

Responsible AI

Fairness & Bias in ML – DAY 1

Learning Outcomes

Fundamental understanding of Machine Learning:

» Concepts & terminology

Practical ML skills and techniques:

- » Train, tune, test and evaluate simple ML models
- » Check data and ML model for bias

How to identify and mitigate bias and fairness issues in ML

Course Schedule

Day One	Day Two	Day Three
Fundamentals of Machine Learning	Data Processing	Bias Mitigation during Model Training
Introduction to Fairness & Bias Mitigation in ML	ML Algorithm Selection, Model Build & Evaluation	Bias Mitigation during Post- Processing
Model Formulation & Data Collection	Fairness Criteria	Bias Mitigation for Models in Production
Exploratory Data Analysis	Bias Mitigation during Pre- Processing	Explainability

MACHINE LEARNING UNIVERSITY

Introduction to Machine Learning (ML)

What is Machine Learning?

Traditional: Rules-based

Hard-coded rules get applied to existing data

What is Machine Learning?

Hard-coded rules get applied to existing data

Answers

"Programming computers to learn from experience should eventually eliminate the need for [...] detailed programming effort."

> Arthur Samuel, 1959 Pioneer of AI research

Data > ML Algorithm >

Model applies rules learnt by algo to new data

Answers (predictions)

What is Machine Learning?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Tom Mitchell, 1997

Usually denoted as *x* (for single feature) and *X* for collection of features.

 Tabular: Raw values are strings or number.

Experience [years]	Age	Gender
7	30-40	Male
7	20-30	NA
7	30-40	Female
10	40-50	Male
9	20-30	*
6	20-30	Male

Table 1: Example tabular dataset

Usually denoted as *x* (for single feature) and *X* for collection of features.

 Tabular: Raw values are strings or number.

<i>x</i> ₁	<i>x</i> ₂	
Experience [years]	Age	Gender
7	30-40	Male
7	20-30	NA
7	30-40	Female
	•••	
10	40-50	Male
9	20-30	*
6	20-30	Male

Table 1: Example tabular dataset

Usually denoted as x (for single feature) and X for collection of features.

- Tabular: Raw values are strings or number.
- Image: Images where raw values are numbers (light intensity in pixels).

Name 🔺	Folder	▼	Туре	∇	Size	▽
curriculum-vitae-1.png	-		image/png		70.3 KB	
curriculum-vitae-10.png	-		image/png		70.3 KB	
curriculum-vitae-11.png	-		image/png		70.3 KB	
curriculum-vitae-12.png	-		image/png		70.3 KB	
curriculum-vitae-13.png	-		image/png		70.3 KB	
curriculum-vitae-14.png	-		image/png		70.3 KB	
curriculum-vitae-15.png	-		image/png		70.3 KB	
curriculum-vitae-16.png	-		image/png		70.3 KB	
curriculum-vitae-17.png	-		image/png		70.3 KB	
curriculum-vitae-18.png	-		image/png		70.3 KB	

Table 2: Example image dataset

Usually denoted as *x* (for single feature) and *X* for collection of features.

- Tabular: Raw values are strings or number.
- Image: Images where raw values are numbers (light intensity in pixels).
- Language: Raw values are strings (text snippets or words).

EN (source)	DE (target)	Tag
The doctor asked the nurse to hand her the scalpel.	Die Ärztin bat die Krankenschwester <>ihm<> das Skalpell zu reichen.	False Male
The pilot listed her credentials in the job interview.	Die Pilotin hat <>ihre<> Zeugnisse im Bewerbungsgespräch aufgeführt.	True Female

Table 3: Example language dataset for translation task

Data: Features/Input

Usually denoted as *x* (for single feature) and *X* for collection of features.

- Tabular: Raw values are strings or number.
- Image: Images where raw values are numbers (light intensity in pixels).
- Language: Raw values are strings (text snippets or words).

 Multimodal: Combination of all the above.

Industry	Job Description	imgID	# Applications
IT	High-paced	51QjPP6oAVL	21
Health	Shared passion	31WGVoL8mlL	10
IT	Digital native	41c3RVsWGfL	43
Beauty	Collaborate on	510MvEHU2QL	39

Table 4: Example multimodal dataset

Data: Labels

Usually denoted as *y*: The answer we want to generate using a trained model.

Labels are <u>not always provided</u>, but when they exist, they are either:

Numerical values (e.g. insurance price, salary prediction...)

Experience [years]	Age	Gender	Salary per annum [k]
7	30-40	Male	\$181
7	20-30	NA	\$130
7	30-40	Female	\$199
10	40-50	Male	\$252
9	20-30	*	\$90
6	20-30	Male	\$166

Data: Labels

Usually denoted as *y*: The answer we want to generate using a trained model.

Labels are <u>not always provided</u>, but when they exist, they are either:

- Numerical values (e.g. insurance price, salary prediction...)
- Categorical values (e.g. loan approved: yes/no, type of disease...)

Experience [years]	Age	Gender	Accepted
7	30-40	Male	yes
7	20-30	NA	no
7	30-40	Female	no
			•••
10	40-50	Male	yes
9	20-30	*	no
6	20-30	Male	yes

ML Algorithm: Example

prediction ~ weighted combination of features

Goal: Obtain healthcare score for individual.

ML Algorithm: Example

prediction ~ weighted combination of features $\hat{y} = f(x) \approx w_0 x_0 + w_1 x_1 + \dots + w_4 x_4 + \dots + w_n x_n$

ML Algorithm: Features

prediction ~ weighted combination of features $\hat{y} = f(x) \approx w_0 x_0 + w_1 x_1 + \dots + w_4 x_4 + \dots + w_n x_n$ Feature: Measurable piece of information (in numerical representation)

ML Algorithm: Features

prediction ~ weighted combination of features $\hat{y} = f(x) \approx w_0 x_0 + w_1 5 + \dots + w_4 x_4 + \dots + w_n x_n$ Feature: Measurable piece of information (in numerical representation) x₁: Feature for "Number of Admissions"

$$x_1 = 5$$

ML Algorithm: Weights

prediction ~ weighted combination of features $\hat{y} = f(x) \approx w_0 x_0 + w_1 5 + \dots + w_4 x_4 + \dots + w_n x_n$ Weight: Determines how much influence a given feature has on the output (prediction) Weights (also called parameters) are learnt during *model training stage*.

ML Algorithm: Weights

prediction ~ weighted combination of features $\hat{y} = f(\mathbf{x}) \approx w_0 x_0 + 100 * 5 + \dots + w_4 x_4 + \dots + w_n x_n$ Weight: Determines how much influence a given feature has on the output (prediction) w_1 : Weight for "Number of Hospital Admissions" feature $w_1 = 100$

ML Algorithm: Features & Weights

prediction ~ weighted combination of features $\hat{y} = f(x) \approx w_0 x_0 + 100 * 5 \dots - 25 * 1 + \dots + w_n x_n$ x_4 : Feature for "Healthy lifestyle" $x_4 = Yes = 1$

 w_4 : Weight for "Healthy lifestyle" feature $w_4 = -25$

Output

prediction ~ weighted combination of features $\hat{y} = f(x) \approx 200 + 100 * 5 - 25 * 1 = 675 \pm err$

(predicted healthcare score)

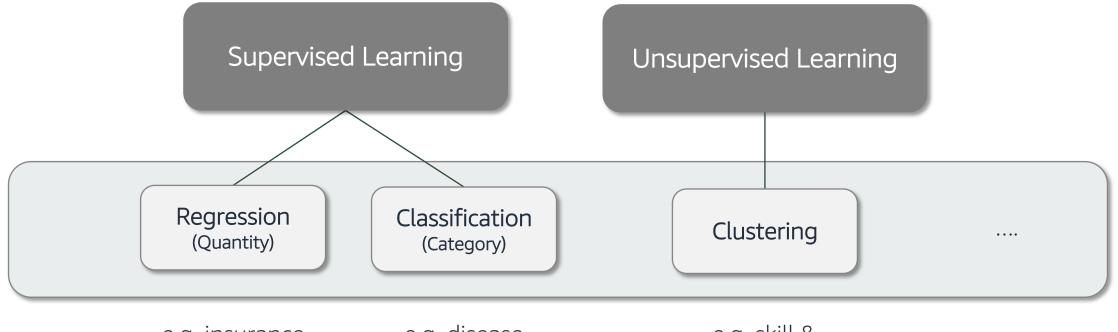
Remember: This is a simplified example of a simple ML algorithm (Linear Regression).

 $x_0 = 1$ per convention, $a_0 = 200$ (healthcare score base value)

Types of Machine Learning

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning

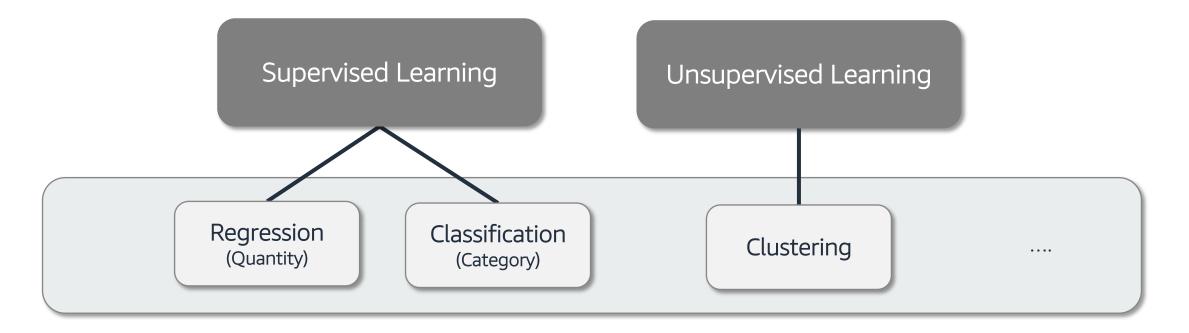


e.g. insurance price prediction

e.g. disease type prediction

e.g. skill & experience grouping

Supervised vs. Unsupervised Learning



ML Algorithms

- Linear Regression
- K-Nearest Neighbors
- Neural Nets

• • •

- Decision Trees
- Support Vector Machine
- K-Nearest Neighbors
- Neural Nets

. . .

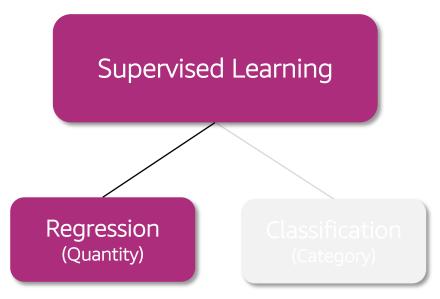
• Decision Trees

• PCA

. . .

- Collaborative Filtering
- K-Means

Supervised Learning: Regression

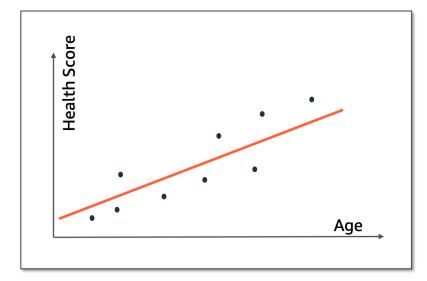


- Linear Regression
- K-Nearest Neighbors
- Neural Nets

. . .

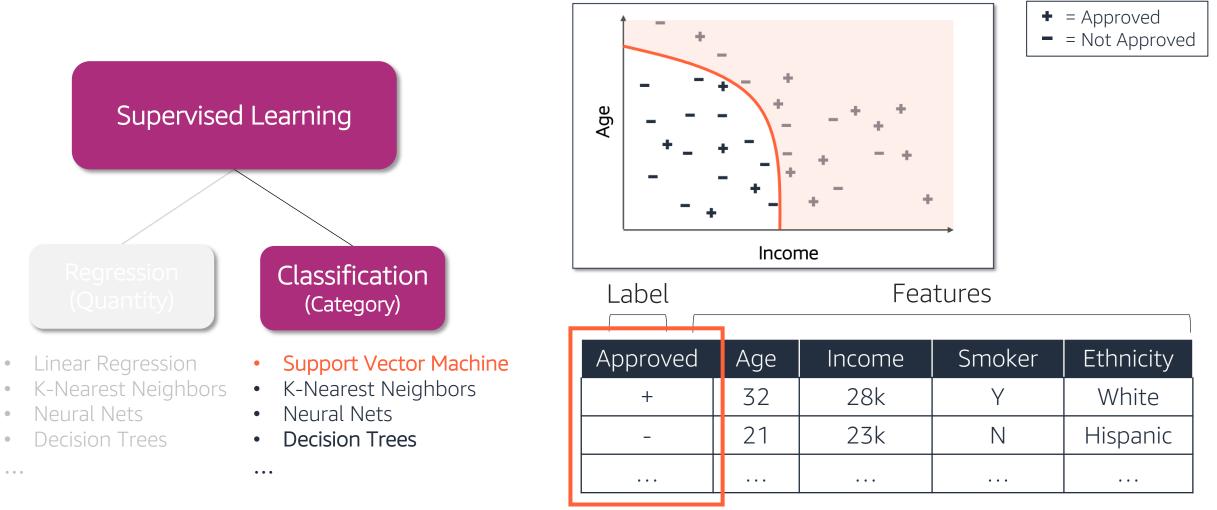
• Decision Trees

- Support Vector Machine
- K-Nearest Neighbors
- Neural Nets
- Decision Trees

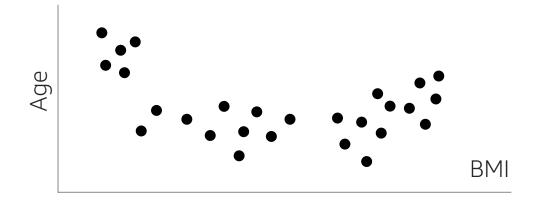


Label	Features			
HS	Age	BMI	Smoker	Ethnicity
80	32	28	Y	White
65	21	23	Ν	Hispanic

Supervised Learning: Classification

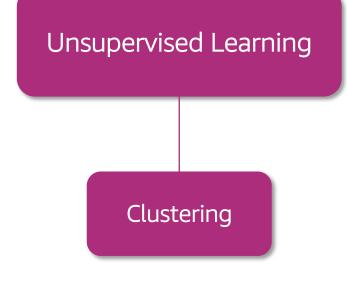


Unsupervised Learning: Clustering



Features

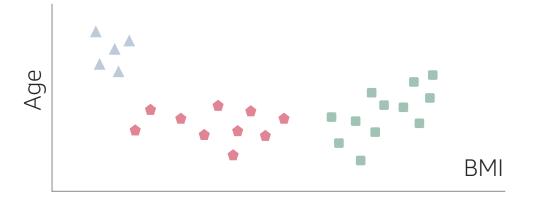
Age	BMI	Smoker	Ethnicity
32	28	Y	White
21	23	Ν	Hispanic



- K-Means
- PCA
- Collaborative Filtering

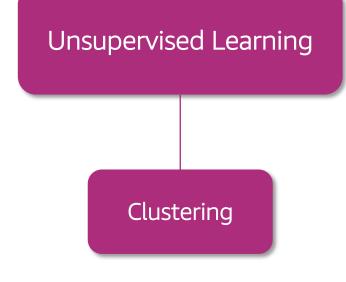
•••

Unsupervised Learning: Clustering



Features

Age	BMI	Smoker	Ethnicity
32	28	Y	White
21	23	N	Hispanic



- K-Means
- PCA
- Collaborative Filtering

•••

Examples of ML Problems/Tasks

ML Problem Type: Regression

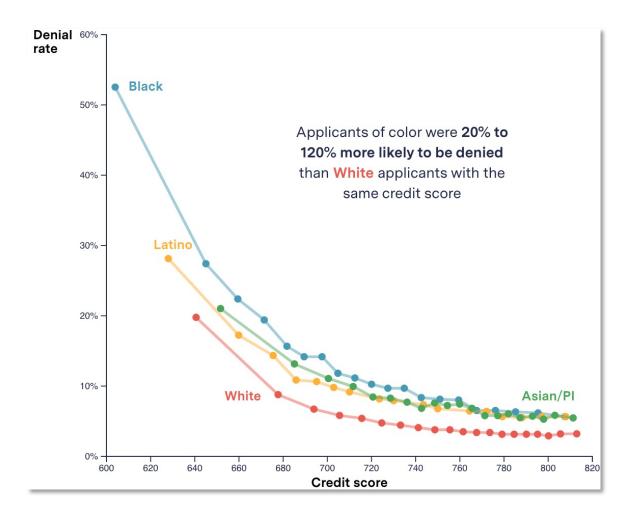
Problem type Example Description Regression Predicting a numerical value Sickness Severity Score » To determine if individual may require care in future, a risk score was produced. » Observations showed that Black enrollees have higher rate of chronic illnesses than White enrollees of same score. » Algorithm used health costs as proxy for health. Obermeyer et al (2019)

ML Problem Type: Classification

Problem type	Description	Example
Regression	Predicting a numerical value	
Classification	Predicting a label	Credit Worthine To determine if appli default, a probability

- less
- licant may y score was used.
- » "In default": failed to pay a debt for > 90 days on ≥ 1 account in ensuing 18-24 month period.
- » Use equalized odds to enforce accuracy is equal in all groups.

Hardt et al. (2016)



Martinez, E., & Kirchner, L. (2021, August 25). The secret bias hidden in mortgage-approval algorithms. *The Markup*. [Link]

ML Problem Type: Ranking

Problem type	Description
Regression	Predicting a numerical value
Classification	Predicting a label
Ranking	Ordering items to find the most relevant based on search query

Example

Job Ranking

- Ranked lists produced by biased model can amplify bias.
- » Without fairness intervention, top ranked results can be skewed with respect to sensitive attribute(s).
- » To mitigate, we require fair reranking algorithms (e.g. score maximizing greedy mitigation).

<u>Geyik et al. (2019)</u>

ML Problem Type: Recommendation

Problem type	Description	E
Regression	Predicting a numerical value	
Classification	Predicting a label	
Ranking	Ordering items to find the most relevant based on search query	
Recommendation	Finding relevant items based on past behavior (without direct user input)	

kample

Targeted Advertising

- Recommendations produced by biased models may amplify bias.
- Experiment: Different ad settings led to different freq. of high paying jobs shown.
- Require multi-sided fairness or sequential recommendations

Pitoura, E., Stefanidis, K. & Koutrika, G (2021)

ML Problem Type: Clustering

Problem type	Description	Example
Regression	Predicting a numerical value	
		Fair Hiring
Classification	Predicting a label	 Cluster resumes for shortlist in a hiring scenario
		» Callback rates may differ per group → consider group
Recommendation	Finding relevant items based on past	fairness (incorporate fairness constraints in optimization)
Recommendation	behavior (without direct user input)	 Aim for proportional
Clustering	Finding patterns/groups in examples	representation of the sensitive class per cluster

Abraham et al. (2020)

ML Problem Type: Anomaly Detection

Problem type	Description	Example
Regression	Predicting a numerical value	
Classification	Predicting a label	Go >> Sma dire
Ranking	Ordering items to find the most relevant based on search query	frau » Sca
Recommendation	Finding relevant items based on past behavior (without direct user input)	mal imp » Out
Clustering	Finding patterns/groups in examples	tow Fair
Anomaly Detection	Finding outliers in set of examples	

Government Relief Fraud

- Small fraction of COVID relief direct payments experience fraud.
- Scale of money allocation makes traditional tracking impossible.
- » Outliers should not be skewed towards particular group → FairLOF

Deepak et al. (2021)

Introduction to Fairness & Responsible Al

What is Responsible AI?

AI that is innovative and trustworthy and that respects human rights and democratic values.

OECD, https://oecd.ai/en/ai-principles

\rightarrow Dimensions of Responsible AI

Fairness is one of several dimensions.

Dimensions of Responsible AI

Dimension

Example Metric

Privacy & Security

Fairness

Explainability

Robustness

Transparency

Governance

protected from theft and exposure? Are there harmful disparities in system behavior across different

Is data used in accordance with privacy & legal considerations, and

- subpopulations?
- → Does the system offer a clear rationale for its decisions?

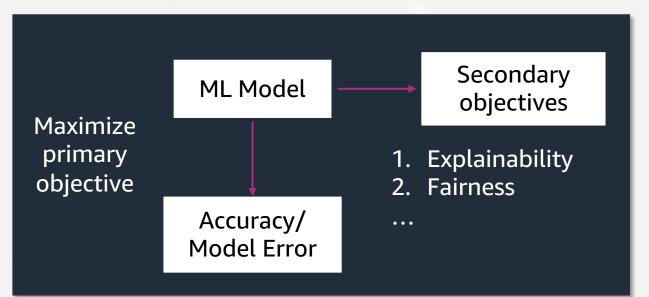
How hard is it to confuse or fool the system, e.g. with "adversarial" examples?

Are users enabled to make informed choices about their use of the system?

How do you enforce and ensure these responsible AI practices are being carried out amongst all stakeholders?

Tradeoffs in Responsible AI

1. Dimensions of responsible AI can be at odds with primary objective to have best possible model performance.



- 2. It is challenging to maximize all dimensions of responsible AI simultaneously.
 - » E.g.: Preserving privacy makes data more coarse → potentially degrades ability to explain model behavior.
 - » E.g.: Making model results and components more transparent → potentially security & privacy risk.

Dimensions of Responsible AI

Dimension		Example Metric
Privacy & Security	\longrightarrow	Is data used in accordance with privacy & legal considerations, and protected from theft and exposure?
Fairness	\longrightarrow	Are there harmful disparities in system behavior across different subpopulations?
Explainability	\longrightarrow	Does the system offer a clear rationale for its decisions?
Robustness	\longrightarrow	How hard is it to confuse or fool the system, e.g. with "adversarial" examples?
Transparency	\longrightarrow	Are users enabled to make informed choices about their use of the system?
Governance	\longrightarrow	How do you enforce and ensure these responsible AI practices are being carried out amongst all stakeholders?

Unwanted Bias

• Bias is a term used in different domains, with different meanings:

Model Evaluation	Unexplained error stemming from model selection & assumptions.
Neural Networks	Value that helps control quality of fit during training of NN.
Social Context	Systematic differences with respect to different subpopulations (groups with shared values of demographic variables).
Responsible AI	Harmful disparities in system behavior on subpopulations (groups with shared values of demographic variables); also "unwanted bias".

Impact vs. Treatment vs. Outcome

Impact vs. Treatment (concepts in US law):

- » Considering sensitive attributes as part of a decision making process, intentionally or indirectly, constitutes **disparate treatment**.
- » Decision making processes or procedures that generate outcomes that disproportionally favor subpopulations exhibit disparate impact.

More formal definition from FDIC [here].

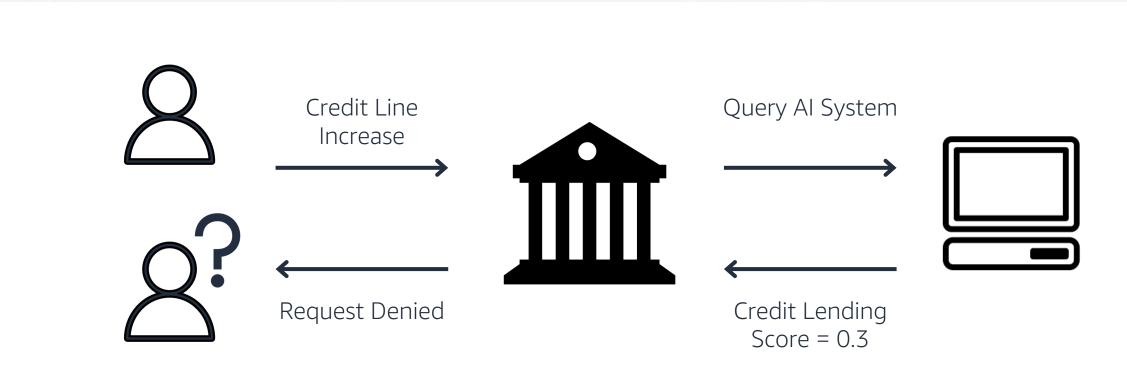
- Protections don't always hold (e.g. medical diagnosis).
- Even if impact & treatment are controlled for, fair outcomes are not guaranteed (interaction with ML models can create bias).

Group vs. Individual Fairness

Group Fairness (equalize impact/treatment across groups)

- » Strong theory and algorithms & practical implementations; e.g. same rate of error across different groups
- » Provide no guarantees at individual level
- Individual Fairness (ensures similar individuals treated/impacted similarly)
 - » Strong (non-statistical) assumptions prevent practical implementations
 - » Binds at individual level

Credit line increase example

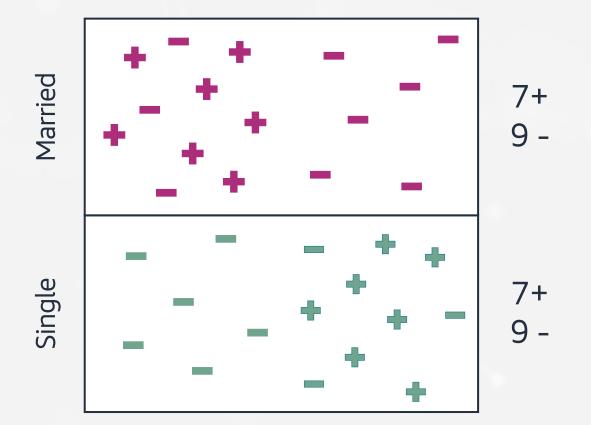


Fair lending laws [ECOA, FCRA] require credit decision to be explainable

Source: Responsible AI in Industry: Practical Challenges and Lessons Learned Krishnaram Kenthapadi

Intersectional Group Fairness

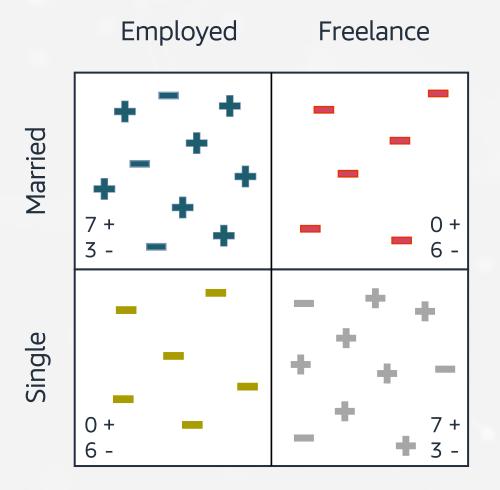
- Individuals can exhibit multiple demographic attributes.
- If multiple attributes intersect, new sub-groups emerge.
- Cannot build models for separate groups.



Example Credit Line Increase

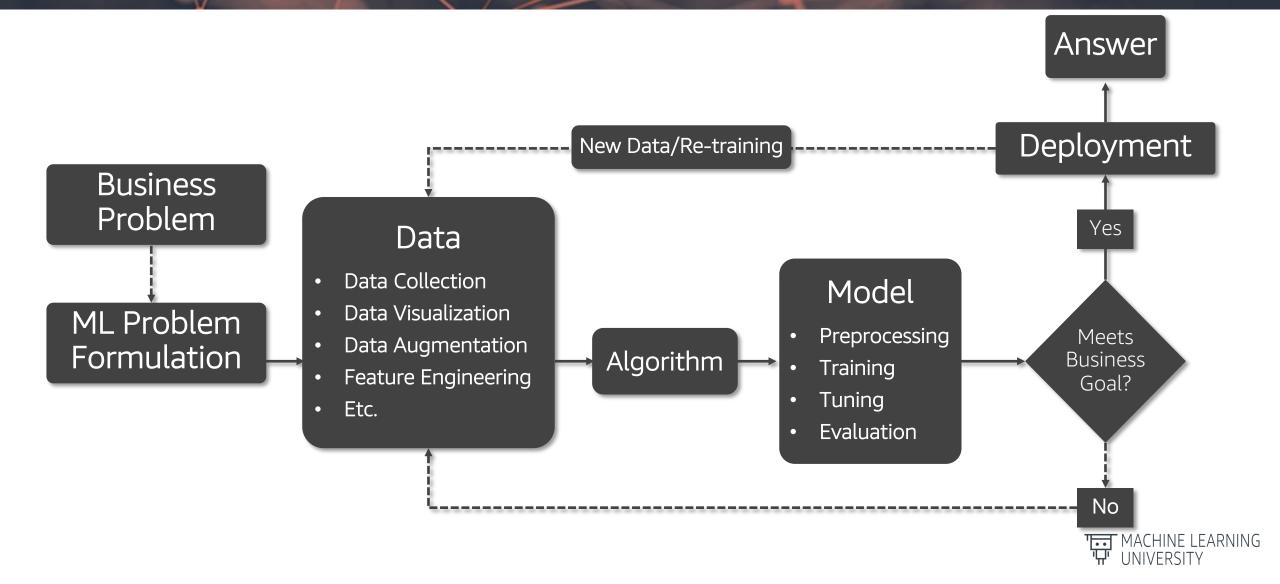
Intersectional Group Fairness

- Attributes (e.g. married vs. single) can intersect with other attributes (e.g. employed vs. unemployed)
 - → new sub-groups emerge (e.g. married & employed, ...)
- Sub-groups may experience additional disparity (see positive/negative outcomes per sub-group).

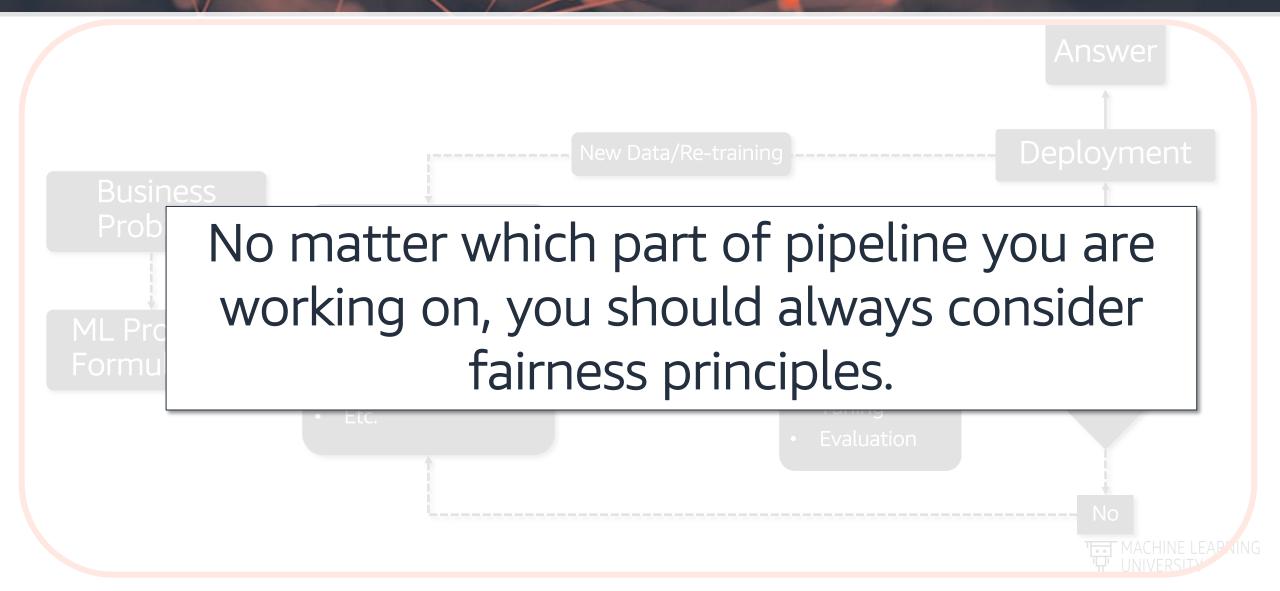


Fairness Throughout the ML Lifecycle

Where should you consider fairness?

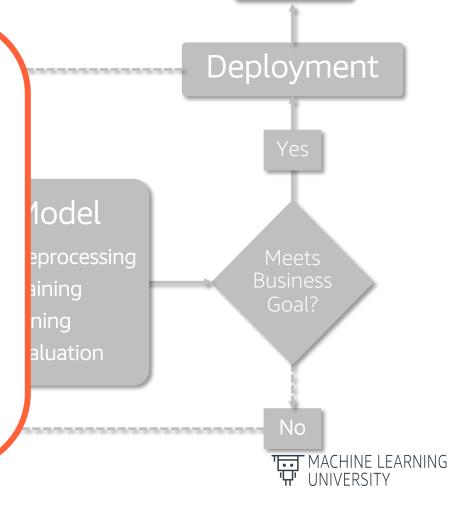


Everywhere 😊

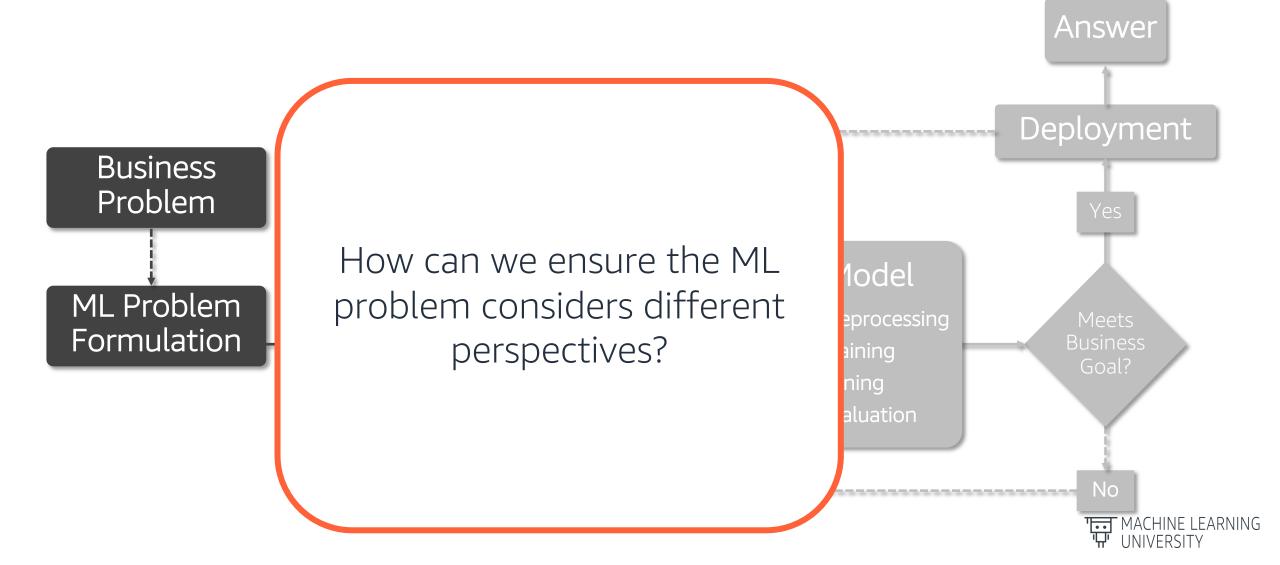


Business Problem

ML Problem Formulation Business problem needs to be clear; understanding use case & limitations is responsibility of every person who is engaged in developing the product.

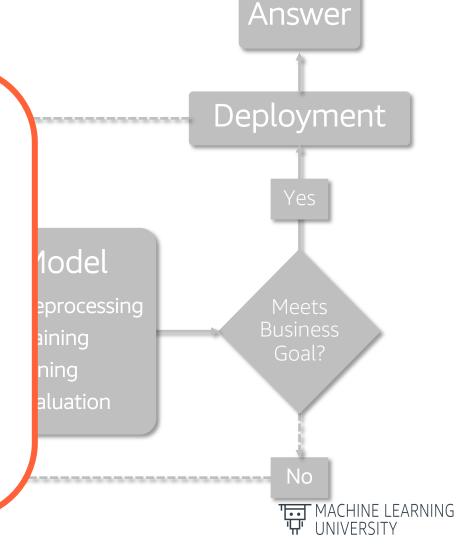


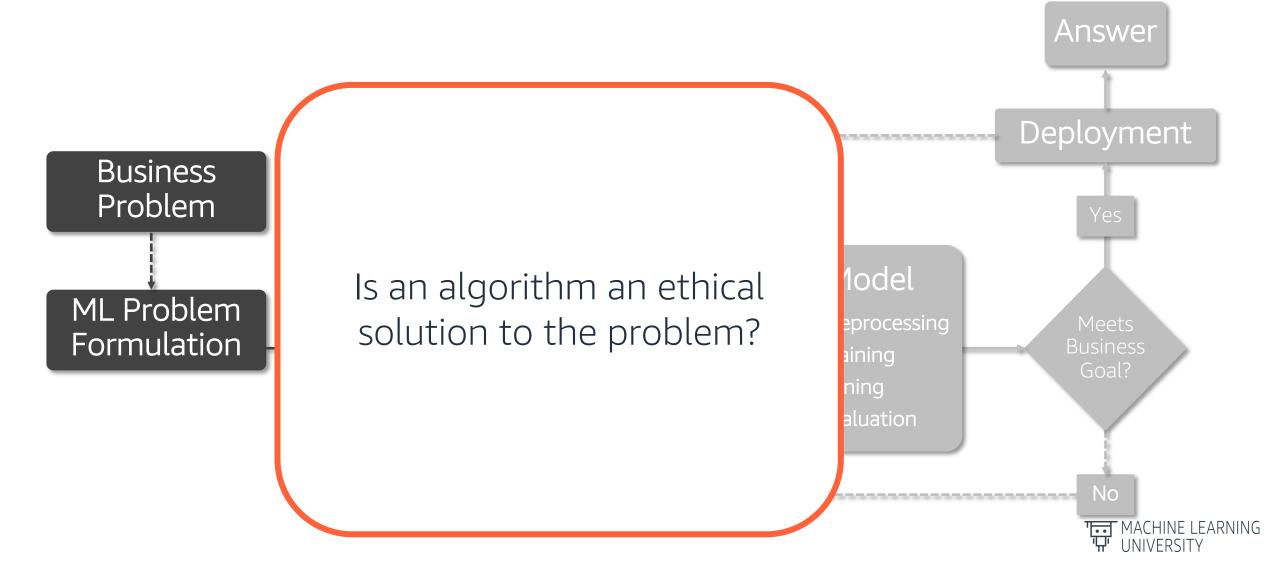
Answer



Business Problem

ML Problem Formulation Discuss your modelling approach with different stakeholders and diverse groups to formulate ML solutions that consider different perspectives.





Answer

Business Problem

ML Problem Formulation

- Data
- Data Collection
- Data Visualization
- Data Augmentation
- Feature Engineering
- Etc.

Collect relevant & high quality data. Check for sampling issues & bias, hidden proxy variables and legal considerations, such as licensing, privacy, and consent issues where applicable.

> MACHINE LEARNING UNIVERSITY

nt

Answer

nt

Business Problem

ML Problem Formulation

Data Collection

Data

- Data Visualization
- Data Augmentation
- Feature Engineering
- Etc.

•

Is the training data representative of different groups?

Are there biases in label or features?

Does the data need to be modified to mitigate bias?

Business Problem

ML Problem Formulation

Data Collection

Data

- Data Visualization
- Data Augmentation
- Feature Engineering
- Etc.

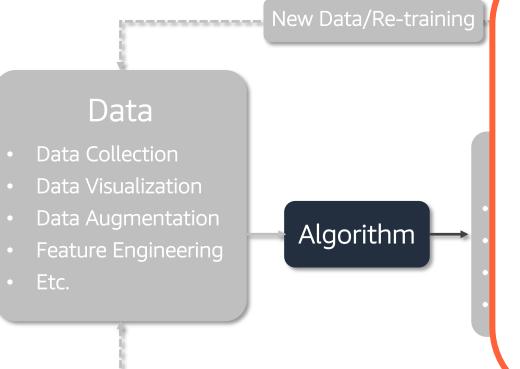
Identify sensitive features and process accordingly (more details later), transform targets/features if necessary (e.g. change outcome for disfavored group, increase weight).

Answer

Answer

Business Problem

ML Problem Formulation

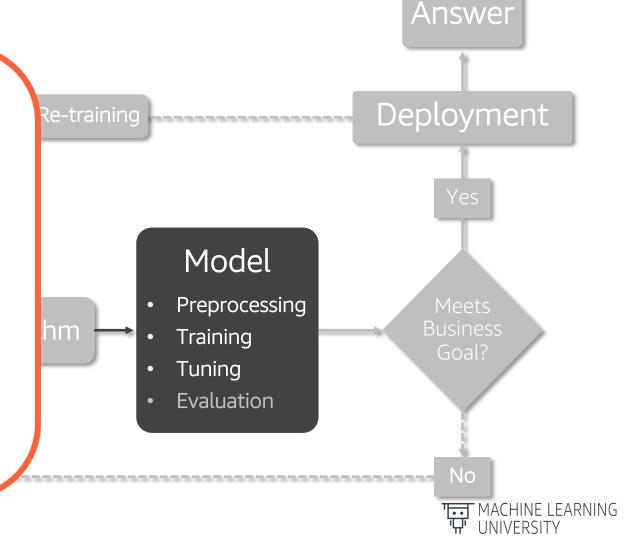


Select algorithms that are **explainable** or that can be **trained in certain ways** (e.g. include fairness constraints to objective function) to mitigate bias.

MACHINE LEARNING

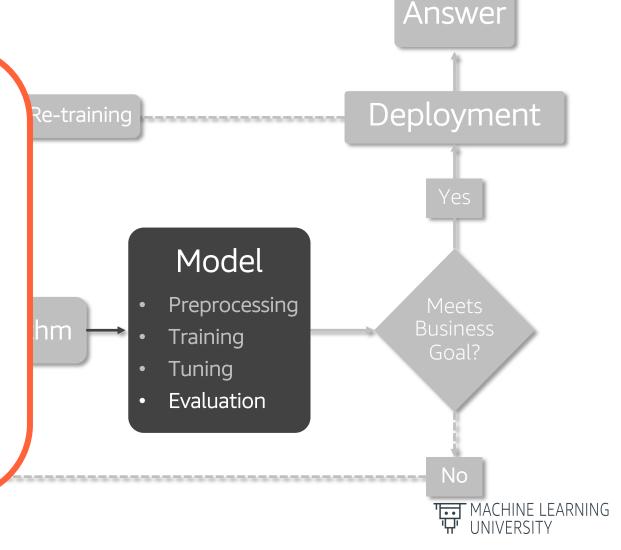
Business Problem

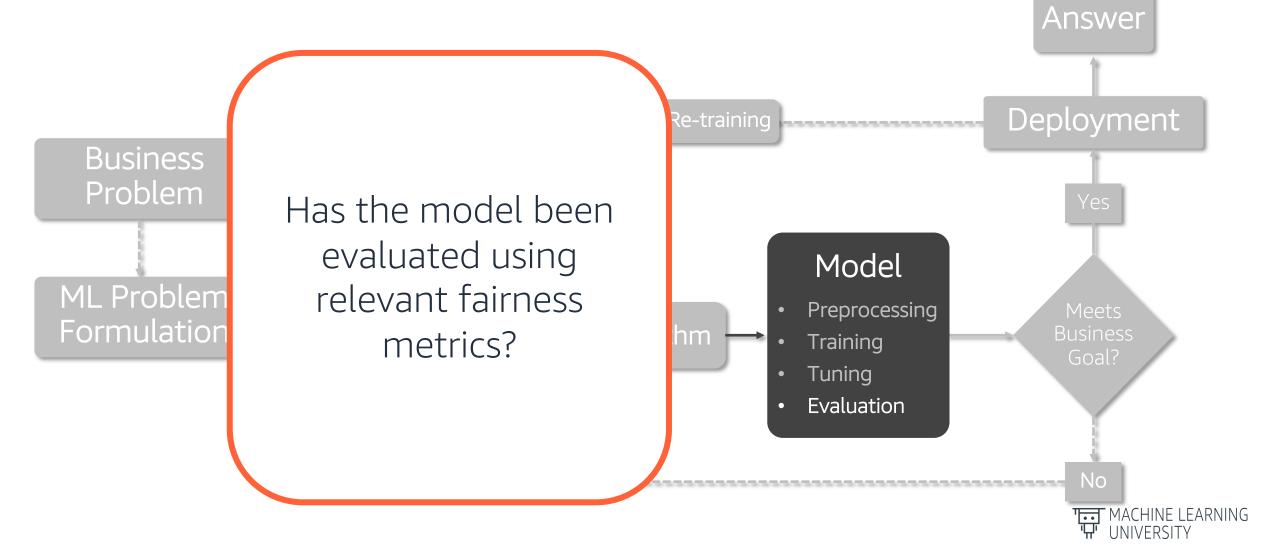
ML Problem Formulation Use bias mitigation techniques for preprocessing, model training & tuning. Different techniques work for different problem types.



Business Problem

ML Problem Formulation Use fairness/bias metrics to determine how fair the outcomes are; make sure to also include confidence intervals per group.





---- New Data/Re-training

ML Problem Formulation

Data

- Data Collection
- Data Visualization
- Data Augmentation
- Feature Engineering
- Etc.

Check for model drift (the world evolves) & ensure the model is used as intended (e.g. trained on US, should be used for US).

Answer

Deployment

No

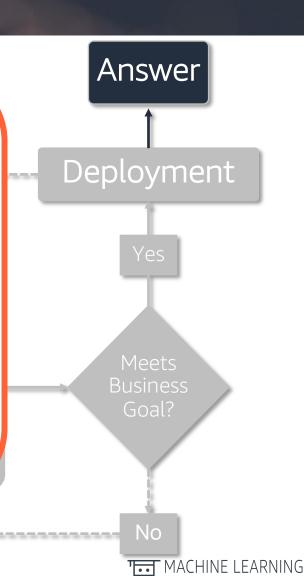
Business Problem

ML Problem Formulation

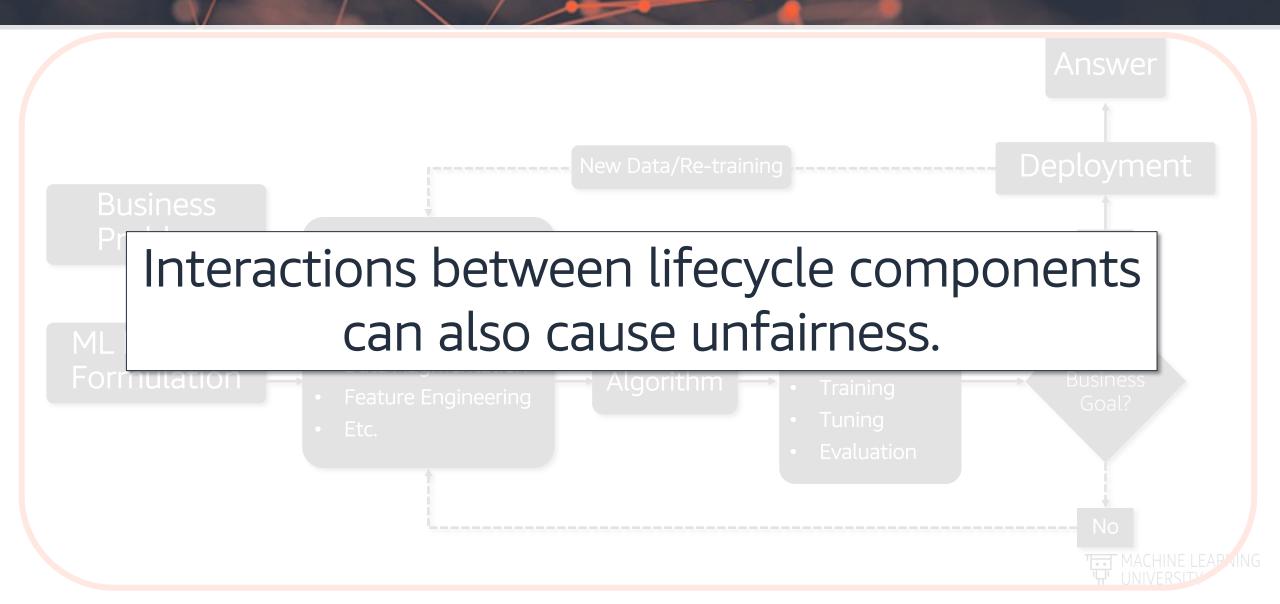
Data

- Data Collection
- Data Visualization
- Data Augmentation
- Feature Engineering
- Etc.

Offer end users a way to inquire about decisions made using ML models for high risk use cases (through e.g. feedback/request forms).



Careful!



MACHINE LEARNING UNIVERSITY

Model Formulation & Data Collection

ML Model Formulation

Human-Centered Design

AI systems & ML solutions should consider impact on humans: Human-centered design (HCD).

Human-Centered Design

AI systems & ML solutions should consider impact on humans: Human-centered design (HCD).

Consider:

- Potential harms (Will use of ML technology be beneficial for the use case? Will it reinforce stereotypes?)
- Value proposition (Is AI necessary, or can a simple interpretable rule based system achieve the same?)

Human-Centered Design

AI systems & ML solutions should consider impact on humans: Human-centered design (HCD).

Consider:

- Potential harms (Will use of ML technology be beneficial for the use case? Will it reinforce stereotypes?)
- Value proposition (Is AI necessary, or can a simple interpretable rule based system achieve the same?)

Ensure there are:

- Safety measures (continuously test and evaluate the system)
- Ways to challenge the model/ML pipeline (include ways for users to report unexpected behavior)

Data Collection

Models may produce biased results

- ML models learn from the data that is provided as input:
 - → if bad quality or biased data is used, a model may produce poor or biased results. Bias mitigation techniques can help reduce this (assuming we understand how to address the underlying cause of inequality).
- Models may produce biased results by using:
 - » Skewed examples
 - » Tainted examples
 - » Limited features

- » Different sample sizes
- » Proxies

Reducing bias by ensuring data integrity

To ensure data integrity, we need to:

- » Select meaningful, high-quality features (feature quality)
- » Use valid, fair sampling & storage techniques (feature sampling)
- » Verification/creation of labels (label quality)

Feature Quality

- High-quality features are robust & objective (i.e. they don't depend on who recorded the data and are reproducible):
 - » Quantifiable (i.e. true measurements of certain; # of messages between peers vs 'connectedness' score)

Feature Quality

- High-quality features are robust & objective (i.e. they don't depend on who recorded the data and are reproducible):
 - » Quantifiable (i.e. true measurements of certain; # of messages between peers vs 'connectedness' score)
 - » Direct measurements (not outputs of another model or proxies for other measurements as hidden sensitive attributes)

Feature Quality

- High-quality features are robust & objective (i.e. they don't depend on who recorded the data and are reproducible):
 - » Quantifiable (i.e. true measurements of certain; # of messages between peers vs 'connectedness' score)
 - » Direct measurements (not outputs of another model or proxies for other measurements as hidden sensitive attributes)
 - » Understandable (feature name or metadata that describes feature should be easy to understand; monthly_bonus vs mb)

Feature Sampling: Bias

Beware of biased sampling (sampling methods that systematically over- or under-represent certain groups)

This can be due to:

- » Selection bias (use of samples from a different distribution)
- » Measurement bias (different measuring devices or techniques)
- » Historical bias (society itself produces biased data)
- » **Confirmation bias** (wrongly discarding outliers to match existing beliefs)

Biased Datasets in CV & NLP

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2} ¹Boston University, 8 Saint Mary's Street, Boston, MA ²Microsoft Research New England, 1 Memorial Drive, Cambridge, tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.ka

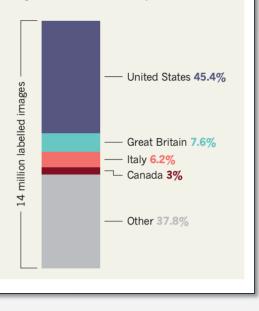
Abstract

The blind application of machine learning runs the risk of amplifying biases pre danger is facing us with *word embedding*, a popular framework to represent text d has been used in many machine learning and natural language processing tasks. word embeddings trained on Google News articles exhibit female/male gender stereo extent. This raises concerns because their widespread use, as we describe, often te biases. Geometrically, gender bias is first shown to be captured by a direction in t Second, gender neutral words are shown to be linearly separable from gender definiti embedding. Using these properties, we provide a methodology for modifying an e gender stereotypes, such as the association between between the words *receptiona* maintaining desired associations such as between the words *queen* and *female*. V quantify both direct and indirect gender biases in embeddings, and develop algorit embedding. Using crowd-worker evaluation as well as standard benchmarks, we emp that our algorithms significantly reduce gender bias in embeddings while preserving th such as the ability to cluster related concepts and to solve analogy tasks. The resul be used in applications without amplifying gender bias.

https://arxiv.org/abs/1607.06520

IMAGE POWER

Deep neural networks for image classification are often trained on ImageNet. The data set comprises more than 14 million labelled images, but most come from just a few nations.



https://www.nature.com /nature/volumes/559/iss ues/7713

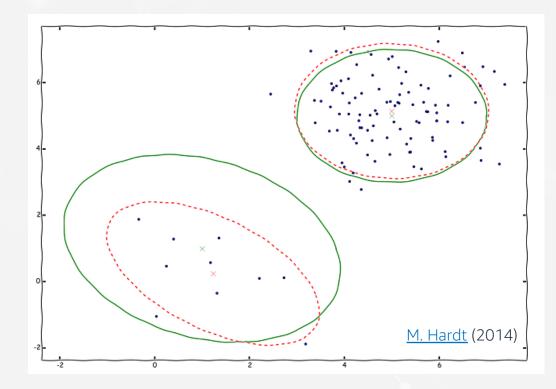
- Historical bias is often present in data collected from 'the wild'.
- Geographical representation is not equal for many of the most widely used computer vision datasets.

Feature Sampling: Sampling Size

- By definition: Minority = group with fewer examples.
- Models generally improve performance with more samples.

→ even if feature quality is good & data is unbiased, predictions for small groups can be worse than for larger groups

 \rightarrow carefully sample all groups represented in population and don't assume model generalizes by default



Dashed red describes estimated covariance matrices. Solid green defines correct covariance matrices. The green and red crosses indicate correct and estimated means, respectively.

Label Quality

- Tainted labels: Labels generally describe what happened historically but don't tell us what the unbiased outcome would have been.
 - \rightarrow to mitigate bias we need to address underlying causes of inequality (bias transforming metrics)
- Imprecise labels: Labels can be insufficiently precise to capture meaningful differences between cases.
 - \rightarrow collect additional information or clean labels before passing to ML model

Datasheets for Datasets

- Record of main characteristics of data and use case/limitations, e.g.:
 - » Who collected data?
 - » What purpose was data collected for?
 - » When and where was data collected?
 - » How was data collected?
 - » Descriptive statistics of dataset
 - » ...

Exploratory Data Analysis

Exploratory Data Analysis

EDA (Exploratory Data Analysis) is an approach to analyze a dataset and capture main characteristics of it. Find correlations, missing data, check distributions.

- General ML: Perform initial investigations to discover patterns, spot anomalies, test hypothesis and check assumptions.
- Responsible ML: Identify data collection gaps, inform further feature processing and detect societal/historical bias.

Descriptive Statistics

- Overall statistics df.head(), df.shape, df.info()
 - » Number of datapoints (i.e. number of rows)
 - » Number of features (i.e. number of columns)
- Univariate statistics (single feature)
 - » Statistics for numerical features (mean, variance, histogram) df.describe(), hist(df[feature])
 - » Statistics for categorical features (histograms, mode, most/least frequent values, percentage, number of unique values) df[feature].value_counts() or seaborn's distplot()
- Multivariate statistics (more than one feature)
 - » Correlations df.plot.scatter(feature1, feature2), df[[feature1, feature2]].corr()

Correlations

Correlations: How strongly pairs of features are related.

- High feature-feature correlation (positive or negative) features can degrade performance of some ML models. Check for correlation of sensitive attributes with other features to avoid serving hidden proxies to ML models.
 - » Proxy example: zip code and wealth
- Highly target-correlated (positive or negative) features might improve the performance certain models.

Correlations: Correlation Matrix

cols = [feature1, feature2]
df[cols].corr()

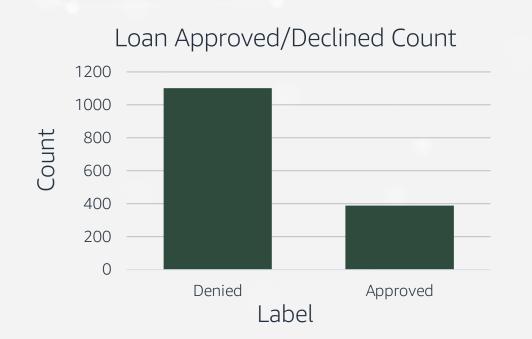
Correlation matrices measure the linear dependence between features.

	feature1	feature2
feature1	1	0.0128493
feature2	0.0128493	1

	feature1	feature2
feature1	1	0.882106
feature2	0.882106	1

Correlation values are between -1 (neg. correlation) and 1 (pos. correlation).

Label Imbalance

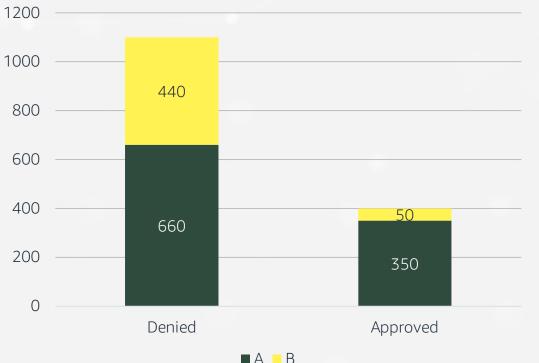


Example: Will loan be approved (yes/no)?

- Samples per class not equally distributed.
- ML model may not work well for the infrequent labels:
 - » Models often assume equal distribution of classes.
 - » High accuracy paradox: If model works well for majority class, it is considered accurate.

Label Imbalance

Loan Approved/Declined Count



Example: Will loan be approved (yes/no)?

- Consider outcomes/labels per group.
- Beware of biased sampling and check for minority groups in dataset.

• There exist:

- » General ML measures to quantify label imbalance
- » Responsible ML measures to quantify imbalance per subpopulation

Quantifying Imbalance

Norm. Class Imbalance: Measures imbalance in number of data examples (count), n, between 2 subpopulations A & B:

$$CI_{norm} = \frac{n_A - n_B}{n_A + n_B} \quad \in [-1, 1]$$

Positive CI values indicate that there are more data points with attribute value a (1 = only A, -1 only B).

Quantifying Imbalance

Norm. Class Imbalance: Measures imbalance in number of data examples (count), n, between 2 subpopulations A & B:

$$CI_{norm} = \frac{n_A - n_B}{n_A + n_B} \quad \in [-1, 1]$$

Positive CI values indicate that there are more data points with attribute value a (1 = only A, -1 only B).

Difference in Proportions of Labels: Measures difference in fraction of positive outcomes for 2 subpopulations A & B:

$$DPL = \frac{n_{A^{+}}}{n_{A}} - \frac{n_{B^{+}}}{n_{B}} \in [-1, 1]$$

Positive DPL values indicate that there are more positive outcomes for examples in group A.

Why do we need metrics?

Norm. Class Imbalance

» Detect bias in the model if there is not enough data for each class \rightarrow obtain more data

Difference in Proportions of Labels

» Detect bias in the dataset, maintain pre-training demographic parity

... many more pre-training metrics exist!

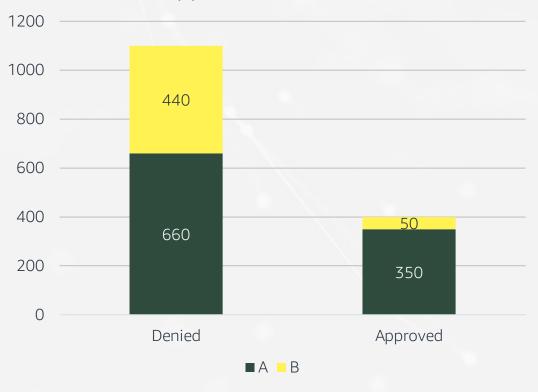
Quantifying Imbalance

Normalized Class Imbalance:

$$\frac{n_A n_B}{n_{A_+} n_B} = \frac{1010 - 490}{1010 + 490} \approx 0.35$$

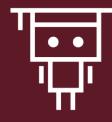
Difference in Proportions of Labels:

$$\frac{n_{A^{+}}}{n_{A}} - \frac{n_{B^{+}}}{n_{B}} = \frac{350}{1010} - \frac{50}{490} \approx 0.24$$



94

Loan Approved/Declined Count



Notebook: MLA-RESML-EDA.ipynb

MLA-RESML-EDA.ipynb Notebook

- This notebook shows how to quantify and visualize correlations (scatter plots, correlation matrix) and generate descriptive statistics (histogram).
- To measure bias (assess quality of our data) before training a model, we will use CI_{norm} and DPL.
- We will see a mix of data types (numerical, categorical data).

This material is released under CC BY 4.0 License.