# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import logging import functools import random import numpy as np import torch from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.solver import make_lr_scheduler from maskrcnn_benchmark.solver import make_optimizer from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.engine.trainer import do_train from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process from maskrcnn_benchmark.utils.imports import import_file from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.miscellaneous import mkdir from maskrcnn_benchmark.engine.tester import test # Import SMDataParallel modules for PyTorch. from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP import smdistributed.dataparallel.torch.distributed as dist dist.init_process_group() # SMDataParallel: Initialize if not dist.is_initialized(): dist.init_process_group() # See if we can use apex.DistributedDataParallel instead of the torch default, # and enable mixed-precision via apex.amp try: from apex import amp use_amp = True except ImportError: print('Use APEX for multi-precision via apex.amp') use_amp = False # try: # from apex.parallel import DistributedDataParallel as DDP # use_apex_ddp = True # except ImportError: # print('Use APEX for better performance') use_apex_ddp = False def test_and_exchange_map(tester, model, distributed): results = tester(model=model, distributed=distributed) # main process only #if is_main_process(): if dist.get_rank() ==0: # Note: one indirection due to possibility of multiple test datasets, we only care about the first # tester returns (parsed results, raw results). In our case, don't care about the latter map_results, raw_results = results[0] bbox_map = map_results.results["bbox"]['AP'] segm_map = map_results.results["segm"]['AP'] else: bbox_map = 0. segm_map = 0. if distributed: map_tensor = torch.tensor([bbox_map, segm_map], dtype=torch.float32, device=torch.device("cuda")) torch.distributed.broadcast(map_tensor, 0) bbox_map = map_tensor[0].item() segm_map = map_tensor[1].item() return bbox_map, segm_map def mlperf_test_early_exit(iteration, iters_per_epoch, tester, model, distributed, min_bbox_map, min_segm_map): if iteration > 0 and iteration % iters_per_epoch == 0: epoch = iteration // iters_per_epoch logger = logging.getLogger('maskrcnn_benchmark.trainer') logger.info("Starting evaluation...") bbox_map, segm_map = test_and_exchange_map(tester, model, distributed) # necessary for correctness model.train() logger.info('bbox mAP: {}, segm mAP: {}'.format(bbox_map, segm_map)) # terminating condition if bbox_map >= min_bbox_map and segm_map >= min_segm_map: logger.info("Target mAP reached, exiting...") return True return False def train(cfg, args): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) if use_amp: # Initialize mixed-precision training use_mixed_precision = cfg.DTYPE == "float16" amp_opt_level = 'O1' if use_mixed_precision else 'O0' model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) if args.distributed: # if use_apex_ddp: # model = DDP(model, delay_allreduce=True) # else: # SMDataParallel: Wrap the PyTorch model with SMDataParallel’s DDP model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False) #model = DDP(model) print("model parameter size: ", sum(p.numel() for p in model.parameters() if p.requires_grad)) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR # SMDataParallel: Save model on master node. save_to_disk = dist.get_rank() == 0 checkpointer = DetectronCheckpointer( cfg, model, optimizer, scheduler, output_dir, save_to_disk ) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) data_loader, iters_per_epoch = make_data_loader( cfg, is_train=True, is_distributed=args.distributed, start_iter=arguments["iteration"], data_dir = args.data_dir ) checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD # set the callback function to evaluate and potentially # early exit each epoch if cfg.PER_EPOCH_EVAL: per_iter_callback_fn = functools.partial( mlperf_test_early_exit, iters_per_epoch=iters_per_epoch, tester=functools.partial(test, cfg=cfg), model=model, distributed=args.distributed, min_bbox_map=cfg.MIN_BBOX_MAP, min_segm_map=cfg.MIN_MASK_MAP) else: per_iter_callback_fn = None do_train( model, data_loader, optimizer, scheduler, checkpointer, device, checkpoint_period, arguments, use_amp, cfg, per_iter_end_callback_fn=per_iter_callback_fn, ) return model def test_model(cfg, model, args): if args.distributed: model = model.module torch.cuda.empty_cache() # TODO check if it helps iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=args.distributed, data_dir = args.data_dir) for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ) #synchronize() def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=dist.get_local_rank()) parser.add_argument( "--seed", help="manually set random seed for torch", type=int, default=99 ) parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) parser.add_argument( "--bucket-cap-mb", dest="bucket_cap_mb", help="specify bucket size for SMDataParallel", default=25, type=int, ) parser.add_argument( "--data-dir", dest="data_dir", help="Absolute path of dataset ", type=str, default=None ) parser.add_argument( "--dtype", dest="dtype" ) parser.add_argument( "--spot_ckpt", default=None ) args = parser.parse_args() keys = list(os.environ.keys()) args.data_dir = os.environ['SM_CHANNEL_TRAIN'] if 'SM_CHANNEL_TRAIN' in keys else args.data_dir print("dataset dir: ", args.data_dir) # Set seed to reduce randomness random.seed(args.seed + dist.get_local_rank()) np.random.seed(args.seed + dist.get_local_rank()) torch.manual_seed(args.seed + dist.get_local_rank()) torch.cuda.manual_seed(args.seed + dist.get_local_rank()) # num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 num_gpus = dist.get_world_size() args.distributed = num_gpus > 1 if args.distributed: # SMDataParallel: Pin each GPU to a single SMDataParallel process. torch.cuda.set_device(args.local_rank) # torch.distributed.init_process_group( # backend="nccl", init_method="env://" # ) #synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.DTYPE=args.dtype # grab checkpoint file to start from os.system(f"aws s3 cp {args.spot_ckpt} /opt/ml/checkpoints/{args.spot_ckpt.split('/')[-1]}") cfg.MODEL.WEIGHT = f"/opt/ml/checkpoints/{args.spot_ckpt.split('/')[-1]}" cfg.freeze() print ("CONFIG") print (cfg) output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) logger = setup_logger("maskrcnn_benchmark", output_dir, dist.get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) model = train(cfg, args) if not args.skip_test: if not cfg.PER_EPOCH_EVAL: test_model(cfg, model, args) if __name__ == "__main__": main()