FROM ubuntu:16.04 LABEL maintainer="Amazon AI" # Specify accept-bind-to-port LABEL for inference pipelines to use SAGEMAKER_BIND_TO_PORT # https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-real-time.html LABEL com.amazonaws.sagemaker.capabilities.accept-bind-to-port=true # Specify multi-models LABEL to indicate container is capable of loading and serving multiple models concurrently # https://docs.aws.amazon.com/sagemaker/latest/dg/build-multi-model-build-container.html LABEL com.amazonaws.sagemaker.capabilities.multi-models=true ARG TF_URL=https://aws-tensorflow-binaries.s3-us-west-2.amazonaws.com/tensorflow/r2.3_aws/20210813_093824/cpu/py37/tensorflow_cpu-2.3.4-cp37-cp37m-manylinux2010_x86_64.whl ARG ESTIMATOR_URL=https://aws-tensorflow-binaries.s3-us-west-2.amazonaws.com/estimator/r2.3_aws/20210813_093824/tensorflow_estimator-2.3.0-py2.py3-none-any.whl # The smdebug pipeline relies for following format to perform string replace and trigger DLC pipeline for validating # the nightly builds. Therefore, while updating the smdebug version, please ensure that the format is not disturbed. ARG SMDEBUG_VERSION=1.0.9 ARG MMS_VERSION=1.1.5 ARG MX_URL=https://aws-mxnet-pypi.s3-us-west-2.amazonaws.com/1.6.0/aws_mxnet_mkl-1.6.0-py2.py3-none-manylinux1_x86_64.whl ARG PYTHON=python3 ARG PYTHON_PIP=python3-pip ARG PIP=pip3 ARG PYTHON_VERSION=3.6.8 ENV PYTHONDONTWRITEBYTECODE=1 \ PYTHONUNBUFFERED=1 \ LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/lib" \ PYTHONIOENCODING=UTF-8 \ LANG=C.UTF-8 \ LC_ALL=C.UTF-8 \ TEMP=/home/model-server/tmp RUN apt-get update \ && apt-get -y install --no-install-recommends \ build-essential \ ca-certificates \ curl \ git \ libopencv-dev \ openjdk-8-jdk-headless \ vim \ wget \ zlib1g-dev \ ffmpeg \ && apt-get clean \ && rm -rf /var/lib/apt/lists/* RUN wget https://www.python.org/ftp/python/$PYTHON_VERSION/Python-$PYTHON_VERSION.tgz \ && tar -xvf Python-$PYTHON_VERSION.tgz \ && cd Python-$PYTHON_VERSION \ && ./configure \ && make \ && make install \ && apt-get update \ && apt-get install -y --no-install-recommends \ libreadline-gplv2-dev \ libncursesw5-dev \ libssl-dev \ libsqlite3-dev \ tk-dev \ libgdbm-dev \ libc6-dev \ libbz2-dev \ && make \ && make install \ && rm -rf ../Python-$PYTHON_VERSION* \ && ln -s /usr/local/bin/pip3 /usr/bin/pip RUN ln -s $(which ${PYTHON}) /usr/local/bin/python RUN ${PIP} --no-cache-dir install --upgrade \ pip \ setuptools WORKDIR / RUN ${PIP} install --no-cache-dir \ ${MX_URL} \ git+git://github.com/dmlc/gluon-nlp.git@v0.9.0 \ gluoncv==0.6.0 \ multi-model-server==$MMS_VERSION \ keras-mxnet==2.2.4.1 \ #numpy==1.17.4 \ onnx==1.4.1 \ numpy==1.18.5 \ scipy==1.4.1 \ scikit-learn==0.23 \ tensorflow==2.3 \ openl3==0.4.1 \ audio2numpy \ ffmpeg-python \ "sagemaker-mxnet-inference<2" # This is here to make our installed version of OpenCV work. # https://stackoverflow.com/questions/29274638/opencv-libdc1394-error-failed-to-initialize-libdc1394 # TODO: Should we be installing OpenCV in our image like this? Is there another way we can fix this? RUN ln -s /dev/null /dev/raw1394 RUN useradd -m model-server \ && mkdir -p /home/model-server/tmp \ && chown -R model-server /home/model-server COPY mms-entrypoint.py /usr/local/bin/dockerd-entrypoint.py COPY config.properties /home/model-server RUN chmod +x /usr/local/bin/dockerd-entrypoint.py RUN curl https://aws-dlc-licenses.s3.amazonaws.com/aws-mxnet-1.6.0/license.txt -o /license.txt EXPOSE 8080 8081 #RUN mkdir test_video #COPY ./1_1718.mp4 test_video/ #COPY ./test.py test_video/ #COPY model/code/entrypoint.py /usr/local/bin/entrypoint.py ENTRYPOINT ["python", "/usr/local/bin/dockerd-entrypoint.py"] CMD ["multi-model-server", "--start", "--mms-config", "/home/model-server/config.properties"]