.20499__pyx_dict_cached_value.20500__pyx_dict_version.20502__pyx_dict_cached_value.20503__pyx_dict_version.20513__pyx_dict_cached_value.20514__pyx_dict_version.20516__pyx_dict_cached_value.20517__pyx_dict_version.20554__pyx_dict_cached_value.20555__pyx_dict_version.20594__pyx_dict_cached_value.20595__pyx_dict_version.20597__pyx_dict_cached_value.20598__pyx_n_s_pvals__pyx_pyargnames.20416__pyx_pw_5numpy_6random_10_generator_9Generator_89multivariate_hypergeometric__pyx_n_u_marginals__pyx_n_u_count__pyx_dict_version.20739__pyx_dict_cached_value.20740__pyx_dict_version.20773__pyx_dict_cached_value.20774__pyx_dict_version.20791__pyx_dict_cached_value.20792__pyx_dict_version.20808__pyx_dict_cached_value.20809__pyx_dict_version.20850__pyx_dict_cached_value.20851__pyx_n_s_ascontiguousarray__pyx_dict_version.20853__pyx_dict_cached_value.20854__pyx_dict_version.20875__pyx_dict_cached_value.20876__pyx_n_s_isscalar__pyx_dict_version.20887__pyx_dict_cached_value.20888__pyx_dict_version.20890__pyx_dict_cached_value.20891__pyx_n_s_colors__pyx_kp_u_colors_must_be_a_one_dimensional__pyx_kp_u_nsample_must_not_exceed_d__pyx_pyargnames.20672__pyx_kp_u_sum_colors_must_not_exceed_the_m__pyx_kp_u_When_method_is_count_sum_colors__pyx_kp_u_Insufficient_memory_for_multivar__pyx_pw_5numpy_6random_10_generator_9Generator_71binomial__pyx_dict_version.19524__pyx_dict_cached_value.19525__pyx_dict_version.19527__pyx_dict_cached_value.19528__pyx_dict_version.19401__pyx_dict_cached_value.19402__pyx_dict_version.19404__pyx_dict_cached_value.19405__pyx_dict_version.19422__pyx_dict_cached_value.19423__pyx_dict_version.19425__pyx_dict_cached_value.19426__pyx_pyargnames.19322__pyx_pw_5numpy_6random_10_generator_9Generator_33standard_gamma__pyx_dict_version.18081__pyx_dict_cached_value.18082__pyx_dict_version.18090__pyx_dict_cached_value.18091__pyx_kp_u_Unsupported_dtype_r_for_standard_3__pyx_pyargnames.18038__pyx_pw_5numpy_6random_10_generator_9Generator_23bytes__pyx_dict_version.17009__pyx_dict_cached_value.17010__pyx_kp_u_u4__pyx_n_s_tobytes__pyx_pw_5numpy_6random_10_generator_9Generator_27uniform__pyx_dict_version.17817__pyx_dict_cached_value.17818__pyx_n_s_subtract__pyx_dict_version.17833__pyx_dict_cached_value.17834__pyx_n_s_all__pyx_dict_version.17836__pyx_dict_cached_value.17837__pyx_n_s_isfinite__pyx_dict_version.17799__pyx_dict_cached_value.17800__pyx_pyargnames.17730__pyx_n_s_unpack__pyx_n_s_error__pyx_pw_5numpy_6random_10_generator_9Generator_95shuffle__pyx_dict_version.21522__pyx_dict_cached_value.21523__pyx_dict_version.21524__pyx_dict_cached_value.21525__pyx_dict_version.21678__pyx_dict_cached_value.21679__pyx_dict_version.21681__pyx_dict_cached_value.21682__pyx_n_s_stacklevel__pyx_dict_version.21603__pyx_dict_cached_value.21604__pyx_n_s_swapaxes__pyx_dict_version.21619__pyx_dict_cached_value.21620__pyx_dict_version.21556__pyx_dict_cached_value.21557__pyx_dict_version.21559__pyx_dict_cached_value.21560__pyx_pyargnames.21469__pyx_pw_5numpy_6random_10_generator_9Generator_97permutation__pyx_dict_version.21810__pyx_dict_cached_value.21811__pyx_n_s_arange__pyx_dict_version.21830__pyx_dict_cached_value.21831__pyx_dict_version.21839__pyx_dict_cached_value.21840__pyx_dict_version.21858__pyx_dict_cached_value.21859__pyx_n_s_may_share_memory__pyx_dict_version.21873__pyx_dict_cached_value.21874__pyx_dict_version.21893__pyx_dict_cached_value.21894__pyx_dict_version.21897__pyx_dict_cached_value.21898__pyx_pyargnames.21769__pyx_moduledef__pyx_k_A__pyx_k_ASCII__pyx_k_Axis_argument_is_only_supported__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type_s__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Construct_a_new_Generator_with_t__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Generator__pyx_k_Generator_binomial_line_2780__pyx_k_Generator_bytes_line_569__pyx_k_Generator_chisquare_line_1459__pyx_k_Generator_choice_line_598__pyx_k_Generator_dirichlet_line_3999__pyx_k_Generator_f_line_1293__pyx_k_Generator_gamma_line_1215__pyx_k_Generator_geometric_line_3152__pyx_k_Generator_gumbel_line_2232__pyx_k_Generator_hypergeometric_line_32__pyx_k_Generator_integers_line_442__pyx_k_Generator_laplace_line_2147__pyx_k_Generator_logistic_line_2351__pyx_k_Generator_lognormal_line_2431__pyx_k_Generator_logseries_line_3346__pyx_k_Generator_multinomial_line_3632__pyx_k_Generator_multivariate_hypergeom__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f_line_1381__pyx_k_Generator_normal_line_1022__pyx_k_Generator_pareto_line_1849__pyx_k_Generator_permutation_line_4456__pyx_k_Generator_permuted_line_4197__pyx_k_Generator_poisson_line_3000__pyx_k_Generator_power_line_2046__pyx_k_Generator_random_line_235__pyx_k_Generator_rayleigh_line_2543__pyx_k_Generator_shuffle_line_4350__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma_line_11__pyx_k_Generator_standard_normal_line_9__pyx_k_Generator_standard_t_line_1672__pyx_k_Generator_triangular_line_2680__pyx_k_Generator_uniform_line_845__pyx_k_Generator_vonmises_line_1766__pyx_k_Generator_wald_line_2612__pyx_k_Generator_weibull_line_1947__pyx_k_Generator_zipf_line_3072__pyx_k_ImportError__pyx_k_Incompatible_checksums_s_vs_0xb0__pyx_k_IndexError__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Insufficient_memory_for_multivar__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis_d_d__pyx_k_K__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_MutableSequence__pyx_k_NotImplementedError__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeWarning__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_r_for_integers__pyx_k_Unsupported_dtype_r_for_random__pyx_k_Unsupported_dtype_r_for_standard__pyx_k_Unsupported_dtype_r_for_standard_2__pyx_k_Unsupported_dtype_r_for_standard_3__pyx_k_UserWarning__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k_When_method_is_count_sum_colors__pyx_k_When_method_is_marginals_sum_col__pyx_k__2__pyx_k__3__pyx_k__5__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_samp__pyx_k_a_must_an_array_or_an_integer__pyx_k_a_must_be_a_positive_integer_unl__pyx_k_add__pyx_k_all__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_array__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_axis__pyx_k_b__pyx_k_base__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_casting__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice_a_size_None_replace_True__pyx_k_cholesky__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_collections_abc__pyx_k_colors__pyx_k_colors_must_be_a_one_dimensional__pyx_k_compat__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_copyto__pyx_k_count__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_positive_semid__pyx_k_cumsum__pyx_k_default_rng__pyx_k_default_rng_line_4528__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_dtype_is_object__pyx_k_eigh__pyx_k_empty__pyx_k_empty_like__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exit__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float32__pyx_k_float64__pyx_k_format__pyx_k_fortran__pyx_k_full__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_generator_ctor__pyx_k_generator_pyx__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_hasobject__pyx_k_high__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_imatmul__pyx_k_imatmul__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_intp__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_kappa__pyx_k_lam__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_long__pyx_k_low__pyx_k_main__pyx_k_marginals__pyx_n_s_matmul__pyx_k_matmul__pyx_k_max__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_memory_allocation_failed_in_perm__pyx_k_memview__pyx_k_method__pyx_k_method_must_be_count_or_marginal__pyx_k_method_must_be_one_of_eigh_svd_c__pyx_k_mode__pyx_k_mode_right__pyx_k_mu__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_hypergeometric_col__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_normalize_axis_index__pyx_k_np__pyx_k_nsample__pyx_k_nsample_must_be_an_integer__pyx_k_nsample_must_be_nonnegative__pyx_k_nsample_must_not_exceed_d__pyx_k_nsample_sum_colors__pyx_k_numpy__pyx_k_numpy_core_multiarray__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_linalg__pyx_k_numpy_random__generator__pyx_k_obj__pyx_k_operator__pyx_k_order__pyx_k_out__pyx_k_out_must_be_a_numpy_array__pyx_k_out_must_have_the_same_shape_as__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pack__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_pcg64__pyx_k_permutation_x_axis_0_Randomly_p__pyx_k_permuted_x_axis_None_out_None_R__pyx_k_pickle__pyx_k_pickle_2__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_getbuffer__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_np_float__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_n_s_rmatmul__pyx_k_rmatmul__pyx_k_rtol__pyx_k_safe__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_axis_0_Modify_an_arra__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_sqrt__pyx_k_stacklevel__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum_colors_must_not_exceed_the_m__pyx_k_sum_pvals_1_1_0__pyx_k_svd__pyx_k_swapaxes__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_k_unpack__pyx_k_update__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_x__pyx_k_x_isn_t_a_recognized_object_shu__pyx_k_zeros__pyx_k_zig__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_moduledef_slots__pyx_methods__memoryviewslice__pyx_getsets__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12random__pyx_doc_5numpy_6random_10_generator_9Generator_14beta__pyx_doc_5numpy_6random_10_generator_9Generator_16exponential__pyx_doc_5numpy_6random_10_generator_9Generator_18standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20integers__pyx_doc_5numpy_6random_10_generator_9Generator_22bytes__pyx_doc_5numpy_6random_10_generator_9Generator_24choice__pyx_doc_5numpy_6random_10_generator_9Generator_26uniform__pyx_doc_5numpy_6random_10_generator_9Generator_28standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_30normal__pyx_doc_5numpy_6random_10_generator_9Generator_32standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_34gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36f__pyx_doc_5numpy_6random_10_generator_9Generator_38noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_40chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_42noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_48vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_50pareto__pyx_doc_5numpy_6random_10_generator_9Generator_52weibull__pyx_doc_5numpy_6random_10_generator_9Generator_54power__pyx_doc_5numpy_6random_10_generator_9Generator_56laplace__pyx_doc_5numpy_6random_10_generator_9Generator_58gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_60logistic__pyx_doc_5numpy_6random_10_generator_9Generator_62lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_64rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_66wald__pyx_doc_5numpy_6random_10_generator_9Generator_68triangular__pyx_doc_5numpy_6random_10_generator_9Generator_70binomial__pyx_doc_5numpy_6random_10_generator_9Generator_72negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74poisson__pyx_doc_5numpy_6random_10_generator_9Generator_76zipf__pyx_doc_5numpy_6random_10_generator_9Generator_78geometric__pyx_doc_5numpy_6random_10_generator_9Generator_80hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_82logseries__pyx_doc_5numpy_6random_10_generator_9Generator_84multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_86multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_88multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_90dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_92permuted__pyx_doc_5numpy_6random_10_generator_9Generator_94shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_96permutation__pyx_doc_5numpy_6random_10_generator_default_rngcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.7182__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrydistributions.cfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_mvhg_count.crandom_mvhg_marginals.crandom_hypergeometric.clogfactorial.clogfact__FRAME_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatPyNumber_NegativePyObject_SetItemPyList_Newrandom_laplace_PyUnicode_ReadyPyExc_SystemErrorPyDict_SetItemStringfree@@GLIBC_2.2.5PyDict_Sizerandom_buffered_bounded_boolrandom_geometric_inversionPyException_SetTracebackPyExc_NotImplementedErrorrandom_weibullPyMethod_Typerandom_f_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyErr_RestorePyList_AsTuple_PyThreadState_UncheckedGetPyModuleDef_Initrandom_multivariate_hypergeometric_countPyEval_RestoreThreadPyFrame_NewPyMem_Freerandom_negative_binomialrandom_standard_cauchyPyCFunction_NewEx__isnan@@GLIBC_2.2.5PyCapsule_GetNamePyNumber_InPlaceAddPyBuffer_Releasevsnprintf@@GLIBC_2.2.5exp@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyExc_BufferErrorPyImport_AddModulePyBytes_FromStringAndSizerandom_standard_exponential_fill_f_PyObject_GenericGetAttrWithDictPyBytes_TypePyObject_SetAttrStringPyErr_WarnExrandom_standard_gamma_edatarandom_binomial_btpePyModule_NewObjectPyErr_NoMemoryPyErr_SetObject__pyx_module_is_main_numpy__random___generatorPyErr_NormalizeExceptionPyNumber_Absoluterandom_logseriesPyNumber_MultiplyPyLong_FromSize_trandom_rayleighrandom_standard_exponentialPyObject_RichComparerandom_uniformPyCode_Newrandom_poisson_finistrlen@@GLIBC_2.2.5PyImport_GetModuleDictrandom_bounded_uint64_fillPyObject_GC_TrackPyExc_RuntimeErrorPyErr_GivenExceptionMatchesPyErr_SetStringrandom_bounded_uint16_fillPyObject_IsInstancePyObject_GetItemPyExc_ExceptionPyExc_ValueErrorPyExc_DeprecationWarningrandom_multinomialPyObject_MallocPyExc_TypeErrorPySlice_TypePyGILState_EnsurePyInterpreterState_GetIDPyEval_EvalFrameExrandom_logisticPyErr_PrintEx_PyLong_Copymemset@@GLIBC_2.2.5PyMem_ReallocPyErr_SetNonerandom_standard_uniform_fill_fPyErr_ExceptionMatchesrandom_bounded_uint64pow@@GLIBC_2.2.5random_positive_intlog@@GLIBC_2.2.5random_standard_gamma_frandom_triangularrandom_buffered_bounded_uint32PyOS_snprintfPyTraceBack_Herefmod@@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocrandom_powerrandom_bounded_uint8_fillPyObject_NotPyObject_Freerandom_noncentral_fPyNumber_InPlaceTrueDividerandom_standard_exponential_inv_fill_fPyLong_FromSsize_tPyFloat_FromDoublePyType_Readyacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5_PyList_ExtendPyLong_AsSsize_tPyObject_RichCompareBoolrandom_buffered_bounded_uint8logfactorialPyModule_GetNamePyErr_Clearmemcpy@@GLIBC_2.2.5PyList_Append_Py_CheckRecursiveCall_Py_CheckRecursionLimitPyCapsule_IsValidPyExc_KeyErrorPyNumber_Orrandom_beta_Py_FalseStruct__gmon_start__random_exponentialexpf@@GLIBC_2.2.5PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemrandom_hypergeometricPyNumber_RemainderPyType_Modifiedrandom_gammaPyObject_SetAttrPyBytes_FromStringPyErr_Occurredrandom_standard_uniform_f_Py_EllipsisObjectrandom_loggamPyInit__generatorPyLong_AsLongPyImport_ImportModulesqrtf@@GLIBC_2.2.5_PyDict_GetItem_KnownHashrandom_gamma_fPy_OptimizeFlagrandom_zipfPyDict_GetItemStringPyEval_EvalCodeExpowf@@GLIBC_2.2.5PyObject_Sizemalloc@@GLIBC_2.2.5random_standard_exponential_frandom_pareto_Py_NoneStructPyExc_ZeroDivisionErrorPyFloat_AsDouble_endPyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectPy_FatalErrorPyExc_AssertionErrorrandom_positive_int64PyThread_allocate_lockrandom_geometric_searchPyObject_Hashrandom_standard_tPyUnicode_Comparerandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniform_Py_TrueStruct__bss_startlogf@@GLIBC_2.2.5PyFunction_Typerandom_normalrandom_chisquarePyDict_NewPyExc_IndexErrorPyBool_TypePyObject_GetBufferPyLong_AsUnsignedLongPyDict_TypePyDict_NextPyBaseObject_Typerandom_standard_exponential_fillrandom_intervalrandom_waldPyLong_FromUnsignedLongrandom_noncentral_chisquarePyLong_TypePyFrame_Typerandom_standard_normalPyCapsule_Typerandom_standard_exponential_inv_fill_PyObject_GetDictPtrPyErr_Fetchrandom_lognormalPyUnicode_FromStringrandom_buffered_bounded_uint16PyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringrandom_binomialPyExc_ImportErrorPyDict_SetItemrandom_uintPySequence_TuplePyExc_AttributeErrorrandom_gumbelrandom_standard_uniform_fillPyExc_StopIterationPySequence_Listrandom_standard_normal_fill_ffloor@@GLIBC_2.2.5PyUnicode_TypePyCapsule_NewPyUnicode_DecodePyErr_Formatrandom_bounded_bool_fillPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictrandom_binomial_inversion_ITM_registerTMCloneTablePyNumber_InPlaceMultiplyrandom_multivariate_hypergeometric_marginalsPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5random_geometricPyCFunction_Type_PyDict_NewPresizedceil@@GLIBC_2.2.5PyUnicode_FormatPyLong_FromStringPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5_initPyNumber_Subtractrandom_standard_normal_fillPyNumber_MatrixMultiplyPyThread_free_lockPyTuple_PackPyUnicode_DecodeASCIIPy_GetVersionPyObject_GC_UnTrackPyExc_UnboundLocalErrorPyErr_WriteUnraisablePyDict_GetItemWithErrorPyList_TypePyNumber_FloorDivide.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment$.o8 @HHHo11&Uo33@d8484ynBxsP ~``tt ` b b k k Pp)p x)x ) ) h)h ) ) (F ,  0 YH . H Q