B @` @sPdZdZgZxPeD]HZy eeWqek rXZzeedeWddZ[XYqXqWertedde[[[ddl m Z m Z mZyddlmZmZmZWnDek rZz&eed d Zed ed eWddZ[XYnXdd lmZmZmZmZmZm Z ddl!Z"ddl#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;mZ>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]ddl^m_Z_ddl`maZaddlbmcZcddldmeZeddlfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZnmoZompZpmqZqmrZrmsZsddltZ"ddlumvZvddlwmxZxmyZymzZzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZddlmZddlmZddlZ"ddlZ"ddlmZeZededZedZ[[ddZdZdS) Zrestructuredtext)numpyZpytzZdateutilz: Nz(Unable to import required dependencies:  )np_version_under1p17np_version_under1p18 is_numpy_dev) hashtablelibtslibzcannot import name z C extension: z not built. If you want to import pandas from the source directory, you may need to run 'python setup.py build_ext --force' to build the C extensions first.) get_option set_option reset_optiondescribe_optionoption_contextoptions): Int8Dtype Int16Dtype Int32Dtype Int64Dtype UInt8Dtype UInt16Dtype UInt32Dtype UInt64Dtype Float32Dtype Float64DtypeCategoricalDtype PeriodDtype IntervalDtypeDatetimeTZDtype StringDtype BooleanDtypeNAisnaisnullnotnanotnullIndexCategoricalIndex Int64Index UInt64Index RangeIndex Float64Index MultiIndex IntervalIndexTimedeltaIndex DatetimeIndex PeriodIndex IndexSliceNaTPeriod period_range Timedeltatimedelta_range Timestamp date_range bdate_rangeIntervalinterval_range DateOffset to_numeric to_datetime to_timedeltaFlagsGrouper factorizeunique value_countsNamedAggarray Categoricalset_eng_float_formatSeries DataFrame) SparseDtype) infer_freq)offsets)eval) concatlreshapemelt wide_to_longmerge merge_asof merge_orderedcrosstabpivot pivot_table get_dummiescutqcut) show_versions) ExcelFile ExcelWriter read_excelread_csvread_fwf read_table read_pickle to_pickleHDFStoreread_hdfread_sqlread_sql_queryread_sql_tableread_clipboard read_parquetread_orc read_featherread_gbq read_html read_json read_stataread_sas read_spss)_json_normalize)test) get_versionsz closest-tagversionzfull-revisionidcCsddl}|dkr0|jdtddddlm}|S|dkrT|jdtddddl}|S|d kr|jd |d tddt|d iS|d kr|jdtddddlm}|Std|ddS)NrdatetimezThe pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime module instead.) stacklevel)rynpzuThe pandas.np module is deprecated and will be removed from pandas in a future version. Import numpy directly instead> SparseSeriesSparseDataFramezThe zq class is removed from pandas. Accessing it from the top-level namespace will also be removed in the next version SparseArrayzThe pandas.SparseArray class is deprecated and will be removed from pandas in a future version. Use pandas.arrays.SparseArray instead.)rz"module 'pandas' has no attribute '') warningswarn FutureWarningryrtypepandas.core.arrays.sparserAttributeError)namerdtr|Z _SparseArrayrr3/tmp/pip-unpacked-wheel-q9tj5l6a/pandas/__init__.py __getattr__s:    ra pandas - a powerful data analysis and manipulation library for Python ===================================================================== **pandas** is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python. Additionally, it has the broader goal of becoming **the most powerful and flexible open source data analysis / manipulation tool available in any language**. It is already well on its way toward this goal. Main Features ------------- Here are just a few of the things that pandas does well: - Easy handling of missing data in floating point as well as non-floating point data. - Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects - Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations. - Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data. - Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects. - Intelligent label-based slicing, fancy indexing, and subsetting of large data sets. - Intuitive merging and joining data sets. - Flexible reshaping and pivoting of data sets. - Hierarchical labeling of axes (possible to have multiple labels per tick). - Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format. - Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging. )Z __docformat__Zhard_dependenciesZmissing_dependencies dependency __import__ ImportErroreappendjoinZpandas.compat.numpyrZ_np_version_under1p17rZ_np_version_under1p18rZ _is_numpy_devZ pandas._libsrZ _hashtablerZ_libr Z_tslibstrreplacemoduleZpandas._configr r r rrrZpandas.core.config_initZpandasZpandas.core.apirrrrrrrrrrrrrrrr r!r"r#r$r%r&r'r(r)r*r+r,r-r.r/r0r1r2r3r4r5r6r7r8r9r:r;r<r=r>r?r@rArBrCrDrErFrGrHrIrJrrKZpandas.tseries.apirLZpandas.tseriesrMZpandas.core.computation.apirNZpandas.core.reshape.apirOrPrQrRrSrTrUrVrWrXrYrZr[Z pandas.apiZpandas.util._print_versionsr\Z pandas.io.apir]r^r_r`rarbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsZpandas.io.jsonrtZjson_normalizeZpandas.util._testerruZpandas.testingZ pandas.arrays_versionrwvget __version__Z__git_version__r__doc__rrrrsR  *  C    < d    ^