#  ___________________________________________________________________________
#
#  Pyomo: Python Optimization Modeling Objects
#  Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC
#  Under the terms of Contract DE-NA0003525 with National Technology and
#  Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
#  rights in this software.
#  This software is distributed under the 3-clause BSD License.
#  ___________________________________________________________________________

import pyutilib.th as unittest

from pyomo.environ import TransformationFactory, Block, Set, Constraint, ComponentMap, Suffix, ConcreteModel, Var, Any, value
from pyomo.gdp import Disjunct, Disjunction, GDP_Error
from pyomo.core.base import constraint, _ConstraintData
from pyomo.repn import generate_standard_repn
from pyomo.common.log import LoggingIntercept
import logging

import pyomo.gdp.tests.models as models
import pyomo.gdp.tests.common_tests as ct

import random

from six import StringIO

class CommonTests:
    def diff_apply_to_and_create_using(self, model):
        ct.diff_apply_to_and_create_using(self, model, 'gdp.bigm')

class TwoTermDisj(unittest.TestCase, CommonTests):
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)

    def test_new_block_created(self):
        m = models.makeTwoTermDisj()
        TransformationFactory('gdp.bigm').apply_to(m)

        # we have a transformation block
        transBlock = m.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock, Block)

        # check that we have the lbub set on the transformation block
        lbub = transBlock.component("lbub")
        self.assertIsInstance(lbub, Set)
        self.assertEqual(len(lbub), 2)
        self.assertEqual(lbub, ['lb', 'ub'])

        disjBlock = transBlock.component("relaxedDisjuncts")
        self.assertIsInstance(disjBlock, Block)
        self.assertEqual(len(disjBlock), 2)
        # it has the disjuncts on it
        self.assertIsInstance( disjBlock[1].component("d[1].c1"), Constraint)
        self.assertIsInstance( disjBlock[1].component("d[1].c2"), Constraint)
        self.assertIsInstance( disjBlock[0].component("d[0].c"), Constraint)

    def test_disjunction_deactivated(self):
        ct.check_disjunction_deactivated(self, 'bigm')

    def test_disjunctDatas_deactivated(self):
        ct.check_disjunctDatas_deactivated(self, 'bigm')

    def test_do_not_transform_twice_if_disjunction_reactivated(self):
        ct.check_do_not_transform_twice_if_disjunction_reactivated(self, 'bigm')

    def test_xor_constraint_mapping(self):
        ct.check_xor_constraint_mapping(self, 'bigm')

    def test_xor_constraint_mapping_two_disjunctions(self):
        ct.check_xor_constraint_mapping_two_disjunctions(self, 'bigm')

    def test_disjunct_mapping(self):
        ct.check_disjunct_mapping(self, 'bigm')

    def test_disjunct_and_constraint_maps(self):
        """Tests the actual data structures used to store the maps."""
        # ESJ: Note that despite outward appearances, this test really is unique
        # to bigm. Because hull handles the a == 0 constraint by fixing the
        # disaggregated variable rather than creating a transformed constraint.
        m = models.makeTwoTermDisj()
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)
        disjBlock = m._pyomo_gdp_bigm_reformulation.relaxedDisjuncts
        oldblock = m.component("d")

        # we are counting on the fact that the disjuncts get relaxed in the
        # same order every time.
        for i in [0,1]:
            self.assertIs(oldblock[i].transformation_block(), disjBlock[i])
            self.assertIs(bigm.get_src_disjunct(disjBlock[i]), oldblock[i])

        # check the constraint mappings
        constraintdict1 = disjBlock[0]._constraintMap
        self.assertIsInstance(constraintdict1, dict)
        self.assertEqual(len(constraintdict1), 2)

        constraintdict2 = disjBlock[1]._constraintMap
        self.assertIsInstance(constraintdict2, dict)
        self.assertEqual(len(constraintdict2), 2)

        # original -> transformed
        transformedConstraints1 = constraintdict1['transformedConstraints']
        self.assertIsInstance(transformedConstraints1, ComponentMap)
        self.assertEqual(len(transformedConstraints1), 1)
        transformedConstraints2 = constraintdict2['transformedConstraints']
        self.assertIsInstance(transformedConstraints2, ComponentMap)
        self.assertEqual(len(transformedConstraints2), 2)
        # check constraint dict has right mapping
        c1_list = transformedConstraints2[oldblock[1].c1]
        self.assertEqual(len(c1_list), 2)
        # this is an equality, so we have both lb and ub
        self.assertIs(c1_list[0],
                      disjBlock[1].component(oldblock[1].c1.name)['lb'])
        self.assertIs(c1_list[1],
                      disjBlock[1].component(oldblock[1].c1.name)['ub'])
        c2_list = transformedConstraints2[oldblock[1].c2]
        # just ub
        self.assertEqual(len(c2_list), 1)
        self.assertIs(c2_list[0],
                      disjBlock[1].component(oldblock[1].c2.name)['ub'])
        c_list = transformedConstraints1[oldblock[0].c]
        # just lb
        self.assertEqual(len(c_list), 1)
        self.assertIs(c_list[0],
                      disjBlock[0].component(oldblock[0].c.name)['lb'])

        # transformed -> original
        srcdict1 = constraintdict1['srcConstraints']
        self.assertIsInstance(srcdict1, ComponentMap)
        self.assertEqual(len(srcdict1), 2)
        self.assertIs(srcdict1[disjBlock[0].component(oldblock[0].c.name)],
                      oldblock[0].c)
        self.assertIs(srcdict1[disjBlock[0].component(oldblock[0].c.name)['lb']],
                      oldblock[0].c)
        srcdict2 = constraintdict2['srcConstraints']
        self.assertIsInstance(srcdict2, ComponentMap)
        self.assertEqual(len(srcdict2), 5)
        self.assertIs(srcdict2[disjBlock[1].component("d[1].c1")],
                      oldblock[1].c1)
        self.assertIs(srcdict2[disjBlock[1].component("d[1].c1")['lb']],
                      oldblock[1].c1)
        self.assertIs(srcdict2[disjBlock[1].component("d[1].c1")['ub']],
                      oldblock[1].c1)
        self.assertIs(srcdict2[disjBlock[1].component("d[1].c2")],
                      oldblock[1].c2)
        self.assertIs(srcdict2[disjBlock[1].component("d[1].c2")['ub']],
                      oldblock[1].c2)

    def test_new_block_nameCollision(self):
        ct.check_transformation_block_name_collision(self, 'bigm')

    def test_indicator_vars(self):
        ct.check_indicator_vars(self, 'bigm')

    def test_xor_constraints(self):
        ct.check_xor_constraint(self, 'bigm')

    def test_or_constraints(self):
        m = models.makeTwoTermDisj()
        m.disjunction.xor = False
        TransformationFactory('gdp.bigm').apply_to(m)

        # check or constraint is an or (upper bound is None)
        orcons = m._pyomo_gdp_bigm_reformulation.component("disjunction_xor")
        self.assertIsInstance(orcons, Constraint)
        self.assertIs(m.d[0].indicator_var, orcons.body.arg(0))
        self.assertIs(m.d[1].indicator_var, orcons.body.arg(1))
        repn = generate_standard_repn(orcons.body)
        ct.check_linear_coef(self, repn, m.d[0].indicator_var, 1)
        ct.check_linear_coef(self, repn, m.d[1].indicator_var, 1)
        self.assertEqual(orcons.lower, 1)
        self.assertIsNone(orcons.upper)

    def test_deactivated_constraints(self):
        ct.check_deactivated_constraints(self, 'bigm')

    def test_transformed_constraints(self):
        m = models.makeTwoTermDisj()
        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -3, 2, 7, 2)

    def test_do_not_transform_userDeactivated_disjuncts(self):
        ct.check_user_deactivated_disjuncts(self, 'bigm')

    def test_improperly_deactivated_disjuncts(self):
        ct.check_improperly_deactivated_disjuncts(self, 'bigm')

    def test_do_not_transform_userDeactivated_IndexedDisjunction(self):
        ct.check_do_not_transform_userDeactivated_indexedDisjunction(self,
                                                                     'bigm')

    # helper method to check the M values in all of the transformed
    # constraints (m, M) is the tuple for M.  This also relies on the
    # disjuncts being transformed in the same order every time.
    def checkMs(self, model, cons1lb, cons2lb, cons2ub, cons3ub):
        disjBlock = model._pyomo_gdp_bigm_reformulation.relaxedDisjuncts

        # first constraint
        c = disjBlock[0].component("d[0].c")
        self.assertEqual(len(c), 1)
        self.assertTrue(c['lb'].active)
        repn = generate_standard_repn(c['lb'].body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, model.a, 1)
        ct.check_linear_coef(self, repn, model.d[0].indicator_var, cons1lb)
        self.assertEqual(repn.constant, -cons1lb)
        self.assertEqual(c['lb'].lower, model.d[0].c.lower)
        self.assertIsNone(c['lb'].upper)

        # second constraint
        c = disjBlock[1].component("d[1].c1")
        self.assertEqual(len(c), 2)
        self.assertTrue(c['lb'].active)
        repn = generate_standard_repn(c['lb'].body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, model.a, 1)
        ct.check_linear_coef(self, repn, model.d[1].indicator_var, cons2lb)
        self.assertEqual(repn.constant, -cons2lb)
        self.assertEqual(c['lb'].lower, model.d[1].c1.lower)
        self.assertIsNone(c['lb'].upper)
        self.assertTrue(c['ub'].active)
        repn = generate_standard_repn(c['ub'].body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, model.a, 1)
        ct.check_linear_coef(self, repn, model.d[1].indicator_var, cons2ub)
        self.assertEqual(repn.constant, -cons2ub)
        self.assertIsNone(c['ub'].lower)
        self.assertEqual(c['ub'].upper, model.d[1].c1.upper)

        # third constraint
        c = disjBlock[1].component("d[1].c2")
        self.assertEqual(len(c), 1)
        self.assertTrue(c['ub'].active)
        repn = generate_standard_repn(c['ub'].body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, model.x, 1)
        ct.check_linear_coef(self, repn, model.d[1].indicator_var, cons3ub)
        self.assertEqual(repn.constant, -cons3ub)
        self.assertIsNone(c['ub'].lower)
        self.assertEqual(c['ub'].upper, model.d[1].c2.upper)

    def test_suffix_M_None(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -20, -20, 20, 20)

    def test_suffix_M_None_on_disjunctData(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        # override for the first index:
        m.d[0].BigM = Suffix(direction=Suffix.LOCAL)
        m.d[0].BigM[None] = 18

        TransformationFactory('gdp.bigm').apply_to(m)
        # there should now be different values of m on d[0] and d[1]
        self.checkMs(m, -18, -20, 20, 20)

    def test_suffix_M_simpleConstraint_on_disjunctData(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        # override for the first index:
        m.d[0].BigM = Suffix(direction=Suffix.LOCAL)
        m.d[0].BigM[m.d[0].c] = 18

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -18, -20, 20, 20)

    def test_arg_M_None(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        # give an arg
        TransformationFactory('gdp.bigm').apply_to(m, bigM={None: 19})
        self.checkMs(m, -19, -19, 19, 19)

    def test_arg_M_singleNum(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        # give an arg
        TransformationFactory('gdp.bigm').apply_to(m, bigM=19.2)
        self.checkMs(m, -19.2, -19.2, 19.2, 19.2)

    def test_singleArg_M_tuple(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        # give an arg
        TransformationFactory('gdp.bigm').apply_to(m, bigM=(-18, 19.2))
        self.checkMs(m, -18, -18, 19.2, 19.2)

    def test_singleArg_M_tuple_wrongLength(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        # give an arg
        self.assertRaisesRegexp(
            GDP_Error,
            "Big-M \([^)]*\) for constraint d\[0\].c is not of "
            "length two. Expected either a single value or "
            "tuple or list of length two for M.*",
            TransformationFactory('gdp.bigm').apply_to,
            m,
            bigM=(-18, 19.2, 3))

    def test_singleArg_M_list(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        # give an arg
        TransformationFactory('gdp.bigm').apply_to(m, bigM=[-18, 19.2])
        self.checkMs(m, -18, -18, 19.2, 19.2)

    def test_singleArg_M_list_wrongLength(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        # give an arg
        self.assertRaisesRegexp(
            GDP_Error,
            "Big-M \[[^\]]*\] for constraint d\[0\].c is not of "
            "length two. Expected either a single value or "
            "tuple or list of length two for M.*",
            TransformationFactory('gdp.bigm').apply_to,
            m,
            bigM=[-18, 19.2, 3])

    def test_arg_M_simpleConstraint(self):
        m = models.makeTwoTermDisj()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        # specify a suffix on constraints so we can be happy we overrode them
        m.BigM[m.d[0].c] = 200
        m.BigM[m.d[1].c1] = 200
        m.BigM[m.d[1].c2] = 200

        # give an arg
        TransformationFactory('gdp.bigm').apply_to(
            m,
            bigM={None: 19,
                  m.d[0].c: 18,
                  m.d[1].c1: 17,
                  m.d[1].c2: 16})
        self.checkMs(m, -18, -17, 17, 16)

    def test_tuple_M_arg(self):
        m = models.makeTwoTermDisj()
        # give a tuple arg
        TransformationFactory('gdp.bigm').apply_to(
            m,
            bigM={None: (-20,19)})
        self.checkMs(m, -20, -20, 19, 19)

    def test_tuple_M_suffix(self):
        m = models.makeTwoTermDisj()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = (-18, 20)
        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -18, -18, 20, 20)

    def test_list_M_arg(self):
        m = models.makeTwoTermDisj()
        # give a tuple arg
        TransformationFactory('gdp.bigm').apply_to(
            m,
            bigM={None: [-20,19]})
        self.checkMs(m, -20, -20, 19, 19)

    def test_list_M_suffix(self):
        m = models.makeTwoTermDisj()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = [-18, 20]
        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -18, -18, 20, 20)

    def test_tuple_wrong_length_err(self):
        m = models.makeTwoTermDisj()
        M = (-20,19, 32)
        self.assertRaisesRegexp(
            GDP_Error,
            "Big-M \(-20, 19, 32\) for constraint d\[0\].c is not of "
            "length two. Expected either a single value or "
            "tuple or list of length two for M.*",
            TransformationFactory('gdp.bigm').apply_to,
            m,
            bigM={None: M})

    def test_list_wrong_length_err(self):
        m = models.makeTwoTermDisj()
        M = [-20, 19, 34]
        self.assertRaisesRegexp(
            GDP_Error,
            "Big-M \[-20, 19, 34\] for constraint d\[0\].c is not of "
            "length two. Expected either a single value or "
            "tuple or list of length two for M.*",
            TransformationFactory('gdp.bigm').apply_to,
            m,
            bigM={None: M})

    def test_create_using(self):
        m = models.makeTwoTermDisj()
        self.diff_apply_to_and_create_using(m)

    def test_indexed_constraints_in_disjunct(self):
        m = ConcreteModel()
        m.I = [1,2,3]
        m.x = Var(m.I, bounds=(0,10))
        def c_rule(b,i):
            m = b.model()
            return m.x[i] >= i
        def d_rule(d,j):
            m = d.model()
            d.c = Constraint(m.I[:j], rule=c_rule)
        m.d = Disjunct(m.I, rule=d_rule)
        m.disjunction = Disjunction(expr=[m.d[i] for i in m.I])

        TransformationFactory('gdp.bigm').apply_to(m)
        transBlock = m._pyomo_gdp_bigm_reformulation

        # 2 blocks: the original Disjunct and the transformation block
        self.assertEqual(
            len(list(m.component_objects(Block, descend_into=False))), 1)
        self.assertEqual(
            len(list(m.component_objects(Disjunct))), 1)

        # Each relaxed disjunct should have 1 var (the reference to the
        # indicator var), and i "d[i].c" Constraints
        for i in [1,2,3]:
            relaxed = transBlock.relaxedDisjuncts[i-1]
            self.assertEqual(len(list(relaxed.component_objects(Var))), 1)
            self.assertEqual(len(list(relaxed.component_data_objects(Var))), 1)
            self.assertEqual(
                len(list(relaxed.component_objects(Constraint))), 1)
            self.assertEqual(
                len(list(relaxed.component_data_objects(Constraint))), i)
            self.assertEqual(len(relaxed.component('d[%s].c'%i)), i)

    def test_virtual_indexed_constraints_in_disjunct(self):
        m = ConcreteModel()
        m.I = [1,2,3]
        m.x = Var(m.I, bounds=(0,10))
        def d_rule(d,j):
            m = d.model()
            d.c = Constraint(Any)
            for k in range(j):
                d.c[k+1] = m.x[k+1] >= k+1
        m.d = Disjunct(m.I, rule=d_rule)
        m.disjunction = Disjunction(expr=[m.d[i] for i in m.I])

        TransformationFactory('gdp.bigm').apply_to(m)
        transBlock = m._pyomo_gdp_bigm_reformulation

        # 2 blocks: the original Disjunct and the transformation block
        self.assertEqual(
            len(list(m.component_objects(Block, descend_into=False))), 1)
        self.assertEqual(
            len(list(m.component_objects(Disjunct))), 1)

        # Each relaxed disjunct should have 1 var (the reference to the
        # indicator var), and i "d[i].c" Constraints
        for i in [1,2,3]:
            relaxed = transBlock.relaxedDisjuncts[i-1]
            self.assertEqual(len(list(relaxed.component_objects(Var))), 1)
            self.assertEqual(len(list(relaxed.component_data_objects(Var))), 1)
            self.assertEqual(
                len(list(relaxed.component_objects(Constraint))), 1)
            self.assertEqual(
                len(list(relaxed.component_data_objects(Constraint))), i)
            self.assertEqual(len(relaxed.component('d[%s].c'%i)), i)

    def test_local_var(self):
        m = models.localVar()
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)

        # we just need to make sure that constraint was transformed correctly,
        # which just means that the M values were correct.
        transformedC = bigm.get_transformed_constraints(m.disj2.cons)
        self.assertEqual(len(transformedC), 2)
        lb = transformedC[0]
        ub = transformedC[1]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        ct.check_linear_coef(self, repn, m.disj2.indicator_var, -2)
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        ct.check_linear_coef(self, repn, m.disj2.indicator_var, 3)

class TwoTermDisjNonlinear(unittest.TestCase, CommonTests):
    def test_nonlinear_bigM(self):
        m = models.makeTwoTermDisj_Nonlinear()
        TransformationFactory('gdp.bigm').apply_to(m)
        disjBlock = m._pyomo_gdp_bigm_reformulation.relaxedDisjuncts

        # first constraint
        c = disjBlock[0].component("d[0].c")
        self.assertEqual(len(c), 1)
        self.assertTrue(c['ub'].active)
        repn = generate_standard_repn(c['ub'].body)
        self.assertFalse(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, m.x, 1)
        ct.check_linear_coef(self, repn, m.d[0].indicator_var, 94)
        self.assertEqual(repn.constant, -94)
        self.assertEqual(c['ub'].upper, m.d[0].c.upper)
        self.assertIsNone(c['ub'].lower)

    def test_nonlinear_bigM_missing_var_bounds(self):
        m = models.makeTwoTermDisj_Nonlinear()
        m.y.setlb(None)
        self.assertRaisesRegexp(
            GDP_Error,
            "Cannot estimate M for unbounded nonlinear "
            "expressions.\n\t\(found while processing "
            "constraint 'd\[0\].c'\)",
            TransformationFactory('gdp.bigm').apply_to,
            m)

    def test_nonlinear_disjoint(self):
        m = ConcreteModel()
        x = m.x = Var(bounds=(-4, 4))
        y = m.y = Var(bounds=(-10, 10))
        m.disj = Disjunction(expr=[
            [x**2 + y**2 <= 2, x**3 + y**2 + x * y >= 1.0/2.0],
            [(x - 3)**2 + (y - 3)**2 <= 1]
        ])
        TransformationFactory('gdp.bigm').apply_to(m)
        disjBlock = m._pyomo_gdp_bigm_reformulation.relaxedDisjuncts

        # first disjunct, first constraint
        c = disjBlock[0].component("disj_disjuncts[0].constraint")
        self.assertEqual(len(c), 2)
        repn = generate_standard_repn(c[1, 'ub'].body)
        self.assertFalse(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 1)
        ct.check_linear_coef(self, repn, m.disj_disjuncts[0].indicator_var, 114)
        self.assertEqual(repn.constant, -114)
        self.assertEqual(c[1, 'ub'].upper,
                         m.disj_disjuncts[0].constraint[1].upper)
        self.assertIsNone(c[1, 'ub'].lower)
        # first disjunct, second constraint
        repn = generate_standard_repn(c[2, 'lb'].body)
        self.assertFalse(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 1)
        ct.check_linear_coef(self, repn, m.disj_disjuncts[0].indicator_var,
                             -104.5)
        self.assertEqual(repn.constant, 104.5)
        self.assertEqual(c[2, 'lb'].lower,
                         m.disj_disjuncts[0].constraint[2].lower)
        self.assertIsNone(c[2, 'lb'].upper)
        # second disjunct, first constraint
        c = disjBlock[1].component("disj_disjuncts[1].constraint")
        self.assertEqual(len(c), 1)
        repn = generate_standard_repn(c[1, 'ub'].body)
        self.assertFalse(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 3)
        ct.check_linear_coef(self, repn, m.x, -6)
        ct.check_linear_coef(self, repn, m.y, -6)
        ct.check_linear_coef(self, repn, m.disj_disjuncts[1].indicator_var, 217)
        self.assertEqual(repn.constant, -199)
        self.assertEqual(c[1, 'ub'].upper,
                         m.disj_disjuncts[1].constraint[1].upper)
        self.assertIsNone(c[1, 'ub'].lower)


class TwoTermIndexedDisj(unittest.TestCase, CommonTests):
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)
        # These are the pairs of which disjunct indices map to which
        # blocks in the list of block on the transformation
        # block. This is needed in multiple tests, so I am storing it
        # here.
        self.pairs = [
            ( (0,1,'A'), 0 ),
            ( (1,1,'A'), 1 ),
            ( (0,1,'B'), 2 ),
            ( (1,1,'B'), 3 ),
            ( (0,2,'A'), 4 ),
            ( (1,2,'A'), 5 ),
            ( (0,2,'B'), 6 ),
            ( (1,2,'B'), 7 ),
        ]

    def test_xor_constraints(self):
        ct.check_indexed_xor_constraints(self, 'bigm')

    def test_deactivated_constraints(self):
        ct.check_constraints_deactivated_indexedDisjunction(self, 'bigm')

    def test_transformed_block_structure(self):
        m = models.makeTwoTermMultiIndexedDisjunction()
        TransformationFactory('gdp.bigm').apply_to(m)
        transBlock = m.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock, Block)

        # check that we have the lbub set on the transformation block
        lbub = transBlock.component("lbub")
        self.assertIsInstance(lbub, Set)
        self.assertEqual(len(lbub), 2)
        self.assertEqual(lbub, ['lb', 'ub'])

        # check the IndexedBlock of transformed disjuncts
        disjBlock = transBlock.relaxedDisjuncts
        self.assertEqual(len(disjBlock), 8)

        # check that all 8 blocks have the right constraint on them.
        # this relies on the order in which they are transformed.
        for i,j in self.pairs:
            self.assertIsInstance(
                disjBlock[j].component(m.disjunct[i].c.name),
                Constraint)

    def test_disjunct_and_constraint_maps(self):
        m = models.makeTwoTermMultiIndexedDisjunction()
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)

        disjBlock = m._pyomo_gdp_bigm_reformulation.relaxedDisjuncts
        oldblock = m.component("disjunct")

        # this test relies on the fact that the disjuncts are going to be
        # relaxed in the same order every time, so they will correspond to
        # these indices on the transformation block:
        for src, dest in self.pairs:
            srcDisjunct = oldblock[src]
            transformedDisjunct = disjBlock[dest]
            self.assertIs(bigm.get_src_disjunct(transformedDisjunct),
                          srcDisjunct)
            self.assertIs(transformedDisjunct,
                          srcDisjunct.transformation_block())

            transformed = bigm.get_transformed_constraints(srcDisjunct.c)
            if src[0]:
                # equality
                self.assertEqual(len(transformed), 2)
                self.assertIsInstance(transformed[0], _ConstraintData)
                self.assertIsInstance(transformed[1], _ConstraintData)
                self.assertIs(
                    transformed[0],
                    disjBlock[dest].component(srcDisjunct.c.name)['lb'])
                self.assertIs(
                    transformed[1],
                    disjBlock[dest].component(srcDisjunct.c.name)['ub'])
                # check reverse maps from the _ConstraintDatas
                self.assertIs(bigm.get_src_constraint(
                    disjBlock[dest].component(srcDisjunct.c.name)['lb']),
                              srcDisjunct.c)
                self.assertIs(bigm.get_src_constraint(
                    disjBlock[dest].component(srcDisjunct.c.name)['ub']),
                              srcDisjunct.c)
            else:
                # >=
                self.assertEqual(len(transformed), 1)
                self.assertIsInstance(transformed[0], _ConstraintData)
                self.assertIs(
                    transformed[0],
                    disjBlock[dest].component(srcDisjunct.c.name)['lb'])
                self.assertIs(bigm.get_src_constraint(
                    disjBlock[dest].component(srcDisjunct.c.name)['lb']),
                              srcDisjunct.c)
            # check reverse map from the container
            self.assertIs(bigm.get_src_constraint(
                disjBlock[dest].component(srcDisjunct.c.name)),
                srcDisjunct.c)

    def test_deactivated_disjuncts(self):
        ct.check_deactivated_disjuncts(self, 'bigm')

    def test_deactivated_disjunction(self):
        ct.check_deactivated_disjunctions(self, 'bigm')

    def test_create_using(self):
        m = models.makeTwoTermMultiIndexedDisjunction()
        self.diff_apply_to_and_create_using(m)

    def test_targets_with_container_as_arg(self):
        ct.check_targets_with_container_as_arg(self, 'bigm')

class DisjOnBlock(unittest.TestCase, CommonTests):
    # when the disjunction is on a block, we want all of the stuff created by
    # the transformation to go on that block also so that solving the block
    # maintains its meaning

    def test_xor_constraint_added(self):
        ct.check_xor_constraint_added(self, 'bigm')

    def test_trans_block_created(self):
        ct.check_trans_block_created(self, 'bigm')

    def checkFirstDisjMs(self, model, disj1c1lb, disj1c1ub, disj1c2):
        bigm = TransformationFactory('gdp.bigm')

        c1 = bigm.get_transformed_constraints(model.b.disjunct[0].c)
        self.assertEqual(len(c1), 2)
        lb = c1[0]
        ub = c1[1]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj1c1lb)
        ct.check_linear_coef(
            self, repn, model.b.disjunct[0].indicator_var, disj1c1lb)
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj1c1ub)
        ct.check_linear_coef(
            self, repn, model.b.disjunct[0].indicator_var, disj1c1ub)

        c2 = bigm.get_transformed_constraints(model.b.disjunct[1].c)
        self.assertEqual(len(c2), 1)
        ub = c2[0]
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj1c2)
        ct.check_linear_coef(
            self, repn, model.b.disjunct[1].indicator_var, disj1c2)

    def checkMs(self, model, disj1c1lb, disj1c1ub, disj1c2, disj2c1, disj2c2):
        bigm = TransformationFactory('gdp.bigm')
        self.checkFirstDisjMs(model, disj1c1lb, disj1c1ub, disj1c2)

        c = bigm.get_transformed_constraints(model.simpledisj.c)
        self.assertEqual(len(c), 1)
        lb = c[0]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj2c1)
        ct.check_linear_coef(
            self, repn, model.simpledisj.indicator_var, disj2c1)

        c = bigm.get_transformed_constraints(model.simpledisj2.c)
        self.assertEqual(len(c), 1)
        ub = c[0]
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj2c2)
        ct.check_linear_coef(
            self, repn, model.simpledisj2.indicator_var, disj2c2)

    def test_suffix_M_onBlock(self):
        m = models.makeTwoTermDisjOnBlock()
        # adding something that's not on the block so that I know that only
        # the stuff on the block was changed
        m = models.add_disj_not_on_block(m)
        m.b.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.BigM[None] = 34
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)

        # check m values
        self.checkMs(m, -34, 34, 34, -3, 1.5)

        # check the source of the values
        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj.c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -3)
        self.assertIsNone(u_val)
        (l_val, u_val) = bigm.get_M_value(m.simpledisj.c)
        self.assertEqual(l_val, -3)
        self.assertIsNone(u_val)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj2.c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 1.5)
        (l_val, u_val) = bigm.get_M_value(m.simpledisj2.c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 1.5)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[0].c)
        self.assertIs(l_src, m.b.BigM)
        self.assertIs(u_src, m.b.BigM)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -34)
        self.assertEqual(u_val, 34)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[0].c)
        self.assertEqual(l_val, -34)
        self.assertEqual(u_val, 34)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, m.b.BigM)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 34)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 34)

    def test_block_M_arg(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        bigms = {m.b: 100, m.b.disjunct[1].c: 13}
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m, bigM=bigms)
        self.checkMs(m, -100, 100, 13, -3, 1.5)

        # check the source of the values
        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj.c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -3)
        self.assertIsNone(u_val)
        (l_val, u_val) = bigm.get_M_value(m.simpledisj.c)
        self.assertEqual(l_val, -3)
        self.assertIsNone(u_val)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj2.c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 1.5)
        (l_val, u_val) = bigm.get_M_value(m.simpledisj2.c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 1.5)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[0].c)
        self.assertIs(l_src, bigms)
        self.assertIs(u_src, bigms)
        self.assertIs(l_key, m.b)
        self.assertIs(u_key, m.b)
        self.assertEqual(l_val, -100)
        self.assertEqual(u_val, 100)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[0].c)
        self.assertEqual(l_val, -100)
        self.assertEqual(u_val, 100)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, bigms)
        self.assertIsNone(l_key)
        self.assertIs(u_key, m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 13)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 13)

    def test_disjunct_M_arg(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        bigm = TransformationFactory('gdp.bigm')
        bigms = {m.b: 100, m.b.disjunct[1]: 13}
        bigm.apply_to(m, bigM=bigms)
        self.checkMs(m, -100, 100, 13, -3, 1.5)

        # check the source of the values
        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj.c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -3)
        self.assertIsNone(u_val)
        (l_val, u_val) = bigm.get_M_value(m.simpledisj.c)
        self.assertEqual(l_val, -3)
        self.assertIsNone(u_val)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj2.c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 1.5)
        (l_val, u_val) = bigm.get_M_value(m.simpledisj2.c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 1.5)
        
        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[0].c)
        self.assertIs(l_src, bigms)
        self.assertIs(u_src, bigms)
        self.assertIs(l_key, m.b)
        self.assertIs(u_key, m.b)
        self.assertEqual(l_val, -100)
        self.assertEqual(u_val, 100)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[0].c)
        self.assertEqual(l_val, -100)
        self.assertEqual(u_val, 100)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, bigms)
        self.assertIsNone(l_key)
        self.assertIs(u_key, m.b.disjunct[1])
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 13)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 13)

    def test_block_M_arg_with_default(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        bigm = TransformationFactory('gdp.bigm')
        bigms = {m.b: 100, m.b.disjunct[1].c: 13, 
                 m.b.disjunct[0].c: (None, 50), None: 34}
        bigm.apply_to(m, bigM=bigms)
        self.checkMs(m, -100, 50, 13, -34, 34)

        # check the source of the values
        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj.c)
        self.assertIs(l_src, bigms)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -34)
        self.assertIsNone(u_val)
        l_val, u_val = bigm.get_M_value(m.simpledisj.c)
        self.assertEqual(l_val, -34)
        self.assertIsNone(u_val)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj2.c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, bigms)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 34)
        l_val, u_val = bigm.get_M_value(m.simpledisj2.c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 34)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[0].c)
        self.assertIs(l_src, bigms)
        self.assertIs(u_src, bigms)
        self.assertIs(l_key, m.b)
        self.assertIs(u_key, m.b.disjunct[0].c)
        self.assertEqual(l_val, -100)
        self.assertEqual(u_val, 50)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[0].c)
        self.assertEqual(l_val, -100)
        self.assertEqual(u_val, 50)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, bigms)
        self.assertIsNone(l_key)
        self.assertIs(u_key, m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 13)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 13)

    def test_model_M_arg(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        out = StringIO()
        with LoggingIntercept(out, 'pyomo.gdp.bigm'):
            TransformationFactory('gdp.bigm').apply_to(
                m,
                bigM={m: 100,
                      m.b.disjunct[1].c: 13})
        self.checkMs(m, -100, 100, 13, -100, 100)
        # make sure we didn't get any warnings when we used all the args
        self.assertEqual(out.getvalue(), '')

    def test_model_M_arg_overrides_None(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        out = StringIO()
        with LoggingIntercept(out, 'pyomo.gdp.bigm'):
            TransformationFactory('gdp.bigm').apply_to(
                m,
                bigM={m: 100,
                      m.b.disjunct[1].c: 13,
                      None: 34})
        self.checkMs(m, -100, 100, 13, -100, 100)
        self.assertEqual(out.getvalue(),
                         "Unused arguments in the bigM map! "
                         "These arguments were not used by the "
                         "transformation:\n\tNone\n\n")

    def test_warning_for_crazy_bigm_args(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        out = StringIO()
        bigM = ComponentMap({m: 100, m.b.disjunct[1].c: 13})
        # this is silly
        bigM[m.a] = 34
        with LoggingIntercept(out, 'pyomo.gdp.bigm'):
            TransformationFactory('gdp.bigm').apply_to( m, bigM=bigM)
        self.checkMs(m, -100, 100, 13, -100, 100)
        self.assertEqual(out.getvalue(),
                         "Unused arguments in the bigM map! "
                         "These arguments were not used by the "
                         "transformation:\n\ta\n\n")

    def test_use_above_scope_m_value(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        bigM = ComponentMap({m: 100, m.b.disjunct[1].c: 13})
        out = StringIO()
        # transform just the block. We expect to use the M value specified on
        # the model, and we should comment on nothing.
        with LoggingIntercept(out, 'pyomo.gdp.bigm'):
            TransformationFactory('gdp.bigm').apply_to( m.b, bigM=bigM)
        self.checkFirstDisjMs(m, -100, 100, 13)
        self.assertEqual(out.getvalue(), '')

    def test_unused_arguments_transform_block(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)

        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 1e6
        m.b.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.BigM[None] = 15

        out = StringIO()
        with LoggingIntercept(out, 'pyomo.gdp.bigm'):
            TransformationFactory('gdp.bigm').apply_to(
                m.b,
                bigM={m: 100,
                      m.b: 13,
                      m.simpledisj2.c: 10})

        self.checkFirstDisjMs(m, -13, 13, 13)

        # The order these get printed depends on a dictionary order, so test
        # this way...
        self.assertIn("Unused arguments in the bigM map! "
                      "These arguments were not used by the "
                      "transformation:",
                      out.getvalue())
        self.assertIn("simpledisj2.c", out.getvalue())
        self.assertIn("unknown", out.getvalue())

    def test_suffix_M_simple_disj(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        m.simpledisj.BigM = Suffix(direction=Suffix.LOCAL)
        m.simpledisj.BigM[None] = 45
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)
        self.checkMs(m, -20, 20, 20, -45, 20)

        # check source of the m values
        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj.c)
        self.assertIs(l_src, m.simpledisj.BigM)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -45)
        self.assertIsNone(u_val)
        l_val, u_val = bigm.get_M_value(m.simpledisj.c)
        self.assertEqual(l_val, -45)
        self.assertIsNone(u_val)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj2.c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, m.BigM)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)
        l_val, u_val = bigm.get_M_value(m.simpledisj2.c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[0].c)
        self.assertIs(l_src, m.BigM)
        self.assertIs(u_src, m.BigM)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -20)
        self.assertEqual(u_val, 20)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[0].c)
        self.assertEqual(l_val, -20)
        self.assertEqual(u_val, 20)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, m.BigM)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)

    def test_suffix_M_constraintKeyOnBlock(self):
        m = models.makeTwoTermDisjOnBlock()
        m.b.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.BigM[m.b.disjunct[0].c] = 87
        m.b.BigM[None] = 64

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkFirstDisjMs(m, -87, 87, 64)

    def test_suffix_M_constraintKeyOnModel(self):
        m = models.makeTwoTermDisjOnBlock()
        m.b.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.BigM[None] = 64
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[m.b.disjunct[0].c] = 87

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkFirstDisjMs(m, -87, 87, 64)

    def test_suffix_M_constraintKeyOnSimpleDisj(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        m.simpledisj.BigM = Suffix(direction=Suffix.LOCAL)
        m.simpledisj.BigM[None] = 45
        m.simpledisj.BigM[m.simpledisj.c] = 87
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        bigms = {m.b.disjunct[0].c: (-15, None)}
        bigm = TransformationFactory('gdp.bigm')
        
        bigm.apply_to(m, bigM=bigms)
        self.checkMs(m, -15, 20, 20, -87, 20)

        # check source of the m values
        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj.c)
        self.assertIs(l_src, m.simpledisj.BigM)
        self.assertIsNone(u_src)
        self.assertIs(l_key, m.simpledisj.c)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -87)
        self.assertIsNone(u_val)
        l_val, u_val = bigm.get_M_value(m.simpledisj.c)
        self.assertEqual(l_val, -87)
        self.assertIsNone(u_val)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.simpledisj2.c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, m.BigM)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)
        l_val, u_val = bigm.get_M_value(m.simpledisj2.c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[0].c)
        self.assertIs(l_src, bigms)
        self.assertIs(u_src, m.BigM)
        self.assertIs(l_key, m.b.disjunct[0].c)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -15)
        self.assertEqual(u_val, 20)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[0].c)
        self.assertEqual(l_val, -15)
        self.assertEqual(u_val, 20)

        ((l_val, l_src, l_key), 
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.b.disjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, m.BigM)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)
        l_val, u_val = bigm.get_M_value(m.b.disjunct[1].c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 20)

    def test_suffix_M_constraintKeyOnSimpleDisj_deprecated_m_src_method(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        m.simpledisj.BigM = Suffix(direction=Suffix.LOCAL)
        m.simpledisj.BigM[None] = 45
        m.simpledisj.BigM[m.simpledisj.c] = 87
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20

        bigms = {m.b.disjunct[0].c: (-15, None)}
        bigm = TransformationFactory('gdp.bigm')
        
        bigm.apply_to(m, bigM=bigms)

        # check source of the m values
        (src, key) = bigm.get_m_value_src(m.simpledisj.c)
        self.assertIs(src, m.simpledisj.BigM)
        self.assertIs(key, m.simpledisj.c)
        (src, key) = bigm.get_m_value_src(m.simpledisj2.c)
        self.assertIs(src, m.BigM)
        self.assertIsNone(key)
        self.assertRaisesRegexp(
            GDP_Error,
            "This is why this method is deprecated: The lower "
            "and upper M values for constraint b.disjunct\[0\].c "
            "came from different sources, please use the "
            "get_M_value_src method.",
            bigm.get_m_value_src,
            m.b.disjunct[0].c)
        (src, key) = bigm.get_m_value_src(m.b.disjunct[1].c)
        self.assertIs(src, m.BigM)
        self.assertIsNone(key)

    def test_disjunct_M_arg_deprecated_m_src_method(self):
        m = models.makeTwoTermDisjOnBlock()
        m = models.add_disj_not_on_block(m)
        bigm = TransformationFactory('gdp.bigm')
        bigms = {m.b: 100, m.b.disjunct[1]: 13}
        bigm.apply_to(m, bigM=bigms)
        self.checkMs(m, -100, 100, 13, -3, 1.5)

        # check the source of the values
        (src, key) = bigm.get_m_value_src(m.simpledisj.c)
        self.assertEqual(src, -3)
        self.assertIsNone(key)
        (src, key) = bigm.get_m_value_src(m.simpledisj2.c)
        self.assertIsNone(src)
        self.assertEqual(key, 1.5)
        (src, key) = bigm.get_m_value_src(m.b.disjunct[0].c)
        self.assertIs(src, bigms)
        self.assertIs(key, m.b)
        (src, key) = bigm.get_m_value_src(m.b.disjunct[1].c)
        self.assertIs(src, bigms)
        self.assertIs(key, m.b.disjunct[1])

    def test_block_targets_inactive(self):
        ct.check_block_targets_inactive(self, 'bigm')

    def test_block_only_targets_transformed(self):
        ct.check_block_only_targets_transformed(self, 'bigm')

    def test_create_using(self):
        m = models.makeTwoTermDisjOnBlock()
        ct.diff_apply_to_and_create_using(self, m, 'gdp.bigm')


class SimpleDisjIndexedConstraints(unittest.TestCase, CommonTests):
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)

    def test_do_not_transform_deactivated_constraintDatas(self):
        # ESJ: specific to how bigM transforms constraints (so not a common test
        # with hull)
        m = models.makeTwoTermDisj_IndexedConstraints()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 30
        m.b.simpledisj1.c[1].deactivate()
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)

        # the real test: This wasn't transformed
        log = StringIO()
        with LoggingIntercept(log, 'pyomo.gdp', logging.ERROR):
            self.assertRaisesRegexp(
                KeyError,
                ".*b.simpledisj1.c\[1\]",
                bigm.get_transformed_constraints,
                m.b.simpledisj1.c[1])
        self.assertRegexpMatches(log.getvalue(),
                                 ".*Constraint 'b.simpledisj1.c\[1\]' "
                                 "has not been transformed.")

        # and the rest of the container was transformed
        cons_list = bigm.get_transformed_constraints(m.b.simpledisj1.c[2])
        self.assertEqual(len(cons_list), 2)
        lb = cons_list[0]
        ub = cons_list[1]
        self.assertIsInstance(lb, constraint._GeneralConstraintData)
        self.assertIsInstance(ub, constraint._GeneralConstraintData)

    def checkMs(self, m, disj1c1lb, disj1c1ub, disj1c2lb, disj1c2ub, disj2c1ub,
                disj2c2ub):
        bigm = TransformationFactory('gdp.bigm')
        c = bigm.get_transformed_constraints(m.b.simpledisj1.c[1])
        self.assertEqual(len(c), 2)
        lb = c[0]
        ub = c[1]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj1c1lb)
        ct.check_linear_coef(
            self, repn, m.b.simpledisj1.indicator_var, disj1c1lb)
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj1c1ub)
        ct.check_linear_coef(
            self, repn, m.b.simpledisj1.indicator_var, disj1c1ub)
        c = bigm.get_transformed_constraints(m.b.simpledisj1.c[2])
        self.assertEqual(len(c), 2)
        lb = c[0]
        ub = c[1]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj1c2lb)
        ct.check_linear_coef(
            self, repn, m.b.simpledisj1.indicator_var, disj1c2lb)
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj1c2ub)
        ct.check_linear_coef(
            self, repn, m.b.simpledisj1.indicator_var, disj1c2ub)

        c = bigm.get_transformed_constraints(m.b.simpledisj2.c[1])
        self.assertEqual(len(c), 1)
        ub = c[0]
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj2c1ub)
        ct.check_linear_coef(
            self, repn, m.b.simpledisj2.indicator_var, disj2c1ub)
        c = bigm.get_transformed_constraints(m.b.simpledisj2.c[2])
        self.assertEqual(len(c), 1)
        ub = c[0]
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -disj2c2ub)
        ct.check_linear_coef(
            self, repn, m.b.simpledisj2.indicator_var, disj2c2ub)

    def test_suffix_M_constraintData_on_block(self):
        m = models.makeTwoTermDisj_IndexedConstraints()
        m.b.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.BigM[None] = 30
        m.b.BigM[m.b.simpledisj1.c[1]] = 15

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -15, 15, -30, 30, 30, 30)

    def test_suffix_M_indexedConstraint_on_block(self):
        m = models.makeTwoTermDisj_IndexedConstraints()
        m.b.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.BigM[None] = 30
        m.b.BigM[m.b.simpledisj2.c] = 15

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -30, 30, -30, 30, 15, 15)

    def test_suffix_M_constraintData_on_simpleDisjunct(self):
        m = models.makeTwoTermDisj_IndexedConstraints()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 65
        m.b.simpledisj1.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.simpledisj1.BigM[m.b.simpledisj1.c[2]] = (-14, 13)

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -65, 65, -14, 13, 65, 65)

    def test_suffix_M_indexedConstraint_on_simpleDisjunct(self):
        m = models.makeTwoTermDisj_IndexedConstraints()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 65
        m.b.simpledisj1.BigM = Suffix(direction=Suffix.LOCAL)
        m.b.simpledisj1.BigM[m.b.simpledisj1.c] = (-14, 13)

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -14, 13, -14, 13, 65, 65)

    def test_unbounded_var_m_estimation_err(self):
        m = models.makeTwoTermDisj_IndexedConstraints()
        self.assertRaisesRegexp(
            GDP_Error,
            "Cannot estimate M for expressions with unbounded variables."
            "\n\t\(found unbounded var 'a\[1\]' while processing constraint "
            "'b.simpledisj1.c'\)",
            TransformationFactory('gdp.bigm').apply_to,
            m)

    def test_create_using(self):
        m = models.makeTwoTermDisj_IndexedConstraints()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 100
        self.diff_apply_to_and_create_using(m)


class MultiTermDisj(unittest.TestCase, CommonTests):
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)

    def test_xor_constraint(self):
        ct.check_three_term_xor_constraint(self, 'bigm')

    def test_create_using(self):
        m = models.makeThreeTermIndexedDisj()
        self.diff_apply_to_and_create_using(m)


class IndexedConstraintsInDisj(unittest.TestCase, CommonTests):
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)

    def test_transformed_constraints_on_block(self):
        # constraints should still be moved as indexed constraints, and we will
        # just add ['lb', 'ub'] as another index (using both for equality and
        # both bounds and the one that we need when we only have one bound)
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        TransformationFactory('gdp.bigm').apply_to(m)

        transBlock = m.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock, Block)
        disjBlock = transBlock.component("relaxedDisjuncts")
        self.assertIsInstance(disjBlock, Block)
        self.assertEqual(len(disjBlock), 2)

        cons1 = disjBlock[0].component("disjunct[0].c")
        self.assertIsInstance(cons1, Constraint)
        self.assertTrue(cons1.active)
        self.assertTrue(cons1[1,'lb'].active)
        self.assertTrue(cons1[2,'lb'].active)

        cons2 = disjBlock[1].component("disjunct[1].c")
        self.assertIsInstance(cons2, Constraint)
        self.assertTrue(cons2.active)
        self.assertTrue(cons2[1,'lb'].active)
        self.assertTrue(cons2[1,'ub'].active)
        self.assertTrue(cons2[2,'lb'].active)
        self.assertTrue(cons2[2,'ub'].active)

    def checkMs(self, model, c11lb, c12lb, c21lb, c21ub, c22lb, c22ub):
        bigm = TransformationFactory('gdp.bigm')
        c = bigm.get_transformed_constraints(model.disjunct[0].c[1])
        self.assertEqual(len(c), 1)
        lb = c[0]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertEqual(repn.constant, -c11lb)
        ct.check_linear_coef(self, repn, model.disjunct[0].indicator_var, c11lb)
        c = bigm.get_transformed_constraints(model.disjunct[0].c[2])
        self.assertEqual(len(c), 1)
        lb = c[0]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertEqual(repn.constant, -c12lb)
        ct.check_linear_coef(self, repn, model.disjunct[0].indicator_var, c12lb)

        c = bigm.get_transformed_constraints(model.disjunct[1].c[1])
        self.assertEqual(len(c), 2)
        lb = c[0]
        ub = c[1]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertEqual(repn.constant, -c21lb)
        ct.check_linear_coef(self, repn, model.disjunct[1].indicator_var, c21lb)
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertEqual(repn.constant, -c21ub)
        ct.check_linear_coef(self, repn, model.disjunct[1].indicator_var, c21ub)
        c = bigm.get_transformed_constraints(model.disjunct[1].c[2])
        self.assertEqual(len(c), 2)
        lb = c[0]
        ub = c[1]
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertEqual(repn.constant, -c22lb)
        ct.check_linear_coef(self, repn, model.disjunct[1].indicator_var, c22lb)
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertEqual(repn.constant, -c22ub)
        ct.check_linear_coef(self, repn, model.disjunct[1].indicator_var, c22ub)

    def test_arg_M_constraintdata(self):
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        # specify a suffix on a componentdata so we can be happy we overrode it
        m.BigM[m.disjunct[0].c[1]] = 19

        # give an arg
        TransformationFactory('gdp.bigm').apply_to(
            m,
            bigM={None: 19, m.disjunct[0].c[1]: 17,
                  m.disjunct[0].c[2]: 18})

        # check that m values are what we expect
        self.checkMs(m, -17, -18, -19, 19, -19, 19)

    def test_arg_M_indexedConstraint(self):
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        # specify a suffix on a component so we can be happy we overrode it
        m.BigM[m.disjunct[0].c] = 19

        # give an arg. Doing this one as a ComponentMap, just to make sure.
        TransformationFactory('gdp.bigm').apply_to(
            m,
            bigM=ComponentMap({None: 19, m.disjunct[0].c: 17}))
        self.checkMs(m, -17, -17, -19, 19, -19, 19)

    def test_suffix_M_None_on_indexedConstraint(self):
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        m.BigM[m.disjunct[0].c] = 19
        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -19, -19, -20, 20, -20, 20)

    def test_suffix_M_None_on_constraintdata(self):
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        # specify a suffix on None so we can be happy we overrode it.
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        m.BigM[m.disjunct[0].c[1]] = 19

        TransformationFactory('gdp.bigm').apply_to(m)

        # check that m values are what we expect
        self.checkMs(m, -19, -20, -20, 20, -20, 20)

    def test_suffix_M_indexedConstraint_on_disjData(self):
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        # specify a suffix on a disjunctData
        m.disjunct[0].BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[m.disjunct[0].c] = 19

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -19, -19, -20, 20, -20, 20)

    def test_suffix_M_constraintData_on_disjData(self):
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        m.BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[None] = 20
        # specify a suffix on a disjunctData
        m.disjunct[0].BigM = Suffix(direction=Suffix.LOCAL)
        m.BigM[m.disjunct[0].c] = 19
        m.BigM[m.disjunct[0].c[1]] = 18

        TransformationFactory('gdp.bigm').apply_to(m)
        self.checkMs(m, -18, -19, -20, 20, -20, 20)

    def test_create_using(self):
        m = models.makeTwoTermDisj_IndexedConstraints_BoundedVars()
        self.diff_apply_to_and_create_using(m)


class DisjunctInMultipleDisjunctions(unittest.TestCase, CommonTests):
    def test_error_for_same_disjunct_in_multiple_disjunctions(self):
        ct.check_error_for_same_disjunct_in_multiple_disjunctions(self, 'bigm')


class TestTargets_SingleDisjunction(unittest.TestCase, CommonTests):
    def test_only_targets_inactive(self):
        ct.check_only_targets_inactive(self, 'bigm')

    def test_only_targets_transformed(self):
        ct.check_only_targets_get_transformed(self, 'bigm')

    def test_target_not_a_component_err(self):
        ct.check_target_not_a_component_error(self, 'bigm')

    def test_targets_cannot_be_cuids(self):
        ct.check_targets_cannot_be_cuids(self, 'bigm')

    # [ESJ 09/14/2019] See my rant in #1072, but I think this is why we cannot
    # actually support this!
    # def test_break_targets_with_cuids(self):
    #     m = models.makeTwoSimpleDisjunctions()
    #     b = Block() # so this guy has no parent, he's some mistake presumably
    #     # But we specify *him* has the target with cuid
    #     TransformationFactory('gdp.bigm').apply_to(m, targets=ComponentUID(b))

    #     # No error, and we've transformed the whole model
    #     m.pprint()

class TestTargets_IndexedDisjunction(unittest.TestCase, CommonTests):
    def test_indexedDisj_targets_inactive(self):
        ct.check_indexedDisj_targets_inactive(self, 'bigm')

    def test_indexedDisj_only_targets_transformed(self):
        ct.check_indexedDisj_only_targets_transformed(self, 'bigm')

    def test_warn_for_untransformed(self):
        ct.check_warn_for_untransformed(self, 'bigm')

    def test_disjData_targets_inactive(self):
        ct.check_disjData_targets_inactive(self, 'bigm')

    def test_disjData_only_targets_transformed(self):
        ct.check_disjData_only_targets_transformed(self, 'bigm')

    def test_indexedBlock_targets_inactive(self):
        ct.check_indexedBlock_targets_inactive(self, 'bigm')

    def test_indexedBlock_only_targets_transformed(self):
        ct.check_indexedBlock_only_targets_transformed(self, 'bigm')

    def test_blockData_targets_inactive(self):
        ct.check_blockData_targets_inactive(self, 'bigm')

    def test_blockData_only_targets_transformed(self):
        ct.check_blockData_only_targets_transformed(self, 'bigm')

    def test_do_not_transform_deactivated_targets(self):
        ct.check_do_not_transform_deactivated_targets(self, 'bigm')

    def test_create_using(self):
        m = models.makeDisjunctionsOnIndexedBlock()
        ct.diff_apply_to_and_create_using(self, m, 'gdp.bigm')


class DisjunctionInDisjunct(unittest.TestCase, CommonTests):
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)

    def test_disjuncts_inactive(self):
        ct.check_disjuncts_inactive_nested(self, 'bigm')

    def test_deactivated_disjunct_leaves_nested_disjuncts_active(self):
        ct.check_deactivated_disjunct_leaves_nested_disjunct_active(self, 'bigm')

    def test_transformation_block_structure(self):
        m = models.makeNestedDisjunctions()
        TransformationFactory('gdp.bigm').apply_to(m)

        transBlock = m._pyomo_gdp_bigm_reformulation
        self.assertIsInstance(transBlock, Block)

        # check that we have the lbub set on the transformation block
        lbub = transBlock.component("lbub")
        self.assertIsInstance(lbub, Set)
        self.assertEqual(len(lbub), 2)
        self.assertEqual(lbub, ['lb', 'ub'])

        # we have the XOR constraint
        self.assertIsInstance(transBlock.component("disjunction_xor"),
                              Constraint)

        disjBlock = transBlock.relaxedDisjuncts
        self.assertIsInstance(disjBlock, Block)
        # All the outer and inner disjuncts should be on Block:
        self.assertEqual(len(disjBlock), 7)
        pairs = [
            (0, ["simpledisjunct._pyomo_gdp_bigm_reformulation.simpledisjunct."
                 "innerdisjunction_xor"]),
            (1, ["simpledisjunct.innerdisjunct0.c"]),
            (2, ["simpledisjunct.innerdisjunct1.c"]),
            (3, ["disjunct[0].c"]),
            (4, ["disjunct[1]._pyomo_gdp_bigm_reformulation.disjunct[1]."
                 "innerdisjunction_xor",
                 "disjunct[1].c"]),
            (5, ["disjunct[1].innerdisjunct[0].c"]),
            (6, ["disjunct[1].innerdisjunct[1].c"]),
        ]
        # This test will also rely on the disjunctions being relaxed in the same
        # order every time (and moved up to the new transformation block in the
        # same order)
        for i, j in pairs:
            for nm in j:
                self.assertIsInstance(
                    disjBlock[i].component(nm),
                    Constraint)

    def test_transformation_block_on_disjunct_empty(self):
        m = models.makeNestedDisjunctions()
        TransformationFactory('gdp.bigm').apply_to(m)
        self.assertEqual(len(m.disjunct[1]._pyomo_gdp_bigm_reformulation.\
                             component("relaxedDisjuncts")), 0)
        self.assertEqual(len(m.simpledisjunct._pyomo_gdp_bigm_reformulation.\
                             component("relaxedDisjuncts")), 0)

    def test_mappings_between_disjunctions_and_xors(self):
        # Note this test actually checks that the inner disjunction maps to its
        # original xor (which will be transformed again by the outer
        # disjunction.)
        ct.check_mappings_between_disjunctions_and_xors(self, 'bigm')

    def test_disjunct_mappings(self):
        m = models.makeNestedDisjunctions()
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)

        disjunctBlocks = m._pyomo_gdp_bigm_reformulation.relaxedDisjuncts

        # I want to check that I correctly updated the pointers to the
        # transformation blocks on the inner Disjuncts.
        self.assertIs(m.disjunct[1].innerdisjunct[0].transformation_block(),
                      disjunctBlocks[5])
        self.assertIs(disjunctBlocks[5]._srcDisjunct(),
                      m.disjunct[1].innerdisjunct[0])

        self.assertIs(m.disjunct[1].innerdisjunct[1].transformation_block(),
                      disjunctBlocks[6])
        self.assertIs(disjunctBlocks[6]._srcDisjunct(),
                      m.disjunct[1].innerdisjunct[1])

        self.assertIs(m.simpledisjunct.innerdisjunct0.transformation_block(),
                      disjunctBlocks[1])
        self.assertIs(disjunctBlocks[1]._srcDisjunct(),
                      m.simpledisjunct.innerdisjunct0)

        self.assertIs(m.simpledisjunct.innerdisjunct1.transformation_block(),
                      disjunctBlocks[2])
        self.assertIs(disjunctBlocks[2]._srcDisjunct(),
                      m.simpledisjunct.innerdisjunct1)

    def test_m_value_mappings(self):
        m = models.makeNestedDisjunctions()
        bigm = TransformationFactory('gdp.bigm')
        m.simpledisjunct.BigM = Suffix(direction=Suffix.LOCAL)
        m.simpledisjunct.BigM[None] = 58
        m.simpledisjunct.BigM[m.simpledisjunct.innerdisjunct0.c] = 42
        bigms = {m.disjunct[1].innerdisjunct[0]: 89}
        bigm.apply_to(m, bigM=bigms)

        ((l_val, l_src, l_key),
         (u_val, u_src, u_key)) = bigm.get_M_value_src(
             m.disjunct[1].innerdisjunct[0].c)
        self.assertIs(l_src, bigms)
        self.assertIs(u_src, bigms)
        self.assertIs(l_key, m.disjunct[1].innerdisjunct[0])
        self.assertIs(u_key, m.disjunct[1].innerdisjunct[0])
        self.assertEqual(l_val, -89)
        self.assertEqual(u_val, 89)

        ((l_val, l_src, l_key),
         (u_val, u_src, u_key)) = bigm.get_M_value_src(
             m.disjunct[1].innerdisjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -5)
        self.assertIsNone(u_val)
        
        ((l_val, l_src, l_key),
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.disjunct[0].c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -11)
        self.assertEqual(u_val, 7)

        ((l_val, l_src, l_key),
         (u_val, u_src, u_key)) = bigm.get_M_value_src(m.disjunct[1].c)
        self.assertIsNone(l_src)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 21)
        
        ((l_val, l_src, l_key),
         (u_val, u_src, u_key)) = bigm.get_M_value_src(
             m.simpledisjunct.innerdisjunct0.c)
        self.assertIsNone(l_src)
        self.assertIs(u_src, m.simpledisjunct.BigM)
        self.assertIsNone(l_key)
        self.assertIs(u_key, m.simpledisjunct.innerdisjunct0.c)
        self.assertIsNone(l_val)
        self.assertEqual(u_val, 42)
        
        ((l_val, l_src, l_key),
         (u_val, u_src, u_key)) = bigm.get_M_value_src(
             m.simpledisjunct.innerdisjunct1.c)
        self.assertIs(l_src, m.simpledisjunct.BigM)
        self.assertIsNone(u_src)
        self.assertIsNone(l_key)
        self.assertIsNone(u_key)
        self.assertEqual(l_val, -58)
        self.assertIsNone(u_val)

    # many of the transformed constraints look like this, so can call this
    # function to test them.
    def check_bigM_constraint(self, cons, variable, M, indicator_var):
        repn = generate_standard_repn(cons.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -M)
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, variable, 1)
        ct.check_linear_coef(self, repn, indicator_var, M)

    def check_xor_relaxation(self, cons, indvar1, indvar2, indvar3, lb):
        repn = generate_standard_repn(cons.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(len(repn.linear_vars), 3)
        ct.check_linear_coef(self, repn, indvar1, 1)
        ct.check_linear_coef(self, repn, indvar2, 1)
        if not lb:
            self.assertEqual(cons.upper, 1)
            self.assertIsNone(cons.lower)
            self.assertEqual(repn.constant, -1)
            ct.check_linear_coef(self, repn, indvar3, 1)
        else:
            self.assertEqual(cons.lower, 1)
            self.assertIsNone(cons.upper)
            self.assertEqual(repn.constant, 1)
            ct.check_linear_coef(self, repn, indvar3, -1)

    def test_transformed_constraints(self):
        # We'll check all the transformed constraints to make sure
        # that nothing was transformed twice. The real key is that the
        # xor constraints created by the inner disjunctions get
        # transformed by the outer ones.
        m = models.makeNestedDisjunctions()
        TransformationFactory('gdp.bigm').apply_to(m)
        cons1 = m.disjunct[1].innerdisjunct[0].transformation_block().component(
            m.disjunct[1].innerdisjunct[0].c.name)
        cons1lb = cons1['lb']
        self.assertEqual(cons1lb.lower, 0)
        self.assertIsNone(cons1lb.upper)
        self.assertIs(cons1lb.body, m.z)
        cons1ub = cons1['ub']
        self.assertIsNone(cons1ub.lower)
        self.assertEqual(cons1ub.upper, 0)
        self.check_bigM_constraint(cons1ub, m.z, 10,
                                 m.disjunct[1].innerdisjunct[0].indicator_var)

        cons2 = m.disjunct[1].innerdisjunct[1].transformation_block().component(
            m.disjunct[1].innerdisjunct[1].c.name)['lb']
        self.assertEqual(cons2.lower, 5)
        self.assertIsNone(cons2.upper)
        self.check_bigM_constraint(cons2, m.z, -5,
                                   m.disjunct[1].innerdisjunct[1].indicator_var)

        cons3 = m.simpledisjunct.innerdisjunct0.transformation_block().component(
            m.simpledisjunct.innerdisjunct0.c.name)['ub']
        self.assertEqual(cons3.upper, 2)
        self.assertIsNone(cons3.lower)
        self.check_bigM_constraint(
            cons3, m.x, 7,
            m.simpledisjunct.innerdisjunct0.indicator_var)

        cons4 = m.simpledisjunct.innerdisjunct1.transformation_block().component(
            m.simpledisjunct.innerdisjunct1.c.name)['lb']
        self.assertEqual(cons4.lower, 4)
        self.assertIsNone(cons4.upper)
        self.check_bigM_constraint(
            cons4, m.x, -13,
            m.simpledisjunct.innerdisjunct1.indicator_var)

        # Here we check that the xor constraint from
        # simpledisjunct.innerdisjunction is transformed.
        cons5 = m.simpledisjunct.transformation_block().component(
            "simpledisjunct._pyomo_gdp_bigm_reformulation.simpledisjunct."
            "innerdisjunction_xor")
        cons5lb = cons5['lb']
        self.check_xor_relaxation(
            cons5lb,
            m.simpledisjunct.innerdisjunct0.indicator_var,
            m.simpledisjunct.innerdisjunct1.indicator_var,
            m.simpledisjunct.indicator_var,
            lb=True)
        cons5ub = cons5['ub']
        self.check_xor_relaxation(
            cons5ub,
            m.simpledisjunct.innerdisjunct0.indicator_var,
            m.simpledisjunct.innerdisjunct1.indicator_var,
            m.simpledisjunct.indicator_var,
            lb=False)

        cons6 = m.disjunct[0].transformation_block().component("disjunct[0].c")
        cons6lb = cons6['lb']
        self.assertIsNone(cons6lb.upper)
        self.assertEqual(cons6lb.lower, 2)
        self.check_bigM_constraint(cons6lb, m.x, -11,
                                   m.disjunct[0].indicator_var)
        cons6ub = cons6['ub']
        self.assertIsNone(cons6ub.lower)
        self.assertEqual(cons6ub.upper, 2)
        self.check_bigM_constraint(cons6ub, m.x, 7, m.disjunct[0].indicator_var)

        # now we check that the xor constraint from
        # disjunct[1].innerdisjunction gets transformed alongside the
        # other constraint in disjunct[1].
        cons7 = m.disjunct[1].transformation_block().component(
            "disjunct[1]._pyomo_gdp_bigm_reformulation.disjunct[1]."
            "innerdisjunction_xor")
        cons7lb = cons7[0,'lb']
        self.check_xor_relaxation(
            cons7lb,
            m.disjunct[1].innerdisjunct[0].indicator_var,
            m.disjunct[1].innerdisjunct[1].indicator_var,
            m.disjunct[1].indicator_var,
            lb=True)
        cons7ub = cons7[0,'ub']
        self.check_xor_relaxation(
            cons7ub,
            m.disjunct[1].innerdisjunct[0].indicator_var,
            m.disjunct[1].innerdisjunct[1].indicator_var,
            m.disjunct[1].indicator_var,
            lb=False)

        cons8 = m.disjunct[1].transformation_block().component(
            "disjunct[1].c")['ub']
        self.assertIsNone(cons8.lower)
        self.assertEqual(cons8.upper, 2)
        self.check_bigM_constraint(cons8, m.a, 21, m.disjunct[1].indicator_var)

    def test_disjunct_targets_inactive(self):
        ct.check_disjunct_targets_inactive(self, 'bigm')

    def test_disjunct_only_targets_transformed(self):
        ct.check_disjunct_only_targets_transformed(self, 'bigm')

    def test_disjunctData_targets_inactive(self):
        ct.check_disjunctData_targets_inactive(self, 'bigm')

    def test_disjunctData_only_targets_transformed(self):
        ct.check_disjunctData_only_targets_transformed(self, 'bigm')

    def test_disjunction_target_err(self):
        ct.check_disjunction_target_err(self, 'bigm')

    def test_create_using(self):
        m = models.makeNestedDisjunctions()
        self.diff_apply_to_and_create_using(m)

    def test_indexed_nested_disjunction(self):
        # When we have a nested disjunction inside of a disjunct, we need to
        # make sure that we don't delete the relaxedDisjuncts container because
        # we will end up moving things out of it in two different steps. If that
        # were to happen, this would throw an error when it can't find the block
        # the second time.
        m = ConcreteModel()
        m.d1 = Disjunct()
        m.d1.indexedDisjunct1 = Disjunct([0,1])
        m.d1.indexedDisjunct2 = Disjunct([0,1])
        @m.d1.Disjunction([0,1])
        def innerIndexed(d, i):
            return [d.indexedDisjunct1[i], d.indexedDisjunct2[i]]
        m.d2 = Disjunct()
        m.outer = Disjunction(expr=[m.d1, m.d2])

        TransformationFactory('gdp.bigm').apply_to(m)

        # we check that they all ended up on the same Block in the end (I don't
        # really care in what order for this test)
        disjuncts = [m.d1, m.d2, m.d1.indexedDisjunct1[0],
                     m.d1.indexedDisjunct1[1], m.d1.indexedDisjunct2[0],
                     m.d1.indexedDisjunct2[1]]
        for disjunct in disjuncts:
            self.assertIs(disjunct.transformation_block().parent_component(),
                          m._pyomo_gdp_bigm_reformulation.relaxedDisjuncts)

        # and we check that nothing remains on original transformation block
        self.assertEqual(len(m.d1._pyomo_gdp_bigm_reformulation.relaxedDisjuncts),
                         0)

class IndexedDisjunction(unittest.TestCase):
    # this tests that if the targets are a subset of the
    # _DisjunctDatas in an IndexedDisjunction that the xor constraint
    # created on the parent block will still be indexed as expected.
    def test_xor_constraint(self):
        ct.check_indexed_xor_constraints_with_targets(self, 'bigm')

    def test_partial_deactivate_indexed_disjunction(self):
        ct.check_partial_deactivate_indexed_disjunction(self, 'bigm')


class BlocksOnDisjuncts(unittest.TestCase):
    # ESJ: All of these tests are specific to bigm because they check how much
    # stuff is on the transformation blocks.
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)

    def test_transformed_constraint_nameConflicts(self):
        m = models.makeTwoTermDisj_BlockOnDisj()
        TransformationFactory('gdp.bigm').apply_to(m)

        transBlock = m._pyomo_gdp_bigm_reformulation
        disjBlock = transBlock.relaxedDisjuncts

        self.assertIsInstance(disjBlock, Block)
        self.assertEqual(len(disjBlock), 2)
        self.assertEqual(len(disjBlock[0].component_map()), 2)
        self.assertEqual(len(disjBlock[1].component_map()), 5)
        self.assertIsInstance(disjBlock[0].component("evil[0].c"), Constraint)
        self.assertIsInstance(disjBlock[1].component("evil[1].b.c"), Constraint)
        self.assertIsInstance(disjBlock[1].component("evil[1].bb[1].c"),
                              Constraint)
        self.assertIsInstance(
            disjBlock[1].component("evil[1].b.c_4"), Constraint)
        self.assertIsInstance(
            disjBlock[1].component("evil[1].b.anotherblock.c"),
                                                     Constraint)
        self.assertIsInstance(disjBlock[0].component("localVarReferences"),
                              Block)
        self.assertIsInstance(disjBlock[1].component("localVarReferences"),
                              Block)

    def test_do_not_transform_deactivated_constraint(self):
        m = models.makeTwoTermDisj_BlockOnDisj()
        m.evil[1].b.anotherblock.c.deactivate()

        TransformationFactory('gdp.bigm').apply_to(m)

        transBlock = m._pyomo_gdp_bigm_reformulation
        disjBlock = transBlock.relaxedDisjuncts

        self.assertIsInstance(disjBlock, Block)
        self.assertEqual(len(disjBlock), 2)
        self.assertEqual(len(disjBlock[0].component_map()), 2)
        self.assertEqual(len(disjBlock[1].component_map()), 4)
        self.assertIsInstance(disjBlock[0].component("evil[0].c"), Constraint)
        self.assertIsInstance(disjBlock[1].component("evil[1].b.c"), Constraint)
        self.assertIsInstance(disjBlock[1].component("evil[1].bb[1].c"),
                              Constraint)
        self.assertIsInstance(
            disjBlock[1].component("evil[1].b.c_4"), Constraint)
        self.assertIsInstance(disjBlock[0].component("localVarReferences"),
                              Block)
        self.assertIsInstance(disjBlock[1].component("localVarReferences"),
                              Block)

    def test_do_not_transform_deactivated_block(self):
        m = models.makeTwoTermDisj_BlockOnDisj()
        m.evil[1].b.anotherblock.deactivate()

        TransformationFactory('gdp.bigm').apply_to(m)

        transBlock = m._pyomo_gdp_bigm_reformulation
        disjBlock = transBlock.relaxedDisjuncts

        self.assertIsInstance(disjBlock, Block)
        self.assertEqual(len(disjBlock), 2)
        self.assertEqual(len(disjBlock[0].component_map()), 2)
        self.assertEqual(len(disjBlock[1].component_map()), 4)
        self.assertIsInstance(disjBlock[0].component("evil[0].c"), Constraint)
        self.assertIsInstance(disjBlock[1].component("evil[1].b.c"), Constraint)
        self.assertIsInstance(disjBlock[1].component("evil[1].bb[1].c"),
                              Constraint)
        self.assertIsInstance(
            disjBlock[1].component("evil[1].b.c_4"), Constraint)
        self.assertIsInstance(disjBlock[0].component("localVarReferences"),
                              Block)
        self.assertIsInstance(disjBlock[1].component("localVarReferences"),
                              Block)

    def test_pick_up_bigm_suffix_on_block(self):
        m = models.makeTwoTermDisj_BlockOnDisj()
        m.evil[1].b.BigM = Suffix(direction=Suffix.LOCAL)
        m.evil[1].b.BigM[m.evil[1].b.c] = 2000
        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)

        # check that the m value got used
        cons_list = bigm.get_transformed_constraints(m.evil[1].b.c)
        ub = cons_list[1]
        self.assertEqual(ub.index(), 'ub')
        self.assertEqual(ub.upper, 0)
        self.assertIsNone(ub.lower)
        repn = generate_standard_repn(ub.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, -2000)
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertIs(repn.linear_vars[0], m.x)
        self.assertEqual(repn.linear_coefs[0], 1)
        self.assertIs(repn.linear_vars[1], m.evil[1].indicator_var)
        self.assertEqual(repn.linear_coefs[1], 2000)

    def test_use_correct_none_suffix(self):
        m = ConcreteModel()
        m.x = Var(bounds=(-100, 111))
        m.b = Block()
        m.b.d = Disjunct()
        m.b.d.foo = Block()

        m.b.d.c = Constraint(expr=m.x>=9)

        m.b.BigM = Suffix()
        m.b.BigM[None] = 10
        m.b.d.foo.BigM = Suffix()
        m.b.d.foo.BigM[None] = 1

        m.d = Disjunct()
        m.disj = Disjunction(expr=[m.d, m.b.d])

        bigm = TransformationFactory('gdp.bigm')
        bigm.apply_to(m)

        # we should have picked up 10 for m.b.d.c
        cons_list = bigm.get_transformed_constraints(m.b.d.c)
        lb = cons_list[0]
        self.assertEqual(lb.index(), 'lb')
        self.assertEqual(lb.lower, 9)
        self.assertIsNone(lb.upper)
        repn = generate_standard_repn(lb.body)
        self.assertTrue(repn.is_linear())
        self.assertEqual(repn.constant, 10)
        self.assertEqual(len(repn.linear_vars), 2)
        self.assertIs(repn.linear_vars[0], m.x)
        self.assertEqual(repn.linear_coefs[0], 1)
        self.assertIs(repn.linear_vars[1], m.b.d.indicator_var)
        self.assertEqual(repn.linear_coefs[1], -10)

class InnerDisjunctionSharedDisjuncts(unittest.TestCase):
    def test_activeInnerDisjunction_err(self):
        ct.check_activeInnerDisjunction_err(self, 'bigm')

class UntransformableObjectsOnDisjunct(unittest.TestCase):
    def test_RangeSet(self):
        ct.check_RangeSet(self, 'bigm')

    def test_Expression(self):
        ct.check_Expression(self, 'bigm')

class TransformABlock(unittest.TestCase):
    def test_transformation_simple_block(self):
        ct.check_transformation_simple_block(self, 'bigm')

    def test_transform_block_data(self):
        ct.check_transform_block_data(self, 'bigm')

    def test_simple_block_target(self):
        ct.check_simple_block_target(self, 'bigm')

    def test_block_data_target(self):
        ct.check_block_data_target(self, 'bigm')

    def test_indexed_block_target(self):
        ct.check_indexed_block_target(self, 'bigm')

class IndexedDisjunctions(unittest.TestCase):
    def setUp(self):
        # set seed so we can test name collisions predictably
        random.seed(666)

    def test_disjunction_data_target(self):
        ct.check_disjunction_data_target(self, 'bigm')

    def test_disjunction_data_target_any_index(self):
       ct.check_disjunction_data_target_any_index(self, 'bigm')

    # ESJ: This and the following tests are *very* similar to those in hull,
    # but I actually bothered to check the additional transformed objects in
    # hull (disaggregated variables, bounds constraints...), so they are
    # reproduced independently there.
    def check_trans_block_disjunctions_of_disjunct_datas(self, m):
        transBlock1 = m.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock1, Block)
        self.assertIsInstance(transBlock1.component("relaxedDisjuncts"), Block)
        # We end up with a transformation block for every SimpleDisjunction or
        # IndexedDisjunction.
        self.assertEqual(len(transBlock1.relaxedDisjuncts), 2)
        self.assertIsInstance(transBlock1.relaxedDisjuncts[0].component(
            "firstTerm[1].cons"), Constraint)
        self.assertEqual(len(transBlock1.relaxedDisjuncts[0].component(
            "firstTerm[1].cons")), 2)
        self.assertIsInstance(transBlock1.relaxedDisjuncts[1].component(
            "secondTerm[1].cons"), Constraint)
        self.assertEqual(len(transBlock1.relaxedDisjuncts[1].component(
            "secondTerm[1].cons")), 1)
        transBlock2 = m.component("_pyomo_gdp_bigm_reformulation_4")
        self.assertIsInstance(transBlock2, Block)
        self.assertIsInstance(transBlock2.component("relaxedDisjuncts"), Block)
        self.assertEqual(len(transBlock2.relaxedDisjuncts), 2)
        self.assertIsInstance(transBlock2.relaxedDisjuncts[0].component(
            "firstTerm[2].cons"), Constraint)
        self.assertEqual(len(transBlock2.relaxedDisjuncts[0].component(
            "firstTerm[2].cons")), 2)
        self.assertIsInstance(transBlock2.relaxedDisjuncts[1].component(
            "secondTerm[2].cons"), Constraint)
        self.assertEqual(len(transBlock2.relaxedDisjuncts[1].component(
            "secondTerm[2].cons")), 1)

    def test_simple_disjunction_of_disjunct_datas(self):
        ct.check_simple_disjunction_of_disjunct_datas(self, 'bigm')

    def test_any_indexed_disjunction_of_disjunct_datas(self):
        m = models.makeAnyIndexedDisjunctionOfDisjunctDatas()
        TransformationFactory('gdp.bigm').apply_to(m)

        transBlock = m.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock, Block)
        self.assertIsInstance(transBlock.component("relaxedDisjuncts"), Block)
        self.assertEqual(len(transBlock.relaxedDisjuncts), 4)
        self.assertIsInstance(transBlock.relaxedDisjuncts[0].component(
            "firstTerm[1].cons"), Constraint)
        self.assertEqual(len(transBlock.relaxedDisjuncts[0].component(
            "firstTerm[1].cons")), 2)
        self.assertIsInstance(transBlock.relaxedDisjuncts[1].component(
            "secondTerm[1].cons"), Constraint)
        self.assertEqual(len(transBlock.relaxedDisjuncts[1].component(
            "secondTerm[1].cons")), 1)
        self.assertIsInstance(transBlock.relaxedDisjuncts[2].component(
            "firstTerm[2].cons"), Constraint)
        self.assertEqual(len(transBlock.relaxedDisjuncts[2].component(
            "firstTerm[2].cons")), 2)
        self.assertIsInstance(transBlock.relaxedDisjuncts[3].component(
            "secondTerm[2].cons"), Constraint)
        self.assertEqual(len(transBlock.relaxedDisjuncts[3].component(
            "secondTerm[2].cons")), 1)
        self.assertIsInstance( transBlock.component("disjunction_xor"),
                               Constraint)
        self.assertEqual( len(transBlock.component("disjunction_xor")), 2)

    def check_first_iteration(self, model):
        transBlock = model.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock, Block)
        self.assertIsInstance(
            transBlock.component("disjunctionList_xor"),
            Constraint)
        self.assertEqual(
            len(transBlock.disjunctionList_xor), 1)
        self.assertFalse(model.disjunctionList[0].active)

    def check_second_iteration(self, model):
        transBlock = model.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock, Block)
        self.assertIsInstance(transBlock.component("relaxedDisjuncts"), Block)
        self.assertEqual(len(transBlock.relaxedDisjuncts), 4)
        self.assertIsInstance(transBlock.relaxedDisjuncts[2].component(
            "firstTerm[1].cons"), Constraint)
        self.assertEqual(len(transBlock.relaxedDisjuncts[2].component(
            "firstTerm[1].cons")), 2)
        self.assertIsInstance(transBlock.relaxedDisjuncts[3].component(
            "secondTerm[1].cons"), Constraint)
        self.assertEqual(len(transBlock.relaxedDisjuncts[3].component(
            "secondTerm[1].cons")), 1)
        self.assertEqual(
            len(model._pyomo_gdp_bigm_reformulation.disjunctionList_xor), 2)
        self.assertFalse(model.disjunctionList[1].active)
        self.assertFalse(model.disjunctionList[0].active)

    def test_disjunction_and_disjuncts_indexed_by_any(self):
        ct.check_disjunction_and_disjuncts_indexed_by_any(self, 'bigm')

    def test_iteratively_adding_disjunctions_transform_container(self):
        ct.check_iteratively_adding_disjunctions_transform_container(self,
                                                                     'bigm')

    def test_iteratively_adding_disjunctions_transform_model(self):
        ct.check_iteratively_adding_disjunctions_transform_model(self, 'bigm')

    def test_iteratively_adding_to_indexed_disjunction_on_block(self):
        ct.check_iteratively_adding_to_indexed_disjunction_on_block(self,
                                                                    'bigm')

class TestErrors(unittest.TestCase):
    def test_transform_empty_disjunction(self):
        ct.check_transform_empty_disjunction(self, 'bigm')

    def test_deactivated_disjunct_nonzero_indicator_var(self):
        ct.check_deactivated_disjunct_nonzero_indicator_var(self,
                                                            'bigm')

    def test_deactivated_disjunct_unfixed_indicator_var(self):
        ct.check_deactivated_disjunct_unfixed_indicator_var(self, 'bigm')

    def test_infeasible_xor_because_all_disjuncts_deactivated(self):
        m = ct.setup_infeasible_xor_because_all_disjuncts_deactivated(self,
                                                                      'bigm')

        transBlock = m.component("_pyomo_gdp_bigm_reformulation")
        self.assertIsInstance(transBlock, Block)
        self.assertEqual(len(transBlock.relaxedDisjuncts), 2)
        self.assertIsInstance(transBlock.component("disjunction_xor"),
                              Constraint)
        disjunct1 = transBlock.relaxedDisjuncts[0]
        # longest constraint name EVER...
        relaxed_xor = disjunct1.component(
            "disjunction_disjuncts[0]._pyomo_gdp_bigm_reformulation."
            "disjunction_disjuncts[0].nestedDisjunction_xor")
        self.assertIsInstance(relaxed_xor, Constraint)
        repn = generate_standard_repn(relaxed_xor['lb'].body)
        self.assertEqual(relaxed_xor['lb'].lower, 1)
        self.assertIsNone(relaxed_xor['lb'].upper)
        # the other variables got eaten in the constant because they are fixed.
        self.assertEqual(len(repn.linear_vars), 1)
        ct.check_linear_coef( self, repn,
                              m.disjunction.disjuncts[0].indicator_var, -1)
        self.assertEqual(repn.constant, 1)
        repn = generate_standard_repn(relaxed_xor['ub'].body)
        self.assertIsNone(relaxed_xor['ub'].lower)
        self.assertEqual(value(relaxed_xor['ub'].upper), 1)
        self.assertEqual(len(repn.linear_vars), 1)
        ct.check_linear_coef( self, repn,
                              m.disjunction.disjuncts[0].indicator_var, 1)

        # and last check that the other constraints here look fine
        x0 = disjunct1.component("disjunction_disjuncts[0].constraint")
        self.assertIsInstance(x0, Constraint)
        lb = x0[(1, 'lb')]
        self.assertEqual(value(lb.lower), 0)
        self.assertIsNone(lb.upper)
        repn = generate_standard_repn(lb.body)
        self.assertEqual(repn.constant, 0)
        self.assertEqual(len(repn.linear_vars), 1)
        ct.check_linear_coef(self, repn, m.x, 1)

        ub = x0[(1, 'ub')]
        self.assertIsNone(ub.lower)
        self.assertEqual(value(ub.upper), 0)
        repn = generate_standard_repn(ub.body)
        self.assertEqual(repn.constant, -8)
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, m.x, 1)
        ct.check_linear_coef(self, repn,
                             m.disjunction_disjuncts[0].indicator_var, 8)

    def test_retrieving_nondisjunctive_components(self):
        ct.check_retrieving_nondisjunctive_components(self, 'bigm')

    def test_ask_for_transformed_constraint_from_untransformed_disjunct(self):
        ct.check_ask_for_transformed_constraint_from_untransformed_disjunct(
            self, 'bigm')

    def test_silly_target(self):
        ct.check_silly_target(self, 'bigm')

class EstimatingMwithFixedVars(unittest.TestCase):
    def test_tighter_Ms_when_vars_fixed_forever(self):
        m = ConcreteModel()
        m.x = Var(bounds=(0, 10))
        m.y = Var(bounds=(0, 70))
        m.d = Disjunct()
        m.d.c = Constraint(expr=m.x + m.y <= 13)
        m.d2 = Disjunct()
        m.d2.c = Constraint(expr=m.x >= 7)
        m.disj = Disjunction(expr=[m.d, m.d2])
        m.y.fix(10)
        bigm = TransformationFactory('gdp.bigm')
        promise = bigm.create_using(m, assume_fixed_vars_permanent=True)
        bigm.apply_to(m, assume_fixed_vars_permanent=False)

        # check the M values in both cases
        # first where y might be unfixed:
        xformed = bigm.get_transformed_constraints(m.d.c)
        self.assertEqual(len(xformed), 1)
        cons = xformed[0]
        self.assertEqual(cons.upper, 13)
        self.assertIsNone(cons.lower)
        repn = generate_standard_repn(cons.body)
        self.assertEqual(repn.constant, -57)
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, m.x, 1)
        ct.check_linear_coef(self, repn, m.d.indicator_var, 67)

        # then where it won't
        xformed = bigm.get_transformed_constraints(promise.d.c)
        self.assertEqual(len(xformed), 1)
        cons = xformed[0]
        self.assertEqual(cons.upper, 13)
        self.assertIsNone(cons.lower)
        repn = generate_standard_repn(cons.body)
        self.assertEqual(repn.constant, 3)
        self.assertEqual(len(repn.linear_vars), 2)
        ct.check_linear_coef(self, repn, promise.x, 1)
        ct.check_linear_coef(self, repn, promise.d.indicator_var, 7)

if __name__ == '__main__':
    unittest.main()