
Serverless SaaS API Integration Deployment Guide

Summary:

This guide is for independent software vendors (ISVs), selling SaaS products in AWS Marketplace. The guide covers the

Serverless SaaS application that automates the SaaS API integration phase. It is a step-by-step guide to set up the

Serverless SaaS API integration using AWS Cloud9 service. It provides a web UI based option to deploy the Serverless

application.

Pre-requisites:

You need to register as a paid Seller on AWS Marketplace, finalize a SaaS pricing model and publish a SaaS product to

limited view before you deploy the SaaS API integration. To get started as Seller on AWS Marketplace, click here. You

can find information on supported SaaS pricing models and how to list them here.

Below is the information you need from the AWS Marketplace Seller Operations teams before you proceed to next

steps:

 Product code - A unique identifier of your AWS Marketplace listing

 SNS topics associated with your listing.

Setting up your Cloud9 environment:

 Log into your seller AWS account. Your user account should have admin or root access to the seller AWS account

to create new resources.

 Go to your Cloud9 launch page: https://console.aws.amazon.com/cloud9/home/product#

 Click on “Create environment” button to launch your environment

https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-products.html
https://console.aws.amazon.com/cloud9/home/product

 Leave the defaults for Environment type, Instance type, Platform, Cost Saving-Setting, and IAM Role.

 Create a new VPC and Subnet or use an existing VPC and Subnet for hosting the Cloud9 environment.

 Click ‘Next Step’, click on ‘Create Environment’. It will take about 5 minutes for your environment to be ready.

Implementation:

Deploying the integration resources:

 Once your IDE is ready, go to the Github repository to clone it. Copy the URL.

Github Repo URL: https://github.com/aws-samples/aws-marketplace-serverless-saas-integration

 Click on the “Source Control” icon on the left side bar, then select “Clone Repository”. Paste the Github repo

URL from the previous step and press enter.

https://github.com/aws-samples/aws-marketplace-serverless-saas-integration

 Select “Environment” from the left side bar and expand the cloned repository folder. You should now see all

your files. Change your shell directory to the folder by entering the following command in the terminal window:

cd aws-marketplace-serverless-saas-integration



 Run the command ‘ sam build ‘to build your application from the “template.yaml” file.

 Once your application is built, you need an S3 bucket to package and deploy it. Go to the S3 console to create a

bucket: https://s3.console.aws.amazon.com/s3/home?region=us-east-1 . Choose the “Create bucket” option

and use the default settings to create a new S3 bucket.

 Run the following command to package the application and upload it to the newly created S3 bucket. Replace

the placeholder value with your S3 bucket name.

sam package --output-template-file packaged.yaml --s3-bucket <DEPLOYMENT_S3BUCKET_PLACEHOLDER_VALUE>

https://s3.console.aws.amazon.com/s3/home?region=us-east-1

 To deploy the application, replace the placeholder values in the following command with the values relevant to

your SaaS listing. It may take about 10 minutes for the stack to be created. You will see a Success message on

completion.

sam deploy --template-file packaged.yaml --stack-name <STACK_NAME> --capabilities CAPABILITY_IAM --region us-east-

1 --parameter-overrides ParameterKey=WebsiteS3BucketName,ParameterValue=<WEBSITE_BUCKET_NAME>

ParameterKey=ProductCode,ParameterValue=<MARKETPLACE_PRODUCT_CODE>

ParameterKey=EntitlementSNSTopic,ParameterValue=<MARKETPLACE_ENTITLEMENT_SNS_TOPIC>

ParameterKey=SubscriptionSNSTopic,ParameterValue=<MARKETPLACE_SUBSCRIPTION_SNS_TOPIC>

ParameterKey=MarketplaceTechAdminEmail,ParameterValue=<MARKETPLACE_TECH_ADMIN_EMAIL>

Note1:The green placeholder value are user-defined. Choose a unique name for stack and website S3 bucket. The

Marketplace Tech Admin email will be the email you want the notifications to be sent. The red placeholder values are

provided by the AWS Marketplace Seller Operations team.

Note1: This sample command is for a SaaS Contract with consumption pricing model. It creates a static landing page and

is the default option. You can customize the input parameters based on your pricing model and requirements. A list of all

input parameter options is available at end of this document. The command should be executed in one line.

Note3: The WebsiteS3BucketName should be unique and there should not be an existing bucket with the same name.

The Website S3 bucket is different than the Deployment S3 Bucket you created earlier for packaging the application. The

Website S3 bucket is created automatically when you launch the stack.

Note4: Stack names are unique. If your stack fails, make sure to update the stack name before you launch a new one.

Example:

sam deploy --template-file packaged.yaml --stack-name WUPHFdemo08 --capabilities CAPABILITY_IAM --region us-east-

1 --parameter-overrides ParameterKey=WebsiteS3BucketName,ParameterValue=sgujaran-wuphfdemo07

ParameterKey=ProductCode,ParameterValue=2p409vwjybxwn3pd5tcrz4xbw

ParameterKey=EntitlementSNSTopic,ParameterValue=arn:aws:sns:us-east-1:287250355862:aws-mp-

entitlement-notification-2p409vwjybxwn3pd5tcrz4xbw

ParameterKey=SubscriptionSNSTopic,ParameterValue=arn:aws:sns:us-east-1:287250355862:aws-mp-subscription-

notification-2p409vwjybxwn3pd5tcrz4xbw

ParameterKey=MarketplaceTechAdminEmail,ParameterValue=sgtestemail@amazon.com

 The MarketplaceTechAdmin email address you provided above will receive an email notification to confirm

subscription to the Support SNS topic. This SNS topic will send out information on new subscribers and

subscription/entitlement updates. Confirm your subscription to the SNS topic.

 Once the stack has been created, you will proceed to set up your landing page. Obtain the API gateway endpoint

that was created by the stack. Go to: https://console.aws.amazon.com/apigateway/main/apis?region=us-east-1

and copy the API Gateway ID.

https://console.aws.amazon.com/apigateway/main/apis?region=us-east-1

 Replace the API-ID for the baseURL in Line 1 of the “script.js” file (landing page) in the “web” folder of the

repository. Save the changes to the script.js file by using the File tab → Save or CTRL+S keys.

 Copy the landing page files to the website S3 bucket used by the stack using the following command:

aws s3 cp ./web/ s3://<WEBSITE_BUCKET_NAME>/ --recursive

Replace the placeholder value with the website S3 bucket name you provided during stack creation.

 Your integration is now ready for use. Since we use Cloudfront distribution to ensure low latency for the landing

page, the SaaS fulfilment URL is the Cloudfront CName (domain name) of the distribution created by the stack.

 Go to the Cloudfront console and get the domain name here:

https://console.aws.amazon.com/cloudfront/home?region=us-east-1 .

 Provide the domain name to the AWS Marketplace Seller Operations team to publish to your limited listing.

SaaS URL format: https://<domain name>

Example: https://d142rocbcrghws.cloudfront.net

https://console.aws.amazon.com/cloudfront/home?region=us-east-1%20.

Grant and revoke access to your product:

Grant access to new subscribers:

Once the resolveCustomer endpoint returns a successful response, the SaaS vendor must provide the new subscriber

with access to the solution. Depending on the SaaS pricing model, we have defined different conditions in the grant-

revoke-access-to-product.js stream handler that is executed on adding new or updating existing rows in

AWSMarketplaceSubscribers DynamoDB table.

When a new environment needs to be provisioned or an existing environment needs to be updated, the

MarketplaceTechAdmin email address (The email address you provided during deployment) will receive an email

notification.

When successful response is received for the GetEntitlementAPI call for SaaS Contract pricing model or after receiving

subscribe-success message from the Subscription SNS Topic for SaaS subscriptions pricing model in the subscription-sqs-

handler.js., the condition “success” is met which will execute the grant-revoke-access-to-product.js to add or update

rows in the DynamoDB table.

Sample New Subscriber notification:

Managed SaaS Onboarding:

If you provide a managed onboarding experience, you should update the form submission ‘Thank you’ page using

register-new-subscriber.js as per your onboarding next steps. The file is in the ‘src’ folder.

Default Success message: 'Thank you for registering. Please check your email for a confirmation!'

Default Error message: 'Registration data not valid. Please try again, or contact support!'

Note: Buyers do not receive an email notification of landing page form submission. The email should be sent by you to

initiate the onboarding process.

Automated SaaS application provisioning:

To provide automated access to your application on signup, you can redirect the user from the default landing page to

your application page, or you can use your own registration landing page.

To use your existing SaaS registration page, you should call the register new subscriber endpoint after collecting the

data.

The registration landing page should identify and accept the x-amzn-marketplace-token token in the form data from

AWS Marketplace with the customer’s identifier for billing. It should then pass that token value to the AWS Marketplace

Metering Service and AWS Marketplace Entitlement Service APIs to resolve for the unique customer identifier and

corresponding product code.

In this solution, we created a CloudFront Distribution, which can be configured to use domain/CNAME by your choice.

The POST request coming from AWS Marketplace is intercepted by the Edge src/lambda-edge/edge-redirect.js file,

which transforms the POST request to GET request, and passes the x-amzn-marketplace-token in the query string.

We have created a static HTML landing page hosted on S3 which takes the user inputs collected by the HTML form and

submits them to marketplace/customer endpoint. The handler for the marketplace/customer endpoint is defined in the

src/register-new-subscriber.js file, where we call the resolveCustomer and validate the token. If the token is valid the

customer record is created in the AWSMarketplaceSubscribers DynamoDB table and the new customer data is stored.

Update entitlement levels to new subscribers (SaaS Contracts and CCP only):

Each time the entitlement is updated, we receive a message on the SNS topic. The lambda function entitlement-sqs.js on

each message is calling the marketplaceEntitlementService and storing the response in the AWSMarketplaceSubscribers

dynamoDB.

We are using the same DynamoDB stream to detect changes in the entitlement for SaaS contracts. When the

entitlement is updated, an email notification is sent to the MarketplaceTechAdmin.

Revoke access to customers with expired contracts and cancelled subscriptions:

The revoke access logic is implemented in a similar manner as the grant access logic. When the contract expires or the

subscription is cancelled, the MarketplaceTechAdmin email address will receive an email notification.

AWS Marketplace strongly recommends automating the access and environment management which can be achieved

by modifying the grant-revoke-access-to-product.js function.

Reporting Usage:

For SaaS subscriptions, the SaaS provider must meter for all usage, and then, customers are billed by AWS based on the

metering records provided. For SaaS contract with consumption, you only meter for usage beyond a customer’s contract

entitlements. When your application meters usage for a customer, your application is providing AWS with a quantity of

usage accrued. Your application meters for the pricing dimensions that you defined when you created your product,

such as gigabytes transferred or hosts scanned in a given hour.

We have created MeteringSchedule CloudWatch Event rule that is triggered every hour. The metering-hourly-job.js gets

triggered by this rule and it's querying all of the pending/unreported metering records from the

AWSMarketplaceMeteringRecords table using the PendingMeteringRecordsIndex. All of the pending records are

aggregated based on the customerIdentifier and dimension name, and sent to the SQSMetering queue.

For SaaS subscription and SaaS Contract with consumption pricing model, the records in the

AWSMarketplaceMeteringRecords table are expected to be inserted programmatically by your SaaS application. In this

case you will have to give permissions to the service in charge of collecting usage data in your existing SaaS product to

be able to write to AWSMarketplaceMeteringRecords table.

The lambda function metering-sqs.js is sending all of the queued metering records to the AWS Marketplace Metering

Service. After every call to the batchMeterUsage endpoint the rows are updated in the

AWSMarketplaceMeteringRecords table, with the response returned from the Metering Service, which can be found in

the metering_response field. If the request was unsuccessful the metering_failed value with be set to true and you will

have to investigate the issue the error will be also stored in the metering_response field.

The new records in the AWSMarketplaceMeteringRecords table should be stored in the following format:

{

"create_timestamp": 113123,

"customerIdentifier": "ifAPi5AcF3",

"dimension_usage": [

{

"dimension": "users",

"value": 3

},

{

"dimension": "admin_users",

"value": 1

}

],

"metering_pending": "true"

}

The create_timestamp is the sort key and customerIdentifier is the partition key, and they are both forming the Primary

key in the AWSMarketplaceMeteringRecords table.

After the metering record is submitted to AWS Marketplace Metering Service, it will be updated and will look like this:

{

"create_timestamp": 113123,

"customerIdentifier": "ifAPi5AcF3",

"dimension_usage": [

{

"dimension": "admin_users",

"value": 3

}

],

"metering_failed": false,

"metering_response": "{\"Results\":[{\"UsageRecord\":{\"Timestamp\":\"2020-06-

24T04:04:53.776Z\",\"CustomerIdentifier\":\"ifAPi5AcF3\",\"Dimension\":\"admin_users\",\"Quantity\":3},\"MeteringRe

cordId\":\"35155d37-56cb-423f-8554-5c4f3e3ff56d\",\"Status\":\"Success\"}],\"UnprocessedRecords\":[]}"

}

List of parameters:

Parameter name

Description

WebsiteS3BucketName
S3 bucket to store the HTML files;

Mandatory if CreateRegistrationWebPage is set to true;

NewSubscribersTableName
Use custom name for the New Subscribers Table; Default value:

AWSMarketplaceSubscribers

AWSMarketplaceMeteringRecordsTableName
Use custom name for the Metering Records Table; Default value:

AWSMarketplaceMeteringRecords

TypeOfSaaSListing
allowed values: contracts_with_subscription, contracts, subscriptions;

Default value: contracts_with_subscription

ProductCode Product code provided from AWS Marketplace

EntitlementSNSTopic SNS topic ARN provided from AWS Marketplace

SubscriptionSNSTopic SNS topic ARN provided from AWS Marketplace

CreateRegistrationWebPage true or false; Default value: true

MarketplaceTechAdminEmail Email to be notified on changes requiring action

