Serverless SaaS API Integration Deployment Guide

Summary:

This guide is for independent software vendors (ISVs), selling SaaS products in AWS Marketplace. The guide covers the
Serverless SaaS application that automates the SaaS APl integration phase. It is a step-by-step guide to set up the
Serverless SaaS API integration using AWS Cloud9 service. It provides a web Ul based option to deploy the Serverless
application.

Pre-requisites:

You need to register as a paid Seller on AWS Marketplace, finalize a SaaS pricing model and publish a SaaS product to
limited view before you deploy the SaaS APl integration. To get started as Seller on AWS Marketplace, click here. You
can find information on supported Saa$S pricing models and how to list them here.

Below is the information you need from the AWS Marketplace Seller Operations teams before you proceed to next
steps:

e Product code - A unique identifier of your AWS Marketplace listing
e SNS topics associated with your listing.
Setting up your Cloud9 environment:

e Loginto your seller AWS account. Your user account should have admin or root access to the seller AWS account
to create new resources.

e Go to your Cloud9 launch page: https://console.aws.amazon.com/cloud9/home/product#

e Click on “Create environment” button to launch your environment

Developer Tools

AWS Cloud9
A cloud IDE for writing, running, and

New AWS Cloud9 environment

debugging code

de

Getting started

HOW it WO rkS Before you start

Create an environment
Create an AWS Cloud9 development environment on a new Amazon EC2 instance or connect it to your own Linux
server though SSH. Once you've created an AWS Cloud9 environment, you will have immediate access to a rich Working with environments
code editor, integrated debugger, and built-in terminal with pre-configured AWS CLI - all within your browser.

Using the AWS Cloud9 dashboard, you can create and switch between many different AWS Cloud9 environments, Workingjwithshe b

each one containing the custom tools, runtimes, and files for a specific project.

Working with AWS Lambda

Learn more [4

More resources

Benefits and features

FAQs

Code with iust a browser Code toaether in real time Enrim

https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-products.html
https://console.aws.amazon.com/cloud9/home/product

AWS Cloud9 Environments Create environment

Step 1

Name environment NEIITIE environment

Step 2
Environment name and description

Step 3
Name
The name needs to be unique per user. You can update it at any time in your environment settings.
Saas Integration Demo
Limit: 60 characters
Description

This will appear on your environment’s card in your dashboard. You can update it at any time in your environment settings.

Saas Integration Demo

Limit: 200 characters

e Leave the defaults for Environment type, Instance type, Platform, Cost Saving-Setting, and IAM Role.
e Create a new VPC and Subnet or use an existing VPC and Subnet for hosting the Cloud9 environment.

Step 1

Name environment Conﬁgu re setti ngs

Step 2
Configure settings Environment settings

Step 3 R
Environment type Info

Run your environment in a new EC2 instance or an existing server. With EC2 instances, you can connect directly through Secure
Shell (SSH) or connect via AWS Systems Manager (without opening inbound ports).

© Create a new EC2 instance for environment (direct access)
Launch a new instance in this region that your environment can access directly via SSH.

Create a new no-ingress EC2 instance for environment (access via Systems Manager)
Launch a new instance in this region that your environment can access through Systems Manager.

Create and run in remote server (SSH connection)
Configure the secure connection to the remote server for your environment.

Instance type

© tZmicro (1 GiB RAM + 1 vCPU)
Free-tier eligible. Ideal for educational users and exploration.

t3.small (2 GiB RAM + 2 vCPU)
Recommended for small-sized web projects.

mb5.large (8 GiB RAM + 2 vCPU)
Recommended for production and general-purpose development.

Other instance type
Select an instance type.

t3.nano

Platform

© Amazon Linux 2 (recommended)
Amazon Linux 1
Ubuntu Server 18.04 LTS

Cost-saving setting
Choose a predetermined amount of time to auto-hibernate your environment and prevent unnecessary charges. We recommend a
hibernation settings of half an hour of no activity to maximize savings.

After 30 minutes (default) v

1AM role
AWS Cloud9d creates a service-linked role for you. This allows AWS Cloudd to call ather AWS services on your behalf. You can
delete the role from the AWS IAM console once you no longer have any AWS Cloud9 environments. Learn more [

AWSServiceRoleForAWSCloudd

¥ Network settings

e Click ‘Next Step’, click on ‘Create Environment’. It will take about 5 minutes for your environment to be ready.

AWS Cloud9 Environments Create environment

Step 1

Name environment Review

Step 2
Configure settings Environment name and settings
Step 3
Review
Saas Integration Demo
Saas Integration Demo
EC2
t2.micro
subnet-09903b544F2831¢31
Amazon Linux 2 (recommended)
After 30 minutes (default)
AWSServiceRoleForAWSCloud9 (generated)
We recommend the following best practices for using your AWS Cloud9 environment
= Use source control and backup your environment frequently. AWS Cloud9 does not
perform automatic backups.
= Perform regular updates of software on your environment. AWS CloudS does not perform
automatic updates on your behalf.
= Turn on AWS CloudTrail in your AWS account to track activity in your environment. Learn
maore [4
= Only share your environment with trusted users. Sharing your environment may put your
AWS access credentials at risk. Learn more [4
Cancel Create environment
H .
Implementation:

Deploying the integration resources:

e Once your IDE is ready, go to the Github repository to clone it. Copy the URL.
Github Repo URL: https://github.com/aws-samples/aws-marketplace-serverless-saas-integration

e Click on the “Source Control” icon on the left side bar, then select “Clone Repository”. Paste the Github repo
URL from the previous step and press enter.

https://github.com/aws-samples/aws-marketplace-serverless-saas-integration

FS

o}

©

aws-marketplace-serverless-saas-integration

Go to file

e gjoshevski Mer) juest from Jose

ISSUE_TEMPLATE

/github.com/aws-samples/aws-marke

) Open with GitHub Desktop

gitignore [Download ZIP
CODE_OF_CONDUCT.md
CONTRIBUTING.md

SE
README.md

template.yaml

ile i in iew 0 un ools Window uppo review un
Fil Edit Find Vi G R Tool Wind S it Previ R

Welcome
Source Control

Developer Tools

Mo repositories found

Initialize Repository Aws cloudg
Welcome to your development environment

Clone Repository

AWS Cloud$ allows you to write, run, and debug your code with just a browser. You
can , write code for ;
with others in real time, and much more.

Example of serverless integratid
Saa$ products listed on the Al
Marketplace.

Releases

1

Packages

Getting started

Toolkit for AWS Cloud9

Upload

bash - "ip-10-0-204-117 e(x

TAMs :~fenvironment $

« AWS Cloudd File Edit Find View Go Run Tools Window Support Preview

X

Repository URL

Environment

Source Control

AWS

bash - "ip-100-2(=

TAMs:~/environment 3 []

e Select “Environment” from the left side bar and expand the cloned repository folder. You should now see all
your files. Change your shell directory to the folder by entering the following command in the terminal window:

cd aws-marketplace-serverless-saas-integration

« AWSCloud9 File Edit Find View Go Run Tools Window Support

o

=]

v Saas Integration De g~
hd aws-marketplace-serverle
hd misc
banner.png
Onbording-CF.png
Onbording.drawio
onbording.gif
Serverless-MP.drawi
Serverless-MP.png

Environment

Source Control

v src

AWS

v lambda-edge
| edge-redirect.js
i» package.json

¢ entitlement-sgs.js

v

grant-revoke-access
metering-hourly-job. bash - "ip-100-2(=

%> | metering-sqs.js TAMs :~/environment § []

b

b

package-lock.json

b

package.json

v

register-new-subsai

b

subscription-sgs. js
v web
favicon.ico
L@ index.html
logo.png
< soiptjs
] style.css
CODE_OF _CONDUCT.1
CONTRIBUTING.md
LICENSE
README.md
template, yaml
README.md

bash - "ip-100-2(=

TAMs ;~fenvironment % cd aws-marketplace-serverless-saas-integration
TAMs ; ~fenvironment faws-marketplace-serverless-saas-integration (master) % |:|

e Runthe command ‘ sam build ‘to build your application from the “template.yaml” file.

sam - "ip-10-0-20

TAMs:~/environment $ cd aws-marketplace-serverless-saas-integration
TAMs :~/environment/aws-marketplace-serverless-saas-integration (master) % sam build

Building codeuri: src/lambda-edge/ runtime: nodejsl2.x metadata: {} functions: ['lLambdaEdgeRedirectPostRequests']
Running ModejsMpmBuilder:NpmPack

Running NodejsNpmBuilder:CopyNpmrc

Running ModejsMpmBuilder:CopySource

Running ModejsNpmBuilder:NpmInstall

Running NodejsNpmBuilder:CleanUpNpmrc

Building codeuri: src/ runtime: nodejsl2.x metadata: {} functions: ['RegisterMewMarketplaceCustomer']

Running NodejsNpmBuilder:NpmPack

Running NodejsNpmBuilder:CopyNpmrc

Running ModejsMpmBuilder:CopySource

Running NodejsNpmBuilder:NpmInstall

Running ModejsMpmBuilder:CleanUpNpmrc

Building codeuri: src runtime: nodejsl2.x metadata: {} functions: ['EntitlementSQSHandler', 'SubscriptionSQSHandler', 'GrantOrRevokeAccess', 'Hourly', 'MeteringSQSHandler'
Running NodejsNpmBuilder:NpmPack

Running ModejsMpmBuilder:CopyNpmrc

Running NodejsNpmBuilder:CopySource

Running ModejsNpmBuilder:NpmInstall

Running ModejsNpmBuilder:CleanUpNpmrc

Build Succeeded

SAM CLI update available (1.23.@); (1.19.@ installed)
To download: https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
TAMs :~/environment/aws-marketplace-serverless-saas-integration (master) § D

e Once your application is built, you need an S3 bucket to package and deploy it. Go to the S3 console to create a
bucket: https://s3.console.aws.amazon.com/s3/home?region=us-east-1 . Choose the “Create bucket” option
and use the default settings to create a new S3 bucket.

o

e Run the following command to package the application and upload it to the newly created S3 bucket. Replace
the placeholder value with your S3 bucket name.

sam package --output-template-file packaged.yaml --s3-bucket <DEPLOYMENT S3BUCKET PLACEHOLDER VALUE>

https://s3.console.aws.amazon.com/s3/home?region=us-east-1

0 U PSPV UV Y

TAMs :~/environment/aws-marketplace-serverless-saas-integration (master) $ sam package --output-template-file packaged.yaml --s3-bucket sgujaran-awsmpmcomgd
Successfully packaged artifacts and wrote output template to file packaged.yaml.
Execute the following command to deploy the packaged template

sam deploy --template-file /home/ec2-user/environment/aws-marketplace-serverless-saas-integration/packaged.yaml --stack-name <YOUR STACK NAME:

TAMs :~fenvironment/aws-marketplace-serverless-saas-integration (master) $

e To deploy the application, replace the placeholder values in the following command with the values relevant to
your Saas listing. It may take about 10 minutes for the stack to be created. You will see a Success message on
completion.

sam deploy --template-file packaged.yaml --stack-name --capabilities CAPABILITY_IAM --region us-east-
1 --parameter-overrides ParameterKey=WebsiteS3BucketName,ParameterValue=
ParameterKey=ProductCode,ParameterValue=<MARKETPLACE_PRODUCT_CODE>
ParameterKey=EntitlementSNSTopic,ParameterValue=<MARKETPLACE_ENTITLEMENT_SNS_TOPIC>
ParameterKey=SubscriptionSNSTopic,ParameterValue=<MARKETPLACE_SUBSCRIPTION_SNS_TOPIC>
ParameterKey=MarketplaceTechAdminEmail,ParameterValue=

Notel:The green placeholder value are user-defined. Choose a unique name for stack and website S3 bucket. The
Marketplace Tech Admin email will be the email you want the notifications to be sent. The red placeholder values are
provided by the AWS Marketplace Seller Operations team.

Notel: This sample command is for a Saa$S Contract with consumption pricing model. It creates a static landing page and
is the default option. You can customize the input parameters based on your pricing model and requirements. A list of all
input parameter options is available at end of this document. The command should be executed in one line.

Note3: The WebsiteS3BucketName should be unique and there should not be an existing bucket with the same name.
The Website S3 bucket is different than the Deployment S3 Bucket you created earlier for packaging the application. The
Website S3 bucket is created automatically when you launch the stack.

Note4: Stack names are unique. If your stack fails, make sure to update the stack name before you launch a new one.

Example:

sam deploy --template-file packaged.yaml --stack-name WUPHFdemo08 --capabilities CAPABILITY_IAM --region us-east-
1 --parameter-overrides ParameterKey=WebsiteS3BucketName,ParameterValue=sgujaran-wuphfdemo07
ParameterKey=ProductCode,ParameterValue=2p409vwjybxwn3pd5tcrz4xbw
ParameterKey=EntitlementSNSTopic,ParameterValue=arn:aws:sns:us-east-1:287250355862:aws-mp-
entitlement-notification-2p409vwjybxwn3pd5tcrz4xbw
ParameterKey=SubscriptionSNSTopic,ParameterValue=arn:aws:sns:us-east-1:287250355862:aws-mp-subscription-
notification-2p409vwjybxwn3pd5tcrz4xbw
ParameterKey=MarketplaceTechAdminEmail,ParameterValue=sgtestemail@amazon.com

TAMsi~/environment/aus-marketplace-serverless-saas-integration (master) $ sam deploy --template-file packaged.yaml --stack-name WUPHFdemo@8 --capabilities CAPABILITY_IAM --region us-east-1 --parameter-overrides ParameterKey=Websites
3BucketName, Parametervalue=sgujaran-wuphfdemod? Parameterkey=ProductCode,ParameterValue=2pa@gviiybxnn3pdsterzaxbw Parameterkey-EntitlementSNSTopic,ParameterValue=arn:aws: sns:us-cast-1:287250355862: aws-mp-entitlement-notification-2p4
@9vwiybxun3pdSterzaxbw ParameterKey=SubscriptionSHSTopic,ParameterValue=arn:aws: snsus-east-1: 287258355862 aws-mp-subscription-notification-2p4B9vwiybxwn3pdSterzaxbw ParameterKey=MarketplaceTechAdminEmail,ParameterValue=sgtestemail@
amazon. cof

bash - "ip-10.0.2(*

Successfully created/updated stack - WUPHFdemo®8 in us-east-1
——

TAMs :~/environment/aws-marketplace-serverless-saas-integration (master) $

e The MarketplaceTechAdmin email address you provided above will receive an email notification to confirm
subscription to the Support SNS topic. This SNS topic will send out information on new subscribers and
subscription/entitlement updates. Confirm your subscription to the SNS topic.

Thu 5/6/2021 12:43 PM
AWS Notifications <no-reply@sns.amazonaws.com>

AWS Notification - Subscription Confirmation

To Gujaran, Sumeet

You have chosen to subscribe to the topic:
arn:aws:sns:us-east-1:297512042063: WUPHFdemo08-SupportSNSTopic-ZOVSLCIBK3P4

To confirm this subscription, click or visit the link below (If this was in error no action 1s necessary):
Confirm subscription

Please do not reply directly to this email. If you wish to remove yourself from receiving all future SNS subscription confirmation
requests please send an email to sns-opt-out

e Once the stack has been created, you will proceed to set up your landing page. Obtain the API gateway endpoint
that was created by the stack. Go to: https://console.aws.amazon.com/apigateway/main/apis?region=us-east-1
and copy the API Gateway ID.

https://console.aws.amazon.com/apigateway/main/apis?region=us-east-1

APis TN
Q 1 @
Name ry Description v ID v Protocol v Endpoint type Created v
[+] WUPHFdemo08 fz758%edb0 REST Edge 2021-05-06
=

Replace the API-ID for the baseURL in Line 1 of the “script.js” file (landing page) in the “web” folder of the

repository. Save the changes to the script.js file by using the File tab - Save or CTRL+S keys.

Saas Integration Demo

L

aws-marketplace-serverless-saas-integration

misc

=

=
=
=

banner.png
Onbording-CF.png
Onbording. drawio
onbording.gif
Serverless-MP. drawio

Serverless-MP.png

arc

lambda-edge

4» | edge-redirect.js

4» | package.json

entilement-sgs. js
grant-revoke-access-to-product. js
metering-hourly-job. js
metering-sgs.js

package-ock.json

package.json
register-new-subscriber.js

subscription-sgs. js

web

E¥mEm

favicon.ico

index. himl

logo.png

script.js &""

style.css

CONF OF COMDLICT.md

B script.js #

1 const baseUrl = 'https://BPI-ID.execute-api.us-east-1.amazonaws.com/Prods/"'; // : This needs to be replaced
2 const form = document.getElementsByClassName('form-signin')[8];
3
4 const showflert = (cssClass, message) => {
5 const html = ~
6 <div class="alert alert-%{cssClass} alert-dismissible" role="alert">
7 <strong:${messagel}
8 <button class="close" type="button" data-dismiss="alert" aria-label="Close">
g <szpan aria-hidden="true"»=x<{/spanz
1a </button>
11 <fdive";
12
13 document.queryselector('#alert').innerHTML += html;
14 1
15
16 const formTolSOM = (elements) =» [].reduce.call(elements, (data, element) => {
17 data[element.name] = element.value;
18 return data;
19 3, {3
26
21 const getUrlParameter = (name) = {
22 name = name.replace(f[\[1/, "‘\[').replace(S[V11/, "\M\1');
23 const regex = new RegExp([\\?&]%{name}=(["&H#]1*)");
L 24 const results = reegex.exec(location.search):

e Copy the landing page files to the website S3 bucket used by the stack using the following command:

aws s3 cp ./web/ s3://<WEBSITE_BUCKET _NAME>/ --recursive

Replace the placeholder value with the website S3 bucket name you provided during stack creation.

python2 - "ip-104 =

TAMs :~/environment/aws-marketplace-serverless-saas-integration (master) % aws s3 cp ./web/ s3://sgujaran-wuphfdemo®7/ --recursive
upload: web/index.html to s3://sgujaran-wuphfdemo®7?/index.html

upload: web/logo.png to s3://sgujaran-wuphfdemo®7/logo.png

upload: web/style.css to s3://sgujaran-wuphfdemo®7/style.css

upload: web/script.js to s3://sgujaran-wuphfdemo@7/script.js

upload: web/fawvicon.ico to s3://sgujaran-wuphfdemo®7/favicon.ico

TAMs:~/environment/aws-marketplace-serverless-saas-integration (master) % [

e Your integration is now ready for use. Since we use Cloudfront distribution to ensure low latency for the landing
page, the Saas fulfilment URL is the Cloudfront CName (domain name) of the distribution created by the stack.

e Go to the Cloudfront console and get the domain name here:
https://console.aws.amazon.com/cloudfront/home?region=us-east-1.

e Provide the domain name to the AWS Marketplace Seller Operations team to publish to your limited listing.

Important: On March 23, 2021, CloudFront will begin migrating the Certificate Authority for the *.cloudfront net certificate. For more information, refer to the AWS Knowledge Center.

CloudFront Distributions

Create Distribution Distribution Settings Disable c &% 0 &
Viewing 1 Web v Enabled v
Delivery Methed ID - Domain Name Comment Origin CNAMEs Status
@ web E30BG5GEP4V16M dEE\z\kvﬁEg:_u cloudfront net Cloudfront distribution for serverless website sgujaran-wuphfdemo07 s3.amazonaws. - Deployed

SaaS URL format: https://<domain name>
Example: https://d142rocbcrghws.cloudfront.net

https://console.aws.amazon.com/cloudfront/home?region=us-east-1%20.

Grant and revoke access to your product:
Grant access to new subscribers:

Once the resolveCustomer endpoint returns a successful response, the SaaS vendor must provide the new subscriber
with access to the solution. Depending on the SaaS pricing model, we have defined different conditions in the grant-
revoke-access-to-product.js stream handler that is executed on adding new or updating existing rows in
AWSMarketplaceSubscribers DynamoDB table.

When a new environment needs to be provisioned or an existing environment needs to be updated, the
MarketplaceTechAdmin email address (The email address you provided during deployment) will receive an email
notification.

When successful response is received for the GetEntitlementAPI call for SaaS Contract pricing model or after receiving
subscribe-success message from the Subscription SNS Topic for SaaS subscriptions pricing model in the subscription-sqgs-
handler.js., the condition “success” is met which will execute the grant-revoke-access-to-product.js to add or update
rows in the DynamoDB table.

Sample New Subscriber notification:

2 Reply G Reply All & Forward

Mon 3/29/2021 11:30 AM
AWS Notifications <no-reply@sns.amazonaws.com>
New AWS Marketplace Subscriber

To Gujaran, Sumeet

Grant access to new Saa$S customer:

{"productCode":"2p40Svwjybxwn3pdStcrzdaxbw","successfully _subscribed":true,"contactEmail":"sgujaran@amazo
n.com","created":"1617031810232","companyName":"AWS
Test","subscription_expired":false,"contactPerson™:"Sumeet","entitlement":"{\"Entitlements\":[{\"ProductCode\":\
"2p409vwjybxwn3pdStcrzaxbw\",\"Dimension\":\"wuphf\",\"Customeridentifier\":\"CbGso7gbiet\",\"Vvalue\":{\"I
ntegerValue\":2},\"ExpirationDate\":\"2021-04-
28T17:18:58.781Z\"}]}","customerldentifier":"CbGso7gbieE","contactPhone":"9292685011"}

If you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:
https://sns.us-east-1.amazonaws.com/unsubscribe.html?SubscriptionArn=arn:aws:sns:us-east-
1:297512042063:WUPHFdemo-SupportSNSTopic-260ITADLS16P:78555ba3-5bce-4046-936a-
b38a5c8bcad7&Endpoint=sgujaran@amazon.com

Please do not reply directly to this email. If you have any questions or comments regarding this email, please
contact us at https://aws.amazon.com/support

Managed Saa$S Onboarding:

If you provide a managed onboarding experience, you should update the form submission ‘Thank you’ page using
register-new-subscriber.js as per your onboarding next steps. The file is in the ‘src’ folder.

Default Success message: 'Thank you for registering. Please check your email for a confirmation!'
Default Error message: 'Registration data not valid. Please try again, or contact support!'

Note: Buyers do not receive an email notification of landing page form submission. The email should be sent by you to
initiate the onboarding process.

Automated SaaS application provisioning:

To provide automated access to your application on signup, you can redirect the user from the default landing page to
your application page, or you can use your own registration landing page.

To use your existing SaaS registration page, you should call the register new subscriber endpoint after collecting the
data.

The registration landing page should identify and accept the x-amzn-marketplace-token token in the form data from
AWS Marketplace with the customer’s identifier for billing. It should then pass that token value to the AWS Marketplace
Metering Service and AWS Marketplace Entitlement Service APIs to resolve for the unique customer identifier and
corresponding product code.

In this solution, we created a CloudFront Distribution, which can be configured to use domain/CNAME by your choice.
The POST request coming from AWS Marketplace is intercepted by the Edge src/lambda-edge/edge-redirect.js file,
which transforms the POST request to GET request, and passes the x-amzn-marketplace-token in the query string.

We have created a static HTML landing page hosted on S3 which takes the user inputs collected by the HTML form and
submits them to marketplace/customer endpoint. The handler for the marketplace/customer endpoint is defined in the
src/register-new-subscriber.js file, where we call the resolveCustomer and validate the token. If the token is valid the
customer record is created in the AWSMarketplaceSubscribers DynamoDB table and the new customer data is stored.

Update entitlement levels to new subscribers (SaaS Contracts and CCP only):

Each time the entitlement is updated, we receive a message on the SNS topic. The lambda function entitlement-sgs.js on
each message is calling the marketplaceEntitlementService and storing the response in the AWSMarketplaceSubscribers
dynamoDB.

We are using the same DynamoDB stream to detect changes in the entitlement for SaaS contracts. When the
entitlement is updated, an email notification is sent to the MarketplaceTechAdmin.

Revoke access to customers with expired contracts and cancelled subscriptions:

The revoke access logic is implemented in a similar manner as the grant access logic. When the contract expires or the
subscription is cancelled, the MarketplaceTechAdmin email address will receive an email notification.

AWS Marketplace strongly recommends automating the access and environment management which can be achieved
by modifying the grant-revoke-access-to-product.js function.

Reporting Usage:

For SaaS subscriptions, the SaaS provider must meter for all usage, and then, customers are billed by AWS based on the
metering records provided. For SaaS contract with consumption, you only meter for usage beyond a customer’s contract
entitlements. When your application meters usage for a customer, your application is providing AWS with a quantity of
usage accrued. Your application meters for the pricing dimensions that you defined when you created your product,
such as gigabytes transferred or hosts scanned in a given hour.

We have created MeteringSchedule CloudWatch Event rule that is triggered every hour. The metering-hourly-job.js gets
triggered by this rule and it's querying all of the pending/unreported metering records from the
AWSMarketplaceMeteringRecords table using the PendingMeteringRecordsindex. All of the pending records are
aggregated based on the customerldentifier and dimension name, and sent to the SQSMetering queue.

For SaaS subscription and SaaS Contract with consumption pricing model, the records in the
AWSMarketplaceMeteringRecords table are expected to be inserted programmatically by your SaaS application. In this
case you will have to give permissions to the service in charge of collecting usage data in your existing SaaS product to
be able to write to AWSMarketplaceMeteringRecords table.

The lambda function metering-sgs.js is sending all of the queued metering records to the AWS Marketplace Metering
Service. After every call to the batchMeterUsage endpoint the rows are updated in the
AWSMarketplaceMeteringRecords table, with the response returned from the Metering Service, which can be found in
the metering_response field. If the request was unsuccessful the metering_failed value with be set to true and you will
have to investigate the issue the error will be also stored in the metering_response field.

The new records in the AWSMarketplaceMeteringRecords table should be stored in the following format:

{

“create_timestamp": 113123,
"customerldentifier": "ifAPi5AcF3",
"dimension_usage": [

"dimension": "users",
"value": 3

b

"dimension": "admin_users",
"value": 1

I

"metering_pending": "true"

The create_timestamp is the sort key and customerldentifier is the partition key, and they are both forming the Primary
key in the AWSMarketplaceMeteringRecords table.
After the metering record is submitted to AWS Marketplace Metering Service, it will be updated and will look like this:

{

“create_timestamp": 113123,

“customerldentifier": "ifAPi5AcF3",

"dimension_usage": [

{

“dimension": "admin_users",

"value": 3

}

A

"metering_failed": false,

"metering_response": "{\"Results\":[{\"UsageRecord\":{\"Timestamp\":\"2020-06-

24T04:04:53.7762\" \ "Customerldentifier\":\"ifAPi5AcF3\",\"Dimension\":\"admin_users\",\"Quantity\":3},\ "MeteringRe
cordld\":\"35155d37-56¢cb-423f-8554-5c4f3e3ff56d\",\"Status\":\"Success\"}],\"UnprocessedRecords\":[]}"
}

List of parameters:

Parameter name Description

S3 bucket to store the HTML files;

WebsiteS3BucketName
Mandatory if CreateRegistrationWebPage is set to true;

Use custom name for the New Subscribers Table; Default value:

NewSubscribersTableN
ewsubscribers fableame AWSMarketplaceSubscribers

Use custom name for the Metering Records Table; Default value:

AWSMarketplaceMeteringRecordsTableName
P & AWSMarketplaceMeteringRecords

allowed values: contracts_with_subscription, contracts, subscriptions;

TypeOfSaaSListin
P & Default value: contracts_with_subscription

ProductCode Product code provided from AWS Marketplace
EntitlementSNSTopic SNS topic ARN provided from AWS Marketplace
SubscriptionSNSTopic SNS topic ARN provided from AWS Marketplace
CreateRegistrationWebPage true or false; Default value: true

MarketplaceTechAdminEmail Email to be notified on changes requiring action

