
Responsible AI
Fairness & Bias in ML – DAY 2



Learning Outcomes

Fundamental understanding of Machine Learning:
» Concepts & terminology

Practical ML skills and techniques: 
» Train, tune, test and evaluate simple ML models
» Check data and ML model for bias

How to identify and mitigate bias and fairness issues in ML
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Course Schedule

Day One Day Two Day Three

Fundamentals of Machine 
Learning Data Processing Bias Mitigation during Model 

Training

Introduction to Fairness & Bias 
Mitigation in ML

ML Algorithm Selection, Model 
Build & Evaluation

Bias Mitigation during Post-
Processing

Model Formulation & Data 
Collection Fairness Criteria Bias Mitigation for Models in 

Production

Exploratory Data Analysis Bias Mitigation during Pre-
Processing Explainability



Data Processing



Using domain and data knowledge to prepare features as inputs for 
ML models from the raw data provided.

Numerical data

Train ML Model using 
meaningful numerical features

Categorical data

Text data

…
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Data Processing



Data Processing

There is no single way to pre-process data; it will depend on the 
ML problem, the data itself and the intended algorithm. 

Example data processing techniques:

» Encoding data
» Standardizing data
» Filling missing values
» Up-sampling data

» Redacting/coarsening data
» Renaming features
» Combining features
» …
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Redacting Data: Preserving Privacy

Combination of features can enable re-identification of 
individuals; to mitigate redact or coarsen (aggregate) information 
» Combination ZIP, sex and birthday can uniquely identify approx. 87% of US 

population
» K-anonymity: determines level of protection (re-identification granularity)

Name Age Sex ZIP Diagnosis

Tom 61 M 1001 Cancer

Peter 67 M 1500 Heart Disease

Lisa 50 F 1301 Heart Disease

Julie 45 F 1906 HIV

Fictional Healthcare Dataset (not anonymized)



8

Redacting Data: Preserving Privacy

Combination of features can enable re-identification of 
individuals; to mitigate redact or coarsen (aggregate) information 
» Combination ZIP, sex and birthday can uniquely identify approx. 87% of US 

population
» K-anonymity: determines level of protection (re-identification granularity)

Name Age Sex ZIP Diagnosis

* 60-70 M 1*** Cancer

* 60-70 M 1*** Heart Disease

* 40-50 F 1*** Heart Disease

* 40-50 F 1*** HIV

Fictional Healthcare Dataset (2-way anonymized)



Encoding Categorical Features

Categorical (also called discrete) features
Example: isEmployed ∈ {false, true}, ageGroup ∈ {20-40, 40-60}

» Most ML models require converting categorical features to numerical 
ones.

Encode/define a mapping: Assign a number to each category.
Nominals: Categories are unordered, e.g., color ∈ {green, red, 
blue}. No natural numerical representation for classes.
Ordinals: Categories are ordered, e.g., size ∈ {L > M > S}. We can 
assign L->3, M->2, S->1.



Encoding Categorical Features

OneHotEncoder: sklearn converts categorical features into new 
“dummy”/indicator features –

» Does not automatically name the new features.

from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder(sparse=False)
pd.DataFrame(ohe.fit_transform(df[['color']]))

Let’s encode one (or 
more) categorical fields.

.fit(), .transform()



Encoding Categorical Features

OrdinalEncoder: sklearn encoder, encodes categorical features as an 
integer array –

» Encodes categorical features (alphabetic default) to integers (0 to 
n_categories - 1).

from sklearn.preprocessing import OrdinalEncoder

oe = OrdinalEncoder([['S','M','L']])
df[['size']] = oe.fit_transform(df[['size']])

Let’s encode one (or 
more) categorical fields.

.fit(), .transform()



Feature Scaling

Motivation: Many algorithms are sensitive to features being on 
different scales, like metric-based algorithms (KNN, K Means) and 
gradient descent-based algorithms (regression, neural networks)
» Note: tree-based algorithms (decision trees, random forests) do not have 

this issue

Solution: Bring features to the same scale
» Mean/variance standardization
» MinMax scaling



Standardization in sklearn 

StandardScaler: sklearn scaler, scaling values to be centered around 
mean 0 with standard deviation 1 -

Transform:

from sklearn.preprocessing import StandardScaler
std_sc = StandardScaler()

raw_data = np.array([[-3.4],[4.5],[50],[24],[3.4],[1.6]])
scaled_data = std_sc.fit_transform(raw_data)
print(scaled_data.reshape(1,-1))

𝑥!"#$%& =
𝑥 − 𝑥'%#(

𝑥!)&

.fit(), .transform()



MinMax Scaling in sklearn

MinMaxScaler: sklearn scaler, scaling values so that minimum value is 
0 and maximum value is 1 - .fit(), .transform()

Transform:

from sklearn.preprocessing import MinMaxScaler
minmax_sc = MinMaxScaler()

raw_data = np.array([[-3.4],[4.5],[50],[24],[3.4],[1.6]])
scaled_data = minmax_sc.fit_transform(raw_data)
print(scaled_data.reshape(1,-1))

𝑥!"#$%& =
𝑥 − 𝑥'*(

𝑥'#+ − 𝑥'*(



Notebook: MLA-RESML-
DATAPREP.ipynb
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MLA-RESML-DATAPREP.ipynb Notebook

This notebook shows how to prepare data for a ML model 
(transforming everything into numerical values).

We will also have a look at missing values and feature selection.

We will see a mix of data types (numerical, categorical data).



ML Algorithm Selection, 
Model Build & Evaluation



Bias Mitigation throughout the ML lifecycle…

Deployment

YesData
• Data Collection
• Data Visualization 
• Data Augmentation
• Feature Engineering
• Etc.

Business 
Problem

ML Problem 
Formulation

No

Meets
Business

Goal?

Answer

Algorithm

New Data/Re-training

Model
• Preprocessing 
• Training
• Tuning
• Evaluation



Algorithm Selection
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ML Algorithm

Depending on the problem type, have a range of possible 
algorithms we can chose from:

Clustering

• PCA
• Collaborative Filtering
• K-Means
…

ML 
Algorithms

Regression
(Quantity)

• Linear Regression
• K-Nearest Neighbors
• Neural Nets
• Decision Trees
…

Classification
(Category)

• Support Vector Machine
• K-Nearest Neighbors
• Neural Nets
• Decision Trees
…



Algorithm Selection

Different requirements can be solved with different algorithmic 
approaches, consider:
» How frequently to predict?
» How quickly predictions required (latency)?
» How much training data available?
» Distribution of training data?
» Do I need to explain predictions (explainability)?
» …
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Not all models are easy to explain…

In certain settings, accuracy-interpretability trade offs may exist 
too.  

Possible to interpret 
coefficients directly.

Requires additional 
explanation.

Need for interpretability

Linear Regression Neural Networks



Artificial Neuron

Artificial Neuron: Given {𝑥!}
predict 𝑦, where 𝑦 𝜖 {0,1}:  

where 𝑓 is a nonlinear activation 
function (sigmoid, tanh, ReLU, …) Activation function

(sum)

(weights)

Output

Input 

o
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Multilayer Perceptron

A neural network consisting of input, 
hidden and output layers.

Each layer is connected to the next 
layer.

An activation function is applied on 
each hidden layer (and output layer).

More details

Hidden Layer

Input

(6 weights)

(3 weights)

Outputo
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Model Training
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Model Training Steps

Every parametric model has 3 main components:

» ML Algorithm

» Loss/Cost Function: Function, C(w), that compares prediction to true 
value, a.k.a. “the model error”

» Optimization Method: Method to minimize the error

Goal of any parametric model is to find weights (parameters) that 
minimize the loss on the data. Evaluate on test (holdout) set.



ML Algo: Regression Example

FeaturesLabel

HS Age BMI Smoker Ethnicity

80 32 28 Y White

65 21 23 N Hispanic

… … … … …

H
ea

lt
h 

Sc
or

e

Age

𝑦*

%𝑦*

𝑒𝑟𝑟𝑜𝑟*

Fig.: Predicted Healthcare Spend



Regression Loss Function

Sum of Squared Errors (SSE) - a numeric value that measures the 
performance of a regressor when model output is a continuous 
numerical value between –infinity and +infinity:



Regression Loss Function

Sum of Squared Errors (SSE) - a numeric value that measures the 
performance of a regressor when model output is a continuous 
numerical value between –infinity and +infinity:

where 𝑦: true value ∈ {-∞, +∞}, %𝑦: predicted value, 𝑛: number of data points

To improve your regression model, minimize SSE.

𝐶 𝑤𝑖 =$
!

"

𝑦𝑖 − '𝑦𝑖 2 =$
!

"

𝑦𝑖 − (𝑤0𝑥0 +𝑤1𝑥1 +⋯) 2



ML Algo: Classification Example

FeaturesLabel

Approved Age Income Smoker Ethnicity

+ 32 28k Y White

- 21 23k N Hispanic

… … … … …

Approved
Not Approved

Fig.: Bank Loan Ground Truth

A
ge

Income



Logistic Regression

Idea: Apply Sigmoid function to linear regression to create classifier.

“squishes” 𝑦 values to the 0 –1 range. 

Our logistic regression equation becomes:

Use a “Decision boundary” at 0.5
- if                         0.5, round down (class 0)
- if                         0.5, round up (class 1)

si
gm

oi
d(
y)
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Classification Loss Function

Log-Loss is a numeric value that measures the performance of a 
binary classifier when model output is a probability between 0 and 1:



Classification Loss Function

Log-Loss is a numeric value that measures the performance of a 
binary classifier when model output is a probability between 0 and 1:

where j: class ∈ {0, 1}, %𝑦: probability of being class 1

To improve Logistic Regression, minimize Log-Loss.

𝐶 𝑤𝑖 = −,
)

𝑦𝑗 − log( %𝑦𝑗) = −,
*

+

𝑦𝑖 𝑙𝑜𝑔 %𝑦𝑖 + 1 − 𝑦𝑖 𝑙𝑜𝑔(1 − %𝑦𝑖)

%𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤0𝑥0+𝑤1𝑥1+…)



What is Optimization?

Optimizing: Minimizing loss function.
» Regression - find the weight(s), w, that result in the lowest error value. 
» Classification - find splitting rules that minimizes impurity or error.

Optimization methods: Methods to update/find weights.
§ Exhaustive search (trying all possible w’s)
§ Gradient descent (iteratively updating w’s)
§ Normal equation

…



Gradient Descent Method

Gradient Descent method uses gradients to find the minimum
of a function iteratively.
» Taking steps (proportional to the gradient size) towards the minimum, 

in the opposite direction of the gradient. 

Gradient Descent Algorithm:
» Start at an initial point 
» Update: 𝑤+,- = 𝑤./00,+1 − 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝑤

𝑓(𝑤)
𝑤





Model Performance 
Evaluation
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Train-Test-Validation Split

Shuffle the dataset before the split!

IID data in all 3 splits & balance across sensitive attributes.

Sklearn splitting method doesn’t allow to specify sensitive attribute up-front. 

Original 
Dataset

Training 
Set

Training Set

(used to train the model)

Validation Set 

(used for model tuning and validation)

Test Set
Test Set

(used for final evaluation of the model)

Train, tune and validate the 
model (multiple times!)

(Final) Test the model

Learning

Testing
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Model Evaluation

Models should be fair and as perform well.
» Fairness: Model should produce similar outcomes for similar groups (or 

individuals).
» Performance: Model should perform above a certain accuracy threshold or 

below error threshold.

Models that don’t meet the above criteria, should be re-evaluated. 



1. Find distance (squared, 
absolute, …) between your 
prediction and labels.

Sp
en

d 
[$

]

Age

True values
Predicted values

𝑦*

%𝑦*

𝑒𝑟𝑟𝑜𝑟*

Evaluation Example for Regression

Fig.: Predicted Health Care Spend



1. Find distance (squared, 
absolute, …) between your 
prediction and labels.

2. Aggregate up into 1 value 
across whole dataset (e.g. 
mean error across squared 
distances, MSE).

𝐌𝐒𝐄 =
𝟏
𝑵
,
𝒊

(𝒚𝒊 − I𝒚𝒊)𝟐

N: number of datapoints

Evaluation Example for Regression

We are not yet talking about 
group membership of the 

datapoints here!



1. Compare true state to predicted state. 

Evaluation Example for Classification

True Positive

1 (positive)

0 
(n

eg
at

iv
e)

0 (negative)

1 
(p

os
iti

ve
)

False Positive

False Negative

True Negative

Prediction

Tr
ue

 S
ta

te 11

8 12

5

Approved
Not Approved

Fig.: Bank Loan Ground Truth

A
ge

Income



False Positive

1. Compare true state to predicted state. 

2. Aggregate up into 1 value across whole 
dataset by creating ratios (e.g. correct 
predictions over total: accuracy).

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

Evaluation Example for Classification

True Positive

1 (positive)

0 
(n

eg
at

iv
e)

0 (negative)

1 
(p

os
iti

ve
)

False Negative

True Negative

Prediction

Tr
ue

 S
ta

te 11

8 12

5

11 + 12
11 + 5 + 8 + 12

= 0.64E.g.:
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Considerations

How can we be sure that this performance will be upheld in 
production?

→ Train-Test-Validation Split

How can we include group membership in the evaluation?
→ Quantifying Bias



Quantifying Model Bias



47

Quantifying Bias

Common evaluation methods (if not calculated group-wise), don’t 
consider how different groups could be affected differently.

→ we need fairness-specific model performance measures that can 
consider group membership
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Fairness Measure Example

7

positive

ne
ga

tiv
e

negative

po
si

tiv
e

3

1

10

Prediction

Tr
ue

 S
ta

te

Accuracy difference (AD):
Difference in accuracy for 
2 groups. 

The closer to 0, the better!

4

positive

ne
ga

tiv
e

negative

po
si

tiv
e

5

4

2

Prediction

Tr
ue

 S
ta

te

Group A Group B

AD = 0.81 – 0.4 = 0.41

𝐴4 =
7 + 15

7 + 1 + 15 + 1
= 0.81 𝐴5 =

3 + 1
3 + 5 + 4 + 1

= 0.4



Notebook: 
MLA-RESML-LOGREG.ipynb
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Notebook Content

This notebook shows how to build a logistic regression (and how 
to derive a logistic regression from a linear regression).

We will use the logistic regression model to predict classes.

You will also see techniques to evaluate model performance 
(accuracy difference & DPPL).



51

No ”one fits all” metric

Easier to measure a particular metric (e.g. disparity in outcomes), 
than fairness (no universally accepted definition & use case 
dependent).

No “one fits all” (bias) metric! We need to look at different 
measures.
» If you find discrepancies debug the model
» Useful in spotting issues (and preventing misconceptions)
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Tradeoffs in RAI & ML metrics

Fairness metrics as well as general ML metrics can be at odds with 
each other (fair for individual ≠ fair for group, accuracy vs. bias 
mitigation, …)

Maximize 
primary objective

ML Model

Model 
Performance

RAI dimensions

1. Explainability
2. Fairness
3. Transparency
4. Privacy
…



Fairness Criteria
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Fairness Criteria

Fairness achievable through mitigation of unwanted bias (harmful 
disparities in system behavior or downstream impact on 
subpopulations)

Fairness criteria describe connection between sensitive attribute 
and true/predicted labels mathematically

S. Barocas and M. Hardt (2017)

https://nips.cc/Conferences/2017/Schedule?showEvent=8734
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Fairness Criteria ≠ Social Equity

S. Barocas and M. Hardt (2017) distinguish : 
» Independence, Separation, Sufficiency (mutually exclusive)
» Variations, relaxations and related metrics exist.

Criteria do not necessarily map to established legal or social 
understandings of equity [Stanford Computational Policy Lab].

Do not just optimize fairness criteria when training and hope that 
the problem gets better!

https://nips.cc/Conferences/2017/Schedule?showEvent=8734
https://policylab.stanford.edu/projects/defining-and-designing-fair-algorithms.html
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How to satisfy Fairness Criteria

Fairness criteria help us understand how to prepare data, tweak 
the way models learn or how to make adjustments to model 
predictions with the goal to reduce unwanted bias.

Use fairness criteria to measure and/or mitigate bias at different 
stages of the ML lifecycle:
» Pre-processing
» In-processing
» Post-processing



Probability Basics
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Probability Basics

Probability, 𝑃𝑟(𝐴), of an event A, is the sum of the probabilities of 
the outcomes which make up A.

𝑃𝑟 𝐴 =
# outcomes that make up event A

total # of possible outcomes

Basic Probability Intro

https://seeing-theory.brown.edu/basic-probability/index.html
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Conditional Probability

Conditional probability, 𝑃𝑟(𝐵|𝐴), of an event B is the probability 
that the event B will occur given the knowledge that event A has 
already occurred. 

𝑃𝑟 𝐵|𝐴 =
probability of A and B occurring

probability of A

Conditional Probability Intro

https://seeing-theory.brown.edu/compound-probability/index.html
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Independence/Statistical Parity

Having a certain attribute, 𝐴, is not related to the true outcome, 𝑌.
→ probability for positive or negative true outcome, has to be equal:

To measure bias of a dataset or estimator:

𝑃𝑟 𝑌 = 𝑦 𝐴 = 0) = 𝑃𝑟 𝑌 = 𝑦 𝐴 = 1)

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑃𝑟 𝑌 = 𝑦 𝐴 = 0) − 𝑃𝑟 𝑌 = 𝑦 𝐴 = 1)
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Independence/Statistical Parity

There is no disparity if:

where 𝑨 = 𝟏 is the advantaged group.

In practice, it will be hard to find a dataset/build a model that 
meets this.
Relaxation with threshold, 𝜖: Difference in Demographic Parity:

|𝑃𝑟 𝑌 = 𝑦 𝐴 = 0) − 𝑃𝑟 𝑌 = 𝑦 𝐴 = 1)| ≤ 𝜖

𝑃𝑟 𝑌 = 𝑦 𝐴 = 0) − 𝑃𝑟 𝑌 = 𝑦 𝐴 = 1) = 0
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Independence/Statistical Parity

Relaxation with threshold, 𝜖, also known as Disparate Impact (DI):

where 𝑨 = 𝟏 is the advantaged group.

𝑃𝑟 𝑌 = 𝑦 𝐴 = 0)
𝑃𝑟 𝑌 = 𝑦 𝐴 = 1)

≤ 𝜏

Feldman et. al (2015)

https://arxiv.org/abs/1412.3756
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Independence/Statistical Parity

For regression, we consider score ranges (prediction scores, r, 
should be statistically independent of the sensitive attribute):

|𝑃𝑟 𝑅 ≥ 𝑟 𝐴 = 1) − 𝑃𝑟 𝑅 ≥ 𝑟 𝐴 = 0)| ≤ 𝜖
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Difference in Mean

Difference in mean predictions per group 

The closer to 0, the fairer an outcome.

𝑚𝑒𝑎𝑛 '𝑦#$% −𝑚𝑒𝑎𝑛('𝑦#$&)
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Separation

Prediction, 8𝑌, is conditionally independent of the attribute, 𝐴, 
given the true outcome, 𝑌.
→ true positive rate or false positive rate have to be equal for both 

attribute values, 𝐴 = 0 and 𝐴 = 1:

Requires y to reflect what society considers fair.

𝑃𝑟 A𝑌 = '𝑦 𝐴 = 1, 𝑌 = 𝑦) = 𝑃𝑟 A𝑌 = '𝑦 𝐴 = 0, 𝑌 = 𝑦)
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Separation

Prediction, 8𝑌, is conditionally independent of the attribute, 𝐴, 
given the true outcome, 𝑌.
→ true positive rate or false positive rate have to be equal for both 

attribute values, 𝐴 = 0 and 𝐴 = 1:

Relaxation: 𝑦 = 1 to equalize TPR (equality of opportunity), 𝑦 =
0 to equalize FPR

𝑃𝑟 A𝑌 = '𝑦 𝐴 = 1, 𝑌 = 𝑦) = 𝑃𝑟 A𝑌 = '𝑦 𝐴 = 0, 𝑌 = 𝑦)
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Sufficiency

Sufficiency is a target-based test: 
» Requires that the true outcome (target) is conditionally independent of 

the sensitive attribute, given the prediction value.
» Uses numerical values (for classifiers, use predicted probabilities, not class 

value)
» Usually only possible to test for model developers (as the prediction that is 

shown to users/customers is a decision, not a probability value)

Ex.: In lending, applicants with similar predicted probabilities 
should have same rate of acceptance across different groups 



General Limitations of all 
Fairness Criteria
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General limitations

Optimizing for one criteria can lead to making another criteria worse.

Combined attributes can lead to accumulated bias (intersectional 
fairness, e.g. race & gender)

Potential legal restrictions for use of sensitive attributes → mindful; 
certain fairness criteria require sensitive attribute to be known.

Insufficiency of criteria (lazy solutions exist).
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Incompatibility of Criteria

Separation: Everyone that can pay 
back, gets approved (same TPR).

Cannot pay back

Can pay back

Group A Group B
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Incompatibility of Criteria

Independence: Same fraction in both 
groups gets approved.

Separation: Everyone that can pay 
back, gets approved (same TPR).

Impossible to achieve 
simultaneously!

Cannot pay back

Can pay back

Group A Group B Group A Group B



75

Non-ideal world

Most fairness methods assume existence of ideal world and 
measure deviations from it

Certain methods fail to account for non-ideal world behavior

Carefully chose metric and consider:
» Harms of misguided solutions
» Responsibilities of decision makers
» …

Algorithmic Fairness from a 
Non-ideal Perspective 
(Lipton et al., 2020)

https://arxiv.org/pdf/2001.09773.pdf
https://arxiv.org/pdf/2001.09773.pdf


Pre-Processing for Bias 
Mitigation
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Pre-Processing Methods

Collection of pre-processing methods that modify data or labels 
before the model is trained to mitigate bias in dataset:

» Suppression (delete sensitive feature – beware of proxies)
» Re-weighting (make group membership & outcome independent)
» Transformation of data (generate synthetic features or labels)
» …
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Suppression

“Fairness through unawareness” is 
ineffective due to the existence of proxies 
(rich data sources).

Deleting features makes it impossible to 
disentangle effects downstream.

Check whether legal requirements impact 
ability to use certain features or whether 
they need to, or should be, removed. 

Redlining in banking industry (law forbade to 
use race, but ZIP code acted as proxy)

Dwork et al (2011)

https://www.nytimes.com/2017/08/24/upshot/how-redlinings-racist-effects-lasted-for-decades.html
https://arxiv.org/abs/1104.3913
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Re-weighting

If two events (here: outcome & value of attribute) are independent 
then we can multiply probability of the attribute value occurring 
with probability of a certain outcome occurring

Re-arrange for re-weighting factor:

𝑊 ≔
𝑃𝑟 𝐴 = 𝑎 × 𝑃𝑟(𝑌 = 𝑦)

𝑃𝑟(𝐴 = 𝑎, 𝑌 = 𝑦)

𝑃𝑟 𝐴 = 𝑎, 𝑌 = 𝑦 = 𝑃𝑟 𝐴 = 𝑎 × 𝑃𝑟(𝑌 = 𝑦)
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Re-weighting Example

Calculate all possible permutations of attributes and outcomes. 
E.g.: 𝑆𝑒𝑥 = 𝑓𝑒𝑚𝑎𝑙𝑒 reduces chance of positive outcome → need to 
increase weight

() *+, - .+/01+ × ()(4 - 5)
()(*+, - .+/01+,4 - 5)

= 
!
"#×

$
"#

%
"#

= 1.5

Calders et al. (2009)

https://www.win.tue.nl/~mpechen/publications/pubs/CaldersICDM09.pdf
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Re-weighting Example Code

Calculate weights with custom function (or fairness Python library), 
then apply weights in models that allow sample weights (e.g. Logistic 
Regression, KNN, …)

Equivalent to up-sampling but more efficient as we don’t create 
duplicate datapoints.

lr = LogisticRegression()
lr.fit(X_train, y_train, sample_weight = weights)
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Disparate Impact for Transformation

Ratio of success rate for 
datapoints with disfavored 
attribute value to the success 
rate of the favored attribute 
value, Disparate impact:

𝑃𝑟 𝑌 = 1 𝐴 = 0)
𝑃𝑟 𝑌 = 1 𝐴 = 1)

≤ 𝜏

Success and favored attribute 
value are denoted as 1.

Feldman et. al (2015)

Approved
Not Approved

Favored
Disfavored

Fig.: Bank Loan Ground Truth

A
ge

Income

https://arxiv.org/abs/1412.3756
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Disparate Impact for Transformation

Success with favored 
attribute value:

Success with unfavored 
attribute value:

Disparate impact: 𝐷𝐼 = 0.3

𝑃𝑟 𝑌 = 1 𝐴 = 1) =
10
12

𝑃𝑟 𝑌 = 1 𝐴 = 0) =
6
24

Four-fifths rule:
Adverse impact if DI ≤ 0.8

Approved
Not Approved

Favored
Disfavored

Fig.: Bank Loan Ground Truth

A
ge

Income
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Disparate Impact Removal 

Theorem: A classifier is considered free of disparate impact if the 
value the sensitive attribute assumes cannot be predicted from 𝑋
(remaining features).

In order to reduce DI as much as possible:
1. Set 𝜖 threshold
2. Adjust distributions of 𝑋 such that 𝐴 cannot be predicted at 𝜖-threshold:

» Combinatorial (rank-preserving repair)
» Counterfactual repair
» …
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DI Removal: Example SAT

1. Split groups based on sensitive attribute 
(→ sub-group) & order.

2. Split sub-groups based on pos./neg. 
outcome (→ outcome sub-groups).

3. Replace feature value of disfavored 
group with median feature value of 
favored outcome sub-group.

Gender Score Admission

F 1400 1

F 1300 0

M 1400 0

M 1500 1

M 1400 0

M 1500 1

Algorithmic Fairness in ML (Duke)

https://courses.cs.duke.edu/spring19/compsci216/lectures/11-fairness.pdf
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DI Removal: Example SAT

Gender Score Admission

F 1400 1

F 1300 0

M 1400 0

M 1500 1

M 1400 0

M 1500 1

Gender Score Admission

M 1400 0

M 1400 0

M 1500 1

M 1500 1

Gender Score Admission

F 1300 0

F 1400 1
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DI Removal: Example SAT

1400

1500

Gender Score Admission

F 1400 0

F 1500 1

The code is implemented 
such that the median is 

taken as left of center. E.g. 
[1,2,3,4] == 2, not 2.5.

Gender Score Admission

F 1400 1

F 1300 0

M 1400 0

M 1500 1

M 1400 0

M 1500 1

Gender Score Admission

M 1400 0

M 1400 0

M 1500 1

M 1500 1

Gender Score Admission

F 1300 0

F 1400 1
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DI Removal: Example SAT

Feldman et al. (2015) Certifying and removing disparate impact

female

male

repaired female

In practice, use 
SMOTE to generate 
synthetic data for 
underrepresented 

individuals (e.g. 
women with high 

SAT scores) to 
increase prevalence. 

https://arxiv.org/abs/1412.3756
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Disparate Impact as Bias Quantifier

Ratio of success rate for 
datapoints with disfavored 
attribute value to the success 
rate of the favored attribute 
value

'( ) $ & # $ %)
'( ) $ & # $ &)

≤ 𝜏

Feldman et. al (2015)

𝐷𝐼 = ⁄!!
"#

⁄$ !"
= 0.78

Fig.: Bank Loan Approval Predictions

Income

Approved
Not Approved

Favored
Disfavored

A
ge

Income

https://arxiv.org/abs/1412.3756


Limitations Pre-Processing 
Methods
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Limitations

Trade-off between accuracy and fairness improvement (e.g. 
applying weights to data decreases accuracy of model)

Once information is removed, we cannot re-engineer back; might 
be better to not lose information early into process:
» Can’t be sure if all proxies captured
» Synthetic inputs can be far from natural distributions

Allows ‘laziness’ (accept top 50% of favored group and random 
50% of unfavored group)



Notebook: 
MLA-RESML-DI.ipynb
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MLA-RESML-DI.ipynb Notebook

Shows how to quantify disparate impact and the implementation 
of a basic disparate impact remover (with different repair levels).

Uses logistic regression in the model. 
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