{"cells": [{"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "d8386db0-6f9a-45ae-af2c-c55ad12f934b"}, "cell_type": "markdown", "source": "\n\n

IBM-AWS Immersion Day Lab 4

Notebook 3 : Risk Index Prediction with Decision Tree

"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "6f47a209-6f2e-424e-8b4f-02165d0709fa"}, "cell_type": "markdown", "source": "In this lab exercise, you will learn a popular machine learning algorithm, Decision Tree. You will use this classification algorithm to build a model from historical data of region and their total cases. Then you use the trained decision tree to predict the Risk Index of a region."}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "15d643e2-8936-4d08-aa08-d6edee47d0c5"}, "cell_type": "markdown", "source": "### Import required libraries"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "3274f764-7be0-4748-be5b-cf567a98a7a5"}, "cell_type": "code", "source": "import numpy as np \nimport pandas as pd\nfrom sklearn.tree import DecisionTreeClassifier", "execution_count": 1, "outputs": []}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "274a692a-b847-4faf-b59d-4b9038d4ea6b"}, "cell_type": "markdown", "source": "### Load the dataset from Amazon S3 into pandas dataframe\n\n>Note: you can add the comment `# @hidden_cell` in the below code cell. Cloud Pak for Data will automatically hide the cell before sharing it."}, {"metadata": {"id": "afcc08f5b30d45ce94af85ee374db75b"}, "cell_type": "code", "source": "", "execution_count": 2, "outputs": [{"output_type": "execute_result", "execution_count": 2, "data": {"text/plain": " REGION Total_cases Risk_Index\n0 Brussels 119 1\n1 Flanders 461 3\n2 Wallonia 383 2\n3 Brussels 238 1\n4 Flanders 794 3\n5 Wallonia 568 2\n6 Brussels 219 1\n7 Flanders 1414 3\n8 Wallonia 654 2\n9 Brussels 346 1", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
REGIONTotal_casesRisk_Index
0Brussels1191
1Flanders4613
2Wallonia3832
3Brussels2381
4Flanders7943
5Wallonia5682
6Brussels2191
7Flanders14143
8Wallonia6542
9Brussels3461
\n
"}, "metadata": {}}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "9f0ee40d-3061-4602-a446-cc7f36005561"}, "cell_type": "code", "source": "my_data = data_df_1", "execution_count": 3, "outputs": []}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "b2b59ac4-c19b-48c5-baed-67e6da1db61b"}, "cell_type": "markdown", "source": "#### Size of the Data"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "26ecd4a2-63b8-4e1d-bc31-50f075167878"}, "cell_type": "code", "source": "my_data.shape", "execution_count": 4, "outputs": [{"output_type": "execute_result", "execution_count": 4, "data": {"text/plain": "(2220, 3)"}, "metadata": {}}]}, {"metadata": {"id": "70d4a16f-098f-460d-9e45-b52286d29a4b"}, "cell_type": "markdown", "source": "
\n

Data Pre-processing

\n
"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "d7d5db06-4627-4428-b79c-ee8424f80247"}, "cell_type": "markdown", "source": "Using my_data read by pandas, declare the following variables:
\n\n"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "caef83bb-97ad-4949-a88b-25f4954d93bc"}, "cell_type": "markdown", "source": "Remove the column containing the target name since it doesn't contain numeric values."}, {"metadata": {"id": "cc52705b-0a84-4fc3-94c8-606728c7c433"}, "cell_type": "code", "source": "X = my_data[['REGION', 'Total_cases']].values\nX[0:5]", "execution_count": 5, "outputs": [{"output_type": "execute_result", "execution_count": 5, "data": {"text/plain": "array([['Brussels', 119],\n ['Flanders', 461],\n ['Wallonia', 383],\n ['Brussels', 238],\n ['Flanders', 794]], dtype=object)"}, "metadata": {}}]}, {"metadata": {"id": "7a9e7082-91bd-4bff-8f6b-63cd7ea32080"}, "cell_type": "markdown", "source": "As you may figure out, some features in this dataset are categorical such as __Brussels__ or __Wallonia__ or __Flanders__. Unfortunately, Sklearn Decision Trees do not handle categorical variables. But still we can convert these features to numerical values. __pandas.get_dummies()__\nConvert categorical variable into dummy/indicator variables."}, {"metadata": {"id": "ba760599-1c90-44ce-9941-781afa2c4c22"}, "cell_type": "code", "source": "from sklearn import preprocessing\nle_region = preprocessing.LabelEncoder()\nle_region.fit(['Brussels','Flanders', 'Wallonia'])\nX[:,0] = le_region.transform(X[:,0]) \n\nX[0:5]", "execution_count": 6, "outputs": [{"output_type": "execute_result", "execution_count": 6, "data": {"text/plain": "array([[0, 119],\n [1, 461],\n [2, 383],\n [0, 238],\n [1, 794]], dtype=object)"}, "metadata": {}}]}, {"metadata": {"id": "1cecc9fa-7c95-4922-9057-a88f01fb7b3d"}, "cell_type": "markdown", "source": "Now we can fill the target variable."}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "348f4912-7cb1-4e84-98c6-8e6374c50591"}, "cell_type": "code", "source": "y = my_data[\"Risk_Index\"]\ny[0:5]", "execution_count": 7, "outputs": [{"output_type": "execute_result", "execution_count": 7, "data": {"text/plain": "0 1\n1 3\n2 2\n3 1\n4 3\nName: Risk_Index, dtype: int32"}, "metadata": {}}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "47439b7a-79b2-48df-a20f-33e85deb5729"}, "cell_type": "markdown", "source": "
\n\n
\n

Setting up the Decision Tree

\n We will be using train/test split on our decision tree. Let's import train_test_split from sklearn.cross_validation.\n
"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "08ad05ed-bddc-4703-8376-52a6b71bd115"}, "cell_type": "code", "source": "from sklearn.model_selection import train_test_split", "execution_count": 8, "outputs": []}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "2ad33c33-3458-4db4-b209-9245007e5ed1"}, "cell_type": "markdown", "source": "Now train_test_split will return 4 different parameters. We will name them:
\nX_trainset, X_testset, y_trainset, y_testset

\nThe train_test_split will need the parameters:
\nX, y, test_size=0.3, and random_state=3.

\nThe X and y are the arrays required before the split, the test_size represents the ratio of the testing dataset, and the random_state ensures that we obtain the same splits."}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "031e8d4a-a85f-4baa-ae1d-156fc6061fbd"}, "cell_type": "code", "source": "X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.3, random_state=3)", "execution_count": 9, "outputs": []}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "27aa45a6-5d17-4ac9-880e-dc38416a9962"}, "cell_type": "code", "source": "print(X_trainset.shape, y_trainset.shape, sep=\"\\n\")", "execution_count": 10, "outputs": [{"output_type": "stream", "text": "(1554, 2)\n(1554,)\n", "name": "stdout"}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "909b8b54-e06b-4350-ac56-f7f39c0f9580"}, "cell_type": "code", "source": "print(X_testset.shape, y_testset.shape, sep=\"\\n\")", "execution_count": 11, "outputs": [{"output_type": "stream", "text": "(666, 2)\n(666,)\n", "name": "stdout"}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "fc0ab56e-1065-45e7-8bff-92b88ca67a9f"}, "cell_type": "markdown", "source": "
\n\n
\n

Modeling

\n We will first create an instance of the DecisionTreeClassifier called riskIndexTree.
\n Inside of the classifier, specify criterion=\"entropy\" so we can see the information gain of each node.\n
"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "68ac91f5-9ab0-43fb-92f4-94d9c99a5ac0"}, "cell_type": "code", "source": "riskIndexTree = DecisionTreeClassifier(criterion=\"entropy\", max_depth = 4)\nriskIndexTree", "execution_count": 12, "outputs": [{"output_type": "execute_result", "execution_count": 12, "data": {"text/plain": "DecisionTreeClassifier(criterion='entropy', max_depth=4)"}, "metadata": {}}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "c7b1db09-630d-4375-a048-40a482450dc6"}, "cell_type": "markdown", "source": "Next, we will fit the data with the training feature matrix X_trainset and training response vector y_trainset "}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "da434a28-75ac-4c9c-b22d-06058af47000"}, "cell_type": "code", "source": "riskIndexTree.fit(X_trainset,y_trainset)", "execution_count": 13, "outputs": [{"output_type": "execute_result", "execution_count": 13, "data": {"text/plain": "DecisionTreeClassifier(criterion='entropy', max_depth=4)"}, "metadata": {}}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "04516e2e-b81a-4a15-9131-ce252e732e97"}, "cell_type": "markdown", "source": "
\n\n
\n

Prediction

\n Let's make some predictions on the testing dataset and store it into a variable called predTree.\n
"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "10473bbf-c17c-4725-bd3c-0df8ac76579b"}, "cell_type": "code", "source": "predTree = riskIndexTree.predict(X_testset)", "execution_count": 14, "outputs": []}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "8aeffbaf-2a2d-49b4-9270-7b079de3c30e"}, "cell_type": "markdown", "source": "You can print out predTree and y_testset if you want to visually compare the prediction to the actual values."}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "scrolled": true, "id": "2e161903-a0ae-4a02-b25e-6f5d5b4e8373"}, "cell_type": "code", "source": "print (predTree [0:5])\nprint (y_testset [0:5])", "execution_count": 15, "outputs": [{"output_type": "stream", "text": "[2 2 1 2 3]\n1821 2\n1830 2\n1903 1\n1452 2\n175 3\nName: Risk_Index, dtype: int32\n", "name": "stdout"}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "ead57e9d-3018-4922-9bc4-23c580995953"}, "cell_type": "markdown", "source": "
\n\n
\n

Evaluation

\n Next, let's import metrics from sklearn and check the accuracy of our model.\n
"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "daf4c906-f6bb-437d-a59c-ab2aeb783894"}, "cell_type": "code", "source": "from sklearn import metrics\nimport matplotlib.pyplot as plt\nprint(\"DecisionTrees's Accuracy: \", metrics.accuracy_score(y_testset, predTree))", "execution_count": 16, "outputs": [{"output_type": "stream", "text": "DecisionTrees's Accuracy: 0.8663663663663663\n", "name": "stdout"}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "09e26483-87fa-4945-9b87-620b4c297890"}, "cell_type": "markdown", "source": "__Accuracy classification score__ computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true. \n\nIn multilabel classification, the function returns the subset accuracy. If the entire set of predicted labels for a sample strictly match with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.\n"}, {"metadata": {"id": "0deb6990-956f-40c7-8d75-851def88ef96"}, "cell_type": "markdown", "source": "
\n\n
\n

Visualization

\n Lets visualize the tree\n
"}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "d132b478-6a45-4988-89d9-f0a0ed67d575"}, "cell_type": "code", "source": "from sklearn.tree import DecisionTreeRegressor\nfrom sklearn import tree", "execution_count": 17, "outputs": []}, {"metadata": {"id": "a93fdea4bf624b918b2660b0a8bb7221", "scrolled": false}, "cell_type": "code", "source": "fig = plt.figure(figsize=(25,20))\n_ = tree.plot_tree(riskIndexTree, feature_names=my_data.columns[0:5], filled=True)", "execution_count": 18, "outputs": [{"output_type": "display_data", "data": {"text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAABYEAAARNCAYAAAAEko/OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5iU9dXG8e+hSVNUrIgoamyoIPbea9Ro7L2ACmLBQrF3jb33RuyxYqImlkRi7x2MFWKvqICylN3z/jEjrwRUyi7P7uz3c11eZtnZmZtJrjDcz3l+JzITSZIkSZIkSVJlalJ0AEmSJEmSJElS3bEEliRJkiRJkqQKZgksSZIkSZIkSRXMEliSJEmSJEmSKpglsCRJkiRJkiRVMEtgSZIkSZIkSapglsCSJEmSJEmSVMEsgSVJkiRJkiSpglkCS5IkSZIkSVIFswSWJEmSJEmSpApmCSxJkiRJkiRJFcwSWJIkSZIkSZIqmCWwJEmSJEmSJFUwS2BJkiRJkiRJqmCWwJIkSZIkSZJUwSyBJUmSJEmSJKmCWQJLkiRJkiRJUgWzBJYkSZIkSZKkCmYJLEmSJEmSJEkVzBJYkiRJkiRJkiqYJbAkSZIkSZIkVTBLYEmSJEmSJEmqYJbAkiRJkiRJklTBLIElSZIkSZIkqYJZAkuSJEmSJElSBbMEliRJkiRJkqQKZgksSZIkSZIkSRXMEliSJEmSJEmSKpglsCRJkiRJkiRVMEtgSZIkSZIkSapglsCSJEmSJEmSVMEsgSVJkiRJkiSpglkCS5IkSZIkSVIFswSWJEmSJEmSpApmCSxJkiRJkiRJFcwSWJIkSZIkSZIqmCWwJEmSJEmSJFUwS2BJkiRJkiRJqmCWwJIkSZIkSZJUwSyBJUmSJEmSJKmCWQJLkiRJkiRJUgWzBJYkSZIkSZKkCmYJLEmSJEmSJEkVzBJYkiRJkiRJkiqYJbAkSZIkSZIkVTBLYEmSJEmSJEmqYJbAkiRJkiRJklTBLIElSZIkSZIkqYJZAkuSJEmSJElSBbMEliRJkiRJkqQKZgksSZIkSZIkSRXMEliSJEmSJEmSKpglsCRJkiRJkiRVMEtgSZIkSZIkSapglsCSJEmSJEmSVMEsgSVJkiRJkiSpglkCS5IkSZIkSVIFswSWJEmSJEmSpApmCSxJkiRJkiRJFcwSWJIkSZIkSZIqmCWwJEmSJEmSJFUwS2BJkiRJkiRJqmCWwJIkSZIkSZJUwSyBJUmSJEmSJKmCWQJLkiRJkiRJUgWzBJYkSZIkSZKkCmYJLEmSJEmSJEkVzBJYkiRJkiRJkiqYJbAkSZIkSZIkVTBLYEmSJEmSJEmqYJbAkiRJkiRJklTBLIElSZIkSZIkqYJZAkuSJEmSJElSBbMEliRJkiRJkqQKZgksSZIkSZIkSRXMEliSJEmSJEmSKpglsCRJkiRJkiRVMEtgSZIkSZIkSapglsCSJEmSJEmSVMEsgSVJkiRJkiSpglkCS5IkSZIkSVIFswSWJEmSJEmSpApmCSxJkiRJkiRJFcwSWJIkSZIkSZIqmCWwJEmSJEmSJFUwS2BJkiRJkiRJqmCWwJIkSZIkSZJUwSyBJUmSJEmSJKmCWQJLkiRJkiRJUgWzBJYkSZIkSZKkCmYJLEmSJEmSJEkVzBJYkiRJkiRJkiqYJbAkSZIkSZIkVTBLYEmSJEmSJEmqYJbAkiRJkiRJklTBLIElSZIkSZIkqYJZAkuSJEmSJElSBbMEliRJkiRJkqQK1qzoAJIkSaoMrVq1+ryqqmr+onNUmpYtW34xduzYBYrOIUmSpIYrMrPoDJIkSaoAEZFZU110jIoTTZqSmVF0DkmSJDVcHgchSZIkSZIkSRXM4yAkSZJULwwaNIjB991H69at2XCDDejZsydbbb01HRfqCEDPnj1YbLHFGDjwaFq0aEF1dTV77bUn48aN47333mOPPfbgiCOOpEmTJoweM5oTjj+epk2b0m3F7rz37jvMOeec9Nx/fwbdcMMvZhg/fjwtWrT41ZyffvopAwYOBOCoI4+ka9euk7635FJLs+EGG7DKKivTo0ePWnhXJEmSpJlnCSxJkqR64+A+fVhvvfXYfY896NmzJ3POOSdXXnnFpO/369efgQMHsNhiiwFQXV3NE088AcA111zLjjvuwAYbbMCoUaM4rG9fTjzhBDbffDPOPvsczjjj9Km+5rfffsstt9zKyy+/TO/evVhllVV+NeN1113PCccfT8eOHenb93CuuurKSd9r27YtY6vG0rlz55l9KyRJkqRaYwksSZKkeuOKK69kwMCjOe3UUwD47rvv6NWrNwD9+h3F5198zmKLLcbw4cM5++xz6NatK0sttRQAb731Fvvuuw8Ac8wxBxMnTgRgicWXYMyYMXz44YdTvN5Pz927dy8OPrgPAF9++SVnnHHmZI87/fTTaNOmDQAff/wxCy+8MC1btmRs1djJHvfSiy9QXV3NDjvuyIYbblgbb4kkSZI00zwTWJIkSfVG7169ePihf3DffX8FmDQJfOWVV7D44osz/3zzM3z4cDp37syAAf356KOPJ/3s0ksvzUsvvQTA6NGjadbs/+cdBgzoz9lnnzPF6/XqdSBzzDEH11xzLQ899BA1NTVkJlVVVZP983MLLbQQH3/8MVVVVbScreVk34sImjVrRvPmzWvtPZEkSZJmlpPAkiRJqlfat2/PPPPMwxtvvDHZJPDuu+/G0UcPZODAo2nZsiUTJ05km222nvRz++/fkyOOOJJ77x3Md99/x3HHHjvpewsuuCDt27fnk08/mey1unXrRrdu3Rg3bhyDBw/m+eefZ/XVV5/sCIr/td9++3LMsccSEfQ97DDef/99brvtdnbeeSfOOPNMgmDDDTao5XdFkiRJmnGRmUVnkCRJUgWIiMya6qJjVJxo0pTMjKJzSJIkqeHyOAhJkiRJkiRJqmCWwJIkSWoQ9thzz8m+rss72j766CN69Og5xWsCbLX11vTq1ZsBAwYC8MADD7DzLruw3R//yCuvvMKQIUNYf4MN6dWrN0888USdZZQkSZKmlWcCS5IkqXDDhw/nggsuBGDllVeiU6dOXHrZZay6yqpMmDCBHXfcgTffHMppp53OWmutySWXXso6a6/DqquuwnXXXU91TTVHDxzIs88+yxNPPMmiiy5K586L0qJFC1q3bs1WW23FnnvtxU033jhNeRZeeGGuu+7aqZbAbdq0oaamhoUWWgiAJ598inPPOYcPPviAp59+huWW60Lbtm0YP348nTp1qrX3SJIkSZpRlsCSJEkq3BVXXEnr1q1p2bIlb7zxJp06dWLdddbl0EMPYa+992bJJZdkueW6cNxxxzJkyBDWXmttDj+8L3vvsw/XXnMN3333HaeddjorrtiNLbfcgu2335699t6b66+7joMO6sN8883HqqusOtlrnnDCiYwaNWrS1/vuuw9du3b9zay333YbEcFhh/Xl/fffZ9tt/8De++zLxIkTueXmm+jYsSPrrbcen332GSeccCLXXHN1rb9fkiRJ0vSwBJYkSVLhMpP99tuXJZdcEoAhQ4bQunUrAGpqagCI+P/daHPMMfsUz/HT9ydMmDDp382aNWPRRRfl9DPO4MY//3myx48bN46qqqpJX//0Or/lp9eZd955GTNmDBddfDEPP/QPRo4cyRlnnMmFF14AwFxzzUXVuKpfeypJkiRplrAEliRJUuEOPrgPxx1/PPPPNz+LLrooyy3XZYrHtJujHf369WeLLTaf9GsH7L8/vXr1prqmmoEDBvDss8/ywIMP8sQTT7LF5qXH7bDD9gwfPpx27dpN9nxnnfWnX8wzatQo+vcfwPPPv8BFF13MYYcdyj777sugG25gv/16MNtssxERdO3alS232IL9DziAqqoq9tl7b+677z4efPDvfD/qew495JBaeockSZKkGRd1uVBDkiRJjUdEZNZUF5ph0KBBdOzYkY033hgoLXgbePTRHHfssSyzzDKFZptR0aQpmRm//UhJkiRp6iyBJUmSVCvqQwlciSyBJUmSNLOaFB1AkiRJqk177LlnrT3XI488wpa//z3XXnstACNGjGCllVehV6/eDB48GIA11lyLXr16c/bZ50z6uX/9618st/wKtZZDkiRJmhmeCSxJkqTC3Xrrrfz734/Ttm1bzjvvXC655FJGjBhB+/btOeaYo/nj9tuzwvIrMOytYay/3vq88OILbPuHP9C1a1f22nsf/rjddnz99decdtqpk57zlFNOZdSoUYwdO5bzzz+Pfffbjw4LdmCTTTZms802m6Zcm2yyCc2bN+e9996b9Guzzz47Y6vG0rlzZwDatm3D+PHj6dRpYQDGjBnDo4/+k27dutbiOyRJkiTNOCeBJUmSVLiPP/6E5ZZbjsMP7wtAdXU1rVu3ZvB995GZZCYnnHA8G2+0EQsuuABXXXkl9933VwC6rrACffsexg8//MDIkSMBGDZsGE8/8zRt27alqqqKL774grFjx7L55ptNOi8Y4Msvv6Rv38Mn++eHH374xZyLLLIIQx77F5dfdhlnnHkmAA8/9BDXX38d99x7L2PHjuVPfzpr0u9DkiRJqg8sgSVJklS4/v37seaaa9D7oIP4+OOPee+99zj11FNo335uqquradOmDU2aNKFFixbMPvvstGjRgvETxgMwYcKEyf4NkJl0X7E7J510Itdddy2dOnXihuuv5+OPP6Zfv/6TPa6qqmqyf35NROlo3tatW/PTbo2ffq3dHO0YP348L7/yMscffwLPP/8Ct956a+29SZIkSdIM8jgISZIkFe6qq67inXfepXXr1sw111x8M/IbzjnnXD799LPf/Nlhb73FwIFH07JlS+aee24AunTpwvjx4znyyKMYPXo0J598EqeddjrV1dWsuuoqk352/vnn58orr/jF537xxRc5/4ILGDVqNAsttBBzzDEHN9wwiKpxVey6yy6MGjWKPgcfTKuWrejQoQPt2rXjwQceAEpnE++2224z+c5IkiRJMy9+mmCQJEmSZkZEZNZUz9LXHDFiBNdee91kZwFXmmjSlMyMonNIkiSp4bIEliRJUq0oogRuDCyBJUmSNLM8E1iSJEmSJEmSKpglsCRJkma5IUOGcO2119bqc67QtRvPPvssI0aMYKWVV6FXr94MHjyYTz/9lH3324/ddt+d8847H4Azz/wTvXr1ZuVVVuWhhx6aar71N9iQXr1688QTT/Djjz+y33492GLLLSc95qij+tGrV2+WXmZZ/vOf/0zxHIMGDWLrbbahV6/eDBs2jI8++ogePXqyx557TnrMeeedzyGHHEr//gMAuOuuu9hq661r9X2RJEmSLIElSZJU63r3PojRo0czevRoDjqoD2+++SbHHnscPXr05O233570uEGDBvHoo48CTCpHTznlVI46qh99+hxMdfW0Hy+xwgrLs/rqqwMw++yzM7ZqLJ07d6ZDhw7ccP313HrLLbz40osAHH30QK688go6d16UjTfeeIrnigjatm3D+PHj6dSpE61bt+b666+jffv2kx5z7rnncPnll7Hccl1Yeumlp3iOJk2a0Lp1awAWXHBBFl54Ya677v+L7/HjxzNs2DAuueRiWrVqxfDhw9lhhx2Yc845p/n3LEmSJE2LZkUHkCRJUuXZdts/cN9995GZ/OEP29CiRQvGjRtHmzZtuPvue1hzzTWm+nPDhg3j6WeeZvXVVufbb7/lk08+oVOnTgDceOONvPzyK5Meu846a7P99ttP8RyLLLIIQx77Fz/88AP79ejBX26/HYC7776b9dZdd9Lj3n77bZZYfAmaNm06xXOsu+66rLfeenz22WeccMKJXHPN1VPN+8gjj7DxRhtN9Xt77rkne+21Fy+//DIXXHAhp5xy8mTf/+abb5h33nkB6NhxIT7++GM6d+481eeSJEmSZoYlsCRJkmrdxhtvzP77H0BN1nDtNdfQt+/hnHTSibz//vv87W/3T3pcixYtmDhxIgBjx44lM+m+YndOOunEKZ5zwoQJVFVVTfr6p5/7XxGlHWqtW7fmpyXIDzzwAO+++x4DBw6Y9LgbbhjEvvvu86vPMddcc1E1rmqqjwG4/S9/4cILLvjV55hvvvkYPXr0FN9v3749X3/9NQCffPIpG/1CmSxJkiTNLEtgSZIk1bqmTZvSrl07ampqaNasGeuvvx6nnXY6zZo1o2XLlpMet+6663LMsccybNhbVFdX06VLF8aPH8+RRx7F6NGjufjiiyY9vkePHvTo0eM3X/upp57ihhsGUTWuil132YURI0aw/wEHss3WW3PUUf0499xzqK6u5v0P3meppZYCShO98803H127dgXgvvvu48EH/873o77n0EMOAeCQQw7l+edf4IQTTuSUU05m5MiRNIkmtGvXDoCbb76ZjTfemAUWWACAa6+9lhdffImR347ktFNPZdSoUfTvP4Dnn3+Biy66mMMOO5SlllqKvn0Pp3nz5iy22GK191+AJEmS9DPx03SEJEmSNDMiIrNm2s/wrW177LknN9900wz97Nlnn8NBB/Wmbdu2M/z6J510MieccDxNmszc2o3//X1Ek6ZkZszUk0qSJKlRczGcJEmSKsKECRN49tlnZ+hn+/fvN1MFMMBJJ5040wXwXXfdxYILLDhTzyFJkiT9LyeBJUmSVCuKngSuVE4CS5IkaWZ5JrAkSZJqRcuWLb+IJk3nLzpHpWnZsuUXRWeQJElSw+YksCRJkma5iGgGHAocA1wEnJ2Z44pNVTciYj3gSuAd4JDM/LDgSJIkSWpkPBNYkiRJs1RErAK8APweWDMzT63UAhggM/8NdANeBF6OiCPKJbgkSZI0SzgJLEmSpFkiItoBpwE7AP2AW7KRfRiNiN8BVwDtgQMy84WCI0mSJKkRcBJYkiRJdSpKdgCGAi2BLpl5c2MrgAEy811gE+A84K8RcUlEzFFwLEmSJFU4S2BJkiTVmYhYFPgbcDKwa2bun5kji01VrCy5GehCqRQfFhE7REQUHE2SJEkVyhJYkiRJtS4imkdEP0rn4D4NrJiZTxQcq17JzJGZuT+wC6WS/G/l0lySJEmqVZbAkiRJqlURsTql8ndjYLXMPCMzxxccq97KzCeBFSmV5S9GRL+IaF5wLEmSJFUQF8NJkiSpVkTEnMAZwLbAkcDtjfHc35kREYsDlwMLAAdm5rMFR5IkSVIFcBJYkiRJM6W8+G1nSovfmlBa/HabBfD0y8z3gc2BPwH3RMTl5XJdkiRJmmGWwJIkSZphEbEY8CBwHLBjZvbKzG8LjtWglRfH3UZpcVwTYGhE7OziOEmSJM0oS2BJkiRNt/Lit4HA88AQoHtmPl1sqsqSmd9mZi9gR0ol+4Pl0l2SJEmaLpbAkiRJmi4RsSbwMrAesEpmnpWZEwqOVbHK5Xp3SmX78xEx0MVxkiRJmh4uhpMkSdI0iYi5KJ1VuxVwOHCn5/7OWhHRmdLiuI6UFsc5fS1JkqTf5CSwJEmSflV58dtulBa/TQSWzcw7LIBnvcwcDmwJnArcGRFXlct5SZIk6RdZAkuSJOkXRcQSwEPAAGC7zOyTmd8XHKtRKy+OuwNYllIpPzQidnNxnCRJkn6Jx0FIkiRpChHRAuhH6diHPwEXee5v/RQRqwFXA18AvTPz/YIjSZIkqZ5xEliSJEmTiYh1gFeBNYCVMvNcC+D6KzOfA1YGHgaei4hjyyW+JEmSBDgJLEmSpLKImBs4G9gcOAy4x3N/G5aIWAS4DFiM0uK4JwqOJEmSpHrASWBJkqRGrrz4bU9gGPAjpcVvd1sANzyZ+V9ga+B44LaIuLZc7kuSJKkRswSWJElqxCJiSeBRSmf/bp2Zh2bmqIJjaSaUF8fdTWlx3I/AsIjY08VxkiRJjZfHQUiSJDVCETEbMAA4FDgduCQzJxabSnUhIlYBrgK+pbQ47p2CI0mSJGkWcxJYkiSpkYmI9YHXgO5A98y8wAK4cmXmC8CqwP3A0xFxQvkigCRJkhoJJ4ElSZIaiYiYBzgH2Ag4NDMHF5tIs1pEdAIuBpYGemXmkGITSZIkaVZwEliSJKnClRe/7QMMBb4DulgAN06Z+WFmbgsMBG6MiBvKFwckSZJUwSyBJUmSKlhELA08BhwMbJGZh2fm6IJjqWDliwBdKF0UGBoR+7g4TpIkqXJ5HIQkSVIFioiWwNFAH+Bk4PLMrC42leqjiOgOXA2MoXRExH8KjiRJkqRa5iSwJElShYmIjYDXgeWAbpl5iQWwfklmvgysBtwNPBkRJ5cvIkiSJKlCOAksSZJUISJiXuA8YD3g4Mz8W8GR1MBEREfgImB5oHdm/rPgSJIkSaoFTgJLkiQ1cBHRJCJ6UFr89gWlxW8WwJpumflxZm4PHAlcHxE3li8uSJIkqQGzBJYkSWrAImJZYAhwALBpZvbLzDHFplJDV76I0IXSRYWhEdEjIvy7gyRJUgPlcRCSJEkNUES0Ao4FDgROBK7y3F/VhYjoBlwFjKO0OG5YsYkkSZI0vbyaL0mS1MBExKbAG8CSQNfMvNwCWHUlM18F1gRuB/4dEaeVL0JIkiSpgXASWJIkqYGIiPmB8ykVcn0y88GCI6mRiYgOwIVAd+CgzHy42ESSJEmaFk4CS5Ik1XPlxW8HUJr+/YjS4jcLYM1ymflpZu4EHApcFRG3lC9OSJIkqR6zBJYkSarHImI54AlgX2DjzByYmT8WHEuNXPkixHLAx8AbEXGAi+MkSZLqL4+DkCRJqociojVwPNATOA64JjNrik0lTSkiVqC0OK4GODAz3yw4kiRJkv6HV+slSZLqmYjYHHgTWBRYPjOvsgBWfZWZrwNrATcCj0XEmeWLGJIkSaonnASWJEmqJyJiQeACYBVKS7ceKjiSNF0iYgFK/xtejdLywr8XHEmSJEk4CSxJklS48uK33sDrwPvAchbAaogy8/PM3BXoDVwaEX8pX9yQJElSgSyBJUmSChQRXYGngd2B9TPz2MwcW3AsaaaUL2IsT+mixusR0dvFcZIkScXxOAhJkqQCREQb4ERgH+AY4HrP/VUliogulBbHNaO0OO61giNJkiQ1Ol6NlyRJmsUi4vfAUKADpcVv11oAq1Jl5lBgXeA64JGIOLt8EUSSJEmziCWwJEnSLBIRHSLiTuBCoGdm7pGZXxQcS6pzmVmTmddQOiKiAzA0IrYqOJYkSVKjYQksSZJUxyKiaUQcArwGvEVp+vfRgmNJs1xmfpGZewA9gQsi4q6IWKjoXJIkSZXOEliSJKkORcSKwLPADsC6mXlCZlYVHEsqVPkiyAqULoq8GhGHRETTgmNJkiRVLBfDSZIk1YGIaAucAuwODAQGpR+8pClExDKUFse1Ag7IzFcKjiRJklRxnASWJEmqZRGxDaXFb3MDy2XmDRbA0tRl5lvA+sAVwD8i4vzyRRRJkiTVEktgSZKkWhIRC0fEvcA5wD6ZuU9mflV0Lqm+Ky+Oux5YjtLFk6ER8YeCY0mSJFUMS2BJkqSZFBHNIqIv8ArwKrBCZj5WaCipAcrMrzJzH2Af4OyIuDciFi42lSRJUsNnCSxJkjQTImIl4DlgG2CtzDw5M8cVHEtq0MoXUbpSuqjySkT0jYhmxaaSJElquFwMJ0mSNAMiYg7gVGBnoD9wk+f+SrUvIpYCrgTmoLQ47qWCI0mSJDU4TgJLkiRNhyjZjtLit7ZAl8y80QJYqhuZ+TawIXAR8EBEXFS+CCNJkqRpZAksSZI0jSKiE3AfcAawe2b2yMxvCo4lVbwsuZHS4rjZKS2O+2NERMHRJEmSGgRLYEmSpN9QXvx2BPAy8DzQLTMfLziW1Ohk5teZuR+wB3A6cF/54owkSZJ+hSWwJEnSr4iIVYEXgC2ANTLzNBe/ScXKzH8D3ShdlHk5Io50cZwkSdIvczGcJEnSVEREO0qThtsDRwG3eu6vVP9ExO+AK4D2wIGZ+XzBkSRJkuodJ4ElSZJ+prz4bQdKi99aUFr8dosFsFQ/Zea7wCbAuZSOh7i0fBFHkiRJZZbAkiRJZRGxKHA/cBKwS2YekJkjCw0l6TeVF8fdAnShdPFmaETs6OI4SZKkEktgSZLU6EVE84joB7wIPAl0z8wnC44laTpl5sjMPADYhdLFnPvLF3ckSZIaNUtgSZLUqEXEGsBLwEbAapl5ZmaOLziWpJlQvoizIqWLOi9GRP+IaF5wLEmSpMK4GE6SJDVKETEncCbwB+AI4C+e+ytVnohYHLgcWJDS4rhnCo4kSZI0yzkJLEmSGpXy4redgWHlX1o2M2+3AJYqU2a+D2wOnAHcHRFXlC8CSZIkNRqWwJIkqdGIiMWAvwPHAttnZu/M/K7YVJLqWnlx3O3AsuVfGhYRu7g4TpIkNRaWwJIkqeKVF78NBJ4H/gWs5C3hUuOTmd9lZm9gB0oXg/5evjgkSZJU0SyBJUlSRYuItYBXgHWAVTLz7MycUHAsSQXKzKeB7pQuCj0fEUdHRIuCY0mSJNUZF8NJkqSKFBFzA38Cfg8cBtztub+S/ldEdAYuAzpRWhz3VMGRJEmSap2TwJIkqaKUF7/tBgwFxlNa/HaXBbCkqcnM4ZQuFp0M3BERV5cvIkmSJFUMS2BJklQxImIJ4GGgP/CHzDw4M78vOJakeq68OO5OSovjxgNDI2J3F8dJkqRK4XEQkiSpwSuf5dkf6AucAVycmRMLDSWpwYqI1YCrgK+A3pn5XsGRJEmSZoqTwJIkqUGLiHWBV4FVgZUy83wLYEkzIzOfA1YG/gE8GxHHRcRsBceSJEmaYU4CS5KkBiki2gNnA5sChwKDPfdXUm2LiEWAS4HFgV6Z+XjBkSRJkqabk8CSJKlBKS9+24vS4rcxQJfMvNcCWFJdyMz/AtsAxwG3RMR15YtQkiRJDYYlsCRJajAiYkngUeAwYKvMPCwzRxUcS1KFKy+OuwfoQuni09CI2MvFcZIkqaHwOAhJklTvlc/iHAgcApwKXOa5v5KKEhErU1oc9z2lIyLeKTiSJEnSr3ISWJIk1WsRsT7wGtANWDEzL7IAllSkzHwRWA34K/B0RJzo4jhJklSfOQksSZLqpYiYBzgX2BA4JDPvKziSJE0hIhYGLgaWBQ7MzCHFJpIkSZqSk8CSJKleKS9+25fS4reRlBa/WQBLqpcy86PM3A4YANwYEYPKF7EkSZLqDUtgSZJUb0TE0sBjwEHAFpl5RGaOLjiWJP2mzBxMaXHcSEqL4/Z1cZwkSaovPA5CkiQVLiJaAscAvYGTgSsys7rYVJI0YyKiO6XFcT9SWhz3VsGRJElSI+cksCRJKlREbAS8Tuk8zW6ZeakFsKSGLDNfBlYH7gKeiIhTyhe7JEmSCuEksCRJKkREzAecB6wDHJyZ9xccSZJqXUQsBFwEdAV6Z+ajBUeSJEmNkJPAkiRploqIJhHRE3gD+JzS4jcLYEkVKTM/ycwdgCOA6yLipvJFMEmSpFnGEliSJM0yEdEF+DfQE9g0M/tl5g8Fx5KkOpeZf6O0OO5z4M2I6BkR/n1MkiTNEh4HIUmS6lxEtAKOAw4ATgCu9txfSY1VRHSltDhuInBgZg4tOJIkSapwXnmWJEl1KiI2pXT0wxLACpl5hQWwpMYsM18D1gJuBYZExOnli2WSJEl1wklgSZJUJyJiAeB8YHWgT2b+veBIklTvREQH4AJgZeCgzHyo4EiSJKkCOQksSZJqVXnx24HA68CHwHIWwJI0dZn5aWbuDBwMXBkRt5YvokmSJNUaS2BJklRrImJ54Elgb2CjzByYmT8WHEuS6r3yxbIulC6evRERvVwcJ0mSaovHQUiSpJkWEa0pLXzbDzgeuCYza4pNJUkNU/mC2lXlLw/MzDeKzCNJkho+ryxLkqSZEhFbAG8CCwPLZ+ZVFsCSNOPKpe/awJ+Bf0XEWRHRpuBYkiSpAXMSWJIkzZCIWBC4kNIyo96Z+XCxiSSp8vxsyeYalBbHeca6JEmabk4CS5Kk6RIRTSPiIEqL396ltPjNAliS6kBmfp6ZuwEHApdGxB0R0aHoXJIkqWGxBJYkSdMsIroBTwO7Autn5nGZObbYVJJU+coX25ajdPHttYjoExFNC44lSZIaCI+DkCRJv6l8FuVJwN7A0cANnvsrScWIiC7AlUALSovjXi02kSRJqu+cBJYkSb8qIrYChgLzUzr64ToLYEkqTmYOBdYDrgYejohzI6JtwbEkSVI9ZgksSZKmKiIWioi7gAuAHpm5V2Z+WXQuSRJkZk1mXkfpiIj5gTfLF+0kSZKmYAksSZImU178dgjwKqUJ4OUz85/FppIkTU1mfpmZewI9gQsi4u6IWKjoXJIkqX6xBJYkSZNERHfgWWAHYJ3MPDEzqwqOJUn6DZn5KLA8pYt3r0XEIS6OkyRJP3ExnCRJonyW5CnA7sAA4M/phwRJapAiYhlKi+NaU1oc93LBkSRJUsGcBJYkqZGLiD8Aw4C5gC6ZOcgCWJIarsx8C1gfuAz4e0RcEBGzF5tKkiQVyRJYkqRGKiIWjoh7gbOAvTJz38z8uuhckqSZlyWDKC2OmwsYWr7oJ0mSGiFLYEmSGpmIaBYRfYFXyv90zcwhhYaSJNWJzPwqM/cB9gbOjojBEbFwwbEkSdIsZgksSVIjEhErA88BWwNrZuYpmTmu4FiSpDqWmY8BK1C+ABgRfSOiWcGxJEnSLOJiOEmSGoGImAM4FdgZ6Afc7Lm/ktQ4RcRSwBXAnMABmflisYkkSVJdcxJYkqQKFiV/BIYCbSgtfrvJAliSGq/MfBvYCLgAuD8iLi5fLJQkSRXKEliSpAoVEYsAfwVOA3bLzJ6Z+U3BsSRJ9UB5cdxNQBdKFwmHRcQfIyIKjiZJkuqAJbAkSRWmvPjtSOAl4FmgW2Y+UXAsSVI9lJnfZGYPYDdKFw3/Wr6IKEmSKoglsCRJFSQiVgNeBDYDVs/M0zNzfMGxJEn1XGY+DnSjdPHwpYg40sVxkiRVDhfDSZJUASKiHXA6sD1wJHCb5/5KkmZERCxBaXHcvMCBmflcwZEkSdJMchJYkqQGrLz4bUdgGNAcWDYzb7UAliTNqMx8D9gUOBsYHBGXlS82SpKkBsoSWJKkBioiOgMPACcCO2XmgZn5bcGxJEkVoLw47lZKi+OaU1oct6OL4yRJapgsgSVJamAionlE9AdeAB4HumfmUwXHkiRVoMwcmZkHADtRuuj4QPkipCRJakAsgSVJakAiYg3gJWBDYNXM/JOL3yRJda18sbE7pYuPL0TEgIhoXnAsSZI0jVwMJ0lSAxARcwFnAlsDRwB3eO6vJKkIEbEYcDnQgdLiuGcKjiRJkn6Dk8CSJNVj5cVvuwJDgRqgS2b+xQJYklSUzPwA2AI4Hbg7Iq4sX6yUJEn1lCWwJEn1VEQsDvwDGAj8MTMPyszvik0lSdKkxXF/AZYFEhgaEbu6OE6SpPrJEliSpHomIlpExDHAc8CjwMqZ+WzBsSRJmkJmfpeZvYE/Urpo+Y/yRUxJklSPWAJLklSPRMTawCvAWpTK33Myc0LBsSRJ+lXli5UrU7p4+VxEHBMRLQqOJUmSylwMJ0lSPRARcwNnUTpjsS9wt+f+SpIaoohYFLgMWJTS4rgnCw0kSZKcBJYkqUjlxW97UFr8VkVp8dtdFsCSpIYqM0cAWwEnAn+JiGvKFzslSVJBLIElSSpIRPwOeAQ4EvhDZh6Smd8XHEuSpJlWXhx3F6XFcVWUFsft4eI4SZKK4XEQkiTNYhExG9AfOAw4A7g4MycWm0qSpLoTEasCVwHfAL0z892CI0mS1Kg4CSxJ0iwUEesCrwKrAN0z83wLYElSpcvM5yn92fcg8ExEHF++KCpJkmYBJ4ElSZoFIqI9cA6wCXAoMNhzfyVJjVFEdAIuBX4H9MrMfxccSZKkiucksCRJdai8+G1vSovfRgHLZua9FsCSpMYqMz8E/gAcA9wcEdeXL5ZKkqQ6YgksSVIdiYilgH9Rmvz9fWb2zczRBceSJKlw5cVx91JaHDeK0uK4vV0cJ0lS3fA4CEmSallEtAQGAn2A04DLPPdXkqRfFhErAVdTKoR7ZebbBUeSJKmiOAksSVItiogNgNeAFYAVM/MiC2BJkn5dZr4ErAYMBp6KiJPKF1UlSVItcBJYkqRaEBHzAucC6wOHZOZfi00kSVLDFBEdgYuBLpSmgh8rOJIkSQ2ek8CSJM2E8uK3/YA3ga+BLhbAkiTNuMz8ODP/CPQDBkXEn8sXWyVJ0gyyBJYkaQZFxDLAEKAXsHlmHpmZY4pNJUlSZShfVO1C6SLrmxGxn4vjJEmaMR4HIUnSdIqIVsAxlMrfk4ErMrO62FSSJFWuiFgRuAoYS+mIiLcKjiRJUoPiJLAkSdMhIjYGXgeWBrpm5qUWwJIk1a3MfAVYA7gTeDwiTi1flJUkSdPASWBJkqZBRMwHnA+sBRycmQ8UHEmSpEYpIhYCLgS6Ab0z89FCA0mS1AA4CSxJ0q+IiCYRsT+lxW+fAMtZAEuSVJzM/CQzdwT6AtdGxM3li7WSJOkXWAJLkvQLIqIL8DjQA9g4Mwdk5g8Fx5IkSUD5omwX4FNKi+P2jwj/jitJ0lR4HIQkSf8jIloDxwH7A8cDV2dmTbGpJEnSL4mIrpQWx02ktDjuzYIjSZJUr3iVVJKkn4mIzYA3gMWAFTLzSgtgSZLqt8x8DVgTuBl4LCLOKF/UlSRJOAksSRIAEbEAcAGwGnBQZv6j4EiSJGkGRMSClP5MXwXo45/pkiQ5CSxJauTKi996UZr+HU5p8Zt/WZQkqYHKzM8ycxegD3B5RNxWvtgrSVKjZQksSWq0ImJ54ClgT2CDzDwmM38sOJYkSaoF5Yu6y1G6yPtGRPRycZwkqbHyOAhJUqMTEW2AE4B9gWOB6zz3V5KkyhURy1FaHNcEOCAz3yg4kiRJs5RXQSVJjUpEbAm8CSwELJ+Z11gAS5JU2TLzTWAd4HrgnxFxVvmisCRJjYKTwJKkRiEiOgAXAt2B3pn5SLGJJElSESJifuB8YE1Ki+MeLDiSJEl1zklgSVJFi4imEdEHeA14m9L0rwWwJEmNVGZ+kZm7AwcAF0fEHeWLxZIkVSxLYElSxYqIbsAzwM7Aupl5fGaOLTaVJEmqD8oXhZendJH4tYjoExFNC44lSVKd8DgISVLFiYi2wEnAnsDRwCDP/ZUkSb8kIpYFrgRaUloc92qxiSRJql1OAkuSKkpEbA0MBeYFlsvM6y2AJUnSr8nMYcD6lIrghyLi3PJFZUmSKoIlsCSpIkREx4i4GzgP2Dcz987Mr4rOJUmSGobMrMnM6ykdETEfMLR8cVmSpAbPEliS1KCVF78dCrwCvAGskJn/KjiWJElqoDLzy8zcC9gXOC8i7omIjkXnkiRpZlgCS5IarIhYCXgO2A5YOzNPysyqgmNJkqQKUL6ovALwOvBqRBzq4jhJUkPlYjhJUoMTEbMDpwC7AgOAG9M/0CRJUh2JiKUpnRfcFjgwM18qOJIkSdPFSWBJUoMSEdtSWvzWjtLitz9bAEuSpLqUmf8BNgAuAR6MiAvKF6UlSWoQLIElSQ1CRCwcEYOBPwF7ZeZ+mfl1wbEkSVIjkSV/BroAc1JaHLdtoaEkSZpGlsCSpHotIppFxBGUFr+9BHTNzCHFppIkSY1VZn6dmfsCewF/ioj7IqJT0bkkSfo1lsCSpHorIlYBXgC2BNbIzFMzc1zBsSRJkihflO4KvAi8HBFHRESzYlNJkjR1LoaTJNU7ETEHcDqwA9APuMVzfyVJUn0VEUsCVwBzAwdk5gsFR5IkaTJOAkuS6o0o2R4YBrQEumTmzRbAkiSpPsvMd4CNgfOAv0bEJeWL2pIk1QuWwJKkeiEiFgX+BpwC7JqZ+2fmyGJTSZIkTZvy4ribKS2OawkMi4gdIiIKjiZJkiWwJKlYEdE8IvpROk/vaWDFzHyi4FiSJEkzJDNHZub+wK7AycDfyhe7JUkqjCWwJKkwEbE6pfJ3Y2C1zDwjM8cXHEuSJGmmlS9qr0jpIveLEdEvIpoXHEuS1Ei5GE6SNMtFxJzAGcC2wJHA7Z77K0mSKlVELA5cDiwAHJiZzxYcSZLUyDgJLEmaZcqL33YChlL6M6hLZt5mASxJkipZZr4PbA78CbgnIi4vXxSXJGmWsASWJM0SEdEZeBA4HtgxM3tl5rcFx5IkSZolyovjbqO0OK4JMDQidnJxnCRpVrAEliTVqfLit4HAC8AQoHtmPl1sKkmSpGJk5reZ2QvYkdLF8QfLF8slSaozlsCSpDoTEWsCLwPrAatk5lmZOaHgWJIkSYUrXxTvTuki+QsRMdDFcZKkuuJiOElSrYuIuSidebcVcDhwp+f+SpIkTV15EvhyoCOlxXHeNSVJqlVOAkuSak158duulBa/TQSWzcw7LIAlSZJ+WWYOB7YETgXujIiryhfVJUmqFZbAkqRaERGLAw8BA4HtMrNPZn5fcCxJkqQGobw47g5gWUoX04dGxK4ujpMk1QaPg5AkzZSIaAH0o3Tsw5+Aizz3V5IkaeZExGrA1cAXQO/MfL/gSJKkBsxJYEnSDIuIdYBXgTWAlTLzXAtgSZKkmZeZzwErAw8Dz0XEseWL75IkTTcngSVJ0y0i5gbOBjYHDgPu8dxfSZKkuhERiwCXAYtRWhz3RMGRJEkNjJPAkqRpVl78tgcwDPiR0uK3uy2AJUmS6k5m/hfYGjgeuC0iri1flJckaZpYAkuSpklELAk8AhwBbJ2Zh2bmqIJjSZIkNQrlxXF3U1oc9yMwLCL2cHGcJGlaeByEJOlXRcRsQH9Kxz6cDlySmROLTSVJktS4RcQqwFXASOCgzHyn4EiSpHrMSWBJ0i+KiPWA14CVgO6ZeYEFsCRJUvEy8wVgVeAB4OmIOKF88V6SpCk4CSxJmkJEzAOcA2wEHJqZg4tNJEmSpF8SEZ2Ai4GlKS2O+3fBkSRJ9YyTwJIkImKeiFi5vPhtb+BN4DugiwWwJElS/ZaZH2bmtsBA4KaIuKF8UV+SJMBJYEkSEBF3Af8FugOzAwdk5svFppIkSdL0iojZgVOAXYEBwI3AXEDzzPyiyGySpOJYAktSIxcR2wCDgBrgXOCczKwuNJQkSZJmSkR0B64GRgN3AfsAq/s5T5IaJ0tgSWrkIuJboB0wHhgOdMvMccWmkiRJ0syKiKbAQcCJwA/AuZl5SbGpJElFsASWpEauvEhkNPBd+oeCJElSRYmIh4FVgFZAc2D2zPyx2FSSpFnNEliSJEmSpAoVEU2A9sACwDLAnV74l6TGxxJYUqPSqkXTz6sm1MxfdI6GpmXzJl+MHV+9QNE5JEmSJEnS9LMEltSoRER+ftH2RcdocBY47G4yM4rOIUmSpMm1atXq86qqKoccZkLLli2/GDt2rAMPkipas6IDSJIkSZKkGVNVVTX/mJHVRcdo0NrO3dQSXVLFswSWJEmSJKmRufnWQdz/4H20atWa9dbZgH326skOu2xNhw4dAdhnzx4suuhinHDy0bRo0YLq6mp223lPxo0fxwcfvMcuO+3BwOOOpEmTJowZM5qB/Y6nadOmrLlud1576R3mbDcnfQ7bn6suu+EXM4wfP54WLVr8as5/PfYIl15xIdtstR377NVzsu91W2Vp1l1nA1ZacWX23rPHzL8pklTBLIElNVr9//Iyn4+qYnTVBH433+z0/30X5mk7GwBPvfsVI74ew+5rdJ7i5875+zB2WLkTnedtO6sjM6G6huZNm/zqYz7/fiyXPPo2NZnsteZiTKxJbnr6A774vord1+jM2kvOyzF3vcoXo6q4rdfak/3sobe8yGzNmhDAGTt0o9lvvJYkSZIargN79mHttdZjvwP2YJ+9etKu3ZxcfP4Vk75/7An9ObLvADovuhgA1dXVPPXMEwDccOO1bPeHHVhvnQ0YNWoU/Y/uy9EDTmDjjTbjwovP4aTjT5/qa3773bf85c5bee21l+m5Xy9W6r7Kr2bccINNaNa8OR988N4U32vTpi1VVWNZZJEpP7NLkiZnCSyp0Tp75+6Tyt7VF5+Hkwe/TrMmTdh5tUV45cORvDR8JO3bzkaTCJ774GtGjZ3A6dt3m+pzff/jeE6493Xat52NTbosQJMIHh32OV+NruL4bZbn3//5gmfe/5rWLZpx8nYrcN3j7/HRyB/5/scJnPLHFTh58Ou0ma053TrNxXYrLTzZc3/+/VjufOFDPvhyDH03XYpF5vn18vnqIe/RqnlTxoybyDyzz8a8s7fk7J26892P47nk0bfZdLkFuXC3lelz4/NT/Gyr5k3JTNrPPpsFsCRJUoW75vorOf7koznhmFMA+P777zj0iN4A9D3kKL748nM6L7oYI/47nAsuPocVlu/K75ZYCoC333mLPXfbB4A55piDidUTAVhssSX4YcwYPvr4wyle76fn3n+/XvTavw8AX371Jeeef+ZkjzvxuNNo06bNb+Z/8rEXqK6uZo99dmT9dTecgXdAkhoPS2BJAm58ajjHbb0c7dvORt/bXmLX1RZlrtYt2Hz5Djw69DMC+HJUFa999O1Uf/7ulz5it9UXZbXF5wHg5REjmVhTQ3VN8u//fMGn349lqQXnYMsVOvDDuIkMfvlj1l1qPqomVPPuF6P5buwENl1uQdZbevLjyPa+5mkWn2929lyz86TJ43e/GMWNTw2f9JgWzZpw/DbLT/r6rU+/55yduzOhuoarHnuX47ZZnsEvf8SVj73LSduu8Kvvw5927EZEcOVj7/DkO1+y9pLzzcjbKUmSpAZg//16scIKK3Lyacex6SZbTDEJPN+88zPiv8NZdJHOHHFYfwbddN2kEnjJ3y3NK6+9xDprrcfo0aNp1vT/64UjDuvPGWefMsXr9dz3QO646zZuuPFattxsKzbcYBMyk6pxVTOUPyJo1qwZzZo1n6Gfl6TGxBJYkqaiSfz/f77jhQ+5ep/VuOTRtxk7fuJUH5+Zk319zb/f47I9V+Gvr37MD+MmcvBGS/HaR98y4I5X+NOOK9Jp7tb022LZSY+/ePeVGfLWFxx528tcuuf/3xLXe8MleeC1T7jhiffZqttCrLrYPNQkjJvwy8s/FmjXijlbN2dCdfJDOe+23Rdmq64L0eemF1i9XFRPTUTpNz5P25aMGTf136skSZIqR/u529O+/Ty8OeyNySaBd95xN448fCAnnnw0s7VsycSJE/n95ltP+rl99+rJwOOO5G/3D+b7Ud/R/8hjJ31vgQUWZO652/PZZ59M9lorLN+NFZbvxrhx4/jbA4N58aXnWXWV1Scrnv/Xy6+8yKWXX8Co0aPpsOBCLLHEktx59+1sv91OnHv+mUQE6627QS2/K5JUeeJ/iwtJqmQRkZ9ftP2kr39+HMRFj7xNsybBTqsuQud52tD/jlfYbqWFGfrJ98zeshkvjRhJj3UX57kPvpniTOBvfxjPCfe+xnxztGTTLgvy2kff8u2P4/n027Gsulh7qmuS978cw2ffj+WCXVfihiff5/PvxjK+uobDNlmaix7+Dy2aNWGe2VvSd9Olp8j9w7iJ3PfyR6y62DwsMf/sv/p7fOvT77nysXeprkn6bLQkn38/loeHfsbY8dVstOwCbN2tI8fc9SpD/vMFf+jekQFbduHQW17k4t1X5uT7XufHcdX8MG4i5+3andmaNQVggcPuJjPjV19YkiRJs1xE5JiRvzwgoN/Wdu6mftaVVPEsgSU1Kv9bAmvaWAJLkiTVT5bAM88SWFJj4NYfSZoB734xinP+PmzSP59/P7boSJIkSVKt6XHgnpN9XZcDZB9//BEHHdJzitecMGECBxy0D/v33pvjThwAwPWDrubQI3qzxTYbcd2gqwCoqqpi/Y3X4LEhj9ZZRklq6DwTWJJmwO/mn4N+WyxLnxuf57K9Vp3065k56Vzd2lZTkwy88xUIWGnR9uy86iKTvrfHVU/RYc5WzN6qOceXF8E99e5XfPrdWM7coRsfjvyBm54aTusWzei14e9YaoE56iSjJEmS6r8R/x3OpVdcCED3bivRsWMnrrrmMlZeaVUmTJjAdn/YgWFvDeWsc09n9dXW5MprLmWt1ddhpe6rcOPN11NdU82RfQfywovP8vQzT9Kp06IsusiiNG/egtatW7PFZlvRs9deXHvljdOUp2PHhbn8kmunKIGbN2/O1ZcPAmDf/XcHYL99DgDgoEN68sdtdwLg4svOZ+uttp35N0aSKpglsCT9gv9+8wNXD3kXgK4Lz8VCc7Xm+ifeZ8VF5mJidbJ1t4X4z+ejuOCht1hlsfZc//j7rLbYPKy4yFzc+uwIqmuSQzdZipdGjOS5979h4fat6TR3G5o3a0Kr5k3ZdLkFOfimFyZbBPdrnh/+DSssPBd7rNmZg296YbISuPVszajJZMF2rYDSIrhtuy/Mg699wrtfjOafwz7n9B260bJZE06493XO33Wl2n/DJEmS1CBce/2VtG7Vmtlma8nQYW/SsWMn1lpzXQ468BD27703v1tiSZZdpgsDjjqWx58cwpqrrc3BB/XlgIP24bKLruG777/j7HNPp+sK3dh0ky3Ydpvt2b/33lxxyXX0PaoP884zHyt1X3Wy1zz1jBMZPXrUpK/33H0fll+u6zTlfe75Z1is8xKTvv5+1PdkJnPNORfPPvc0C3dcmOpqj8SQpF9jCSxJv+DPT35Aq+ZNma15U9767HsWmqs1ayw+Dz3XW4KDb36BxeebnaUXmIPDN1uGp979ilUXa8+BG/yOQ25+gfN3XYnvx07gwofeYrmOc7LRsguwVbeFOPjmF7hw15UYeOcrzDP7bHRbZK7JXvOsB4cypmripK93WW0Ruiw0JwCffTeWDnOVSt7/HTa+au9ViQiOu/tVRnw9hkXnacs5fx/G429/ybX7rsYi7dtw9gNDaT/7bIyumlCn75skSZLqt8xkz9335XdLLAnA408OoXWr0ufMmpoagMnubpt99ikXE//0/QkTJkz6d7NmzVik06Kcc/4ZXH3Fnyd7/Pjx46gaVzXp659e57e8/MqLDP7r3Zxx6jmTfu2Ou25lhz/uDMCQx//Fp599wrvvvcOcc87JButvPE3PK0mNjSWwJP2CJNl19c4sPl/pQ+9T735FqxZNS9+rKZ2JNtmH45bNp3iOn74/sfwhd2J1Dc2aNmHhudtw0cP/4ZI9Jp8CHj+xhnET/n+KoeZnR68t0K4lH3w1pvT6/3Mk20+v077tbPwwrlQi99tiWTZedgHueOFDDtl4Kc7euTsfj/yRKx57Z/reCEmSJFWUA/fvwymnH898885Pp06LsuwyXaZ4zBxztOPYE/qzycabT/q1fffan8OO6E11TTVHHDaAF158loceeZCnn32STcuP23ab7fnvf4fTbo52kz3fqSf96RfzjBo1iuNOGsBLL7/AZVdeTJ9eh3Jgn3258NzL2WHXbdhy86057MiDOOfMC5ltttl4bMg/6THoQAAG9jsOgJtvHcRCHTrO9HsjSZUq6vJwd0mqbyIiP79o+2l67Ecjf+CsB4Yxz+yzsfDcrVl6wXaM+HoMu6/RedJZwEff9Qotmzdlo2UW4L/f/MDua3Tm+Q++5rZn/0t1JodsvCQvjRjJk+98RduWzei+yNzstOoivP/laC7/1zuct8u0H8vw05nATZsGK3Sci11XX5RDb3mRi3dfmb63vkiLZk0IgrN2WpHrHn+P974czfc/TuDwzZZm1NgJ/OW5//LDuIkcu81ydJiz9XS9bwscdrcbkyVJkuqhiMgxI4s5CuGn4vWn6duPP/6IE045mv5HHsvSSy1TSKYZ0Xbupn7WlVTxLIElNSrTUwLXltufG0GHOVux7lLzA/DJtz9y+t/epO+mS7NkA1nQZgksSZJUPxVZAlcKS2BJjYHHQUhSHdtltUUn+3qhuVpz+V6rTv3BkiRJUgPS48A9ue6qm2rluf712CNcesWFbLPVduyzV09qamroe1QfIoJVV16N3Xfdm/5HH853339LmzZtueCcSzlywKH8+MMPZCaXX3ItTZo0qZUsklRpLIElaRb76SiJ2nD7cyN44LVPWLBdK3qstwRffl/FvS9/xMgfxtFz3SVYYv7ZOfP+oYyfWMMKC89J7w2XrJXXlSRJUsN1x1238sRTj9O2TVvOPO1crrj6Uj78cARzz92efkccza57bc9yy67Af94exjprr8/LL7/AVr//A8sv15X9e+/DH7bajq9Hfs2Jx5466TnPPPtURo8exdiqsfzptPPodfB+LLhABzZcf2M23mizacq14Qab0Kx5cz744D0AnnnuKVbs2p19996fnr32Yvdd9+bsMy8A4OC+pTOBzzvrYgD6H304X3/zNfPNO19tvlWSVDEsgSVpGtzz4oc88/7XtG7RjJO3W4FrH3+Pj775kbnbtOCwTZdmv+ueYZkO7Xjn81GsucS8vPrht2yxQgeW7dCOQ295kS1X6MDIH8Yz8Pf/v3TjvH+8xeiqCVRNqObk7Vag7y0vMX+7lqy31HxssMwC05SrSQStWpT+r3z+OVqy1AJzsM5S8/H9j+M54/6hnLXTily0+8oA9Przc7X/xkiSJKnB+eTTT1h2meXY5vfbAlBTXU2rVq25/8H7OOrwgWQmR/c/nkE3Xss888zLxRdcyWFH9Gb55bqy/HIr0Kf3YQw45ghGfjsSgLf+M4znnn+aVVZene+++5Yvv/qCsVVj2WSjzVh3nQ0mve6XX33JueefOVmWE487jTZt2vxCzo/puNDCAJMmfEf8dzjHntCfDgsuNOlx73/wHuPGj7MAlqRf4X0SkjQNPv1+LEstOAcHbrAEUFrS1rpFU/7+xqdkJplw5GbLsO5S8zH/HC05Z+fu/OONTwFYtkM7Dlj/d/w4biLf/jAegLc/H8WLw7+hzWzNGDehhq9GjaNqQjUbLjP/pLODAb4aXcXx97w22T8/jJs46fs7rtKJq/dZjT3W7MxVQ96d9OuXPPo2u62x6KSv73/1E9ZYfN66fIskSZLUQBx+aD9WX3UN+h51EJ988jHvD3+PE449hbnnmpvq6mratG5DkyZNaNGiBbO3nZ0WLVowfkLpc+yECRNK/544YdLzZSbdunbn2IEncvkl17Jwx05ceen1fPLpxxx7Qv/JHlc1rmqyf35NhwUX4pNPPwagpqYGgEUX6cwtf76TidUT+eLLLxg+4gMuuPgczj7jglp9jySp0jgJLEnT4OCNluK1j75lwB2vcNZOKzL86zGcucOKvPrRt1SXC+EmTYLmTZvQtmUzWjRrwoSJpQ+qE6tL/55Q/uAKkAnLd5yTflssO+nXLtxtJf7+xqecct/rnLxd1/IDYdyEX170EVHaXzHP7LPxQ1WpHD7/obdYe8n56LrwXAA8MvQzhn81hkM2War23hBJkiQ1WNcNuor33nuXVq1aM+ecczFy5DdcePG5fPb5Z7/5s/95+y1OOPloWs7WkrnnmhuAZZfpwvjx4zn6uKMYPWY0xw08ibPOO53q6mpW7r7KpJ+df775ufj8K37xuV9+5UUuvfwCRo0eTYcFF2LjjTbjjrtu4/U3X2O9dTZg1KhRnHDK0UQEEcF8885H99W7sMpKq9Lv6L4c3e94Flyww8y/QZJUgSIzi84gSbNMROTnF20/3T9341Mf8P6XY/js+7FcsOtKHHn7SyzfcU7ufvEjHj5qQw675UUu22tVbn9uBB3mbMW6S81PnxufZ8Dvu3DoLS+y8qJzM7EmOWnbFSadCXzS4NfJhB/GTaDfFstywcP/oaYm6bbI3Oy2+qLTlOuWZ4bz2off8u2PpaMmXvvwWy5+9G1W7dye5Reek/WWmp+tLxzCZsstSOvZmnHStitM9+8dYIHD7nZjsiRJUj0UETlm5C8PDdSm/344gkE3XTfZWcCVoO3cTf2sK6niWQJLalRmtASeUR9+8wO3PjtisrOAGyJLYEmSpPppVpbAlcoSWFJj4JnAklSHOrVv0+ALYEmSJEmS1LBZAkuSJEmSVOEef3IIg268tlafc7W1u/H8C88CcN6FZ3HkgEP5803XAbDhpmtx6BG9ueDic37x5//z9lt0XmpBJk6cyONPDmHzrTfk0CN689QzT/DFF5+zxz47cegRvbln8J1T/fkD++zLIYf34tAjejNx4kQ+++xTevbai5699uKNN19j1KhR7LrX9hx0SE/OPu8MAE4+/XhOPv34Wn0fJKkhsASWpN/w1Ltfccszw2v1OTf40yO8NOIboLQlee9rnp70Gg++9glH3/UKp/71DQCOuetV+t76Iofd8iI1NVMe4fPUu1+x3SX/pv9fXubZ97+muiY56MbnOeK2lzj+ntem+vr/+5yvfvgtG5396KQldpIkSWpYDjvyIEaPHs3o0aPpe1Qfhg57k5NOO46DDunJO+++PelxN986iMeGPApAjwP3BODMs0/lmOP7cXi/g6munvajJZbrsjyrrrI6r772Mi+/8iIA8803PwBt2rRhwvjxdFxo4an+bHV1NYNuvJZNNtoMKC08blv+mYU7duKZ557ij9vuyMXnX8Hgv9491edo1ao1EcG888xHs2bN+PPN1zOw3/FccsFVXH3dFXz+xWd0W6E7l19yLW+8WfpcvM+ePab59ydJlcQSWFKj1/+OlxlTNYExVRMYcMcrvPXp95x5/5scfutLvPfF6EmPu/25ETz+9hcA9LnxeQDO+8dbnDT4dQbe+QrVUylof8myHdqx0qLtAbjp6eGsu9R8AFTXJDc/M5xmTZowd5sWAJyxQzcu3G1l5mjVnG9+GDfFc0VAmxbNGF9dw0JztaJqQjVtWzbj/F1X4vPvx0719f/3Obt1mosuC805zfklSZJUv2y95R944O/3cf+Dg9lqi21o0aIF48eNo3WbNtz3t3t+8efe+s8wnnv+adq0acu4qio+/eyTSd+79fYb6X/04ZP++aUy9t333mG5Litw3lkXc/Otfwbgr/c8xBWXXsdf77+XsWOn/Ex65dWXsu/e+xNROop37TXX5a7b/8aJx53G2eeezqYbb8Gzzz3NMcf347PPPp3q615wzqVcfP4VzNluToY8/i8++fRjOi60MK1ataKqaiwdF1qYV159kR122ZoN1ttomt9LSapEzYoOIElF22L5Dvzjjc9Iks2XX5AWzZowbmINrWdrygOvfcLKndtP9efe/nwULw7/hu6Lzs33P07gs+/G0nHu1gDc8fx/eePj7yY9drXF5mGrbgtN8Rwjvh7DmHET6brwXIz4egzfjBnHuIk1nPrHrvzpgaG8+8Uofjf/HAz/agzjJlYz7+wtp3iONRafhzWXmJcvvh/L2X8fxjk7dadqQg37XvsMSy84xy/+vn/tOSVJktSwbLD+xhx82AHUZA2XXXQN/Y85nGMGnMjw4e/z4EP3T3pcixYtmDhxIgBjx44lM+nWtTvHDjxxiuecMGECVeOqJn3908/9rw4dFuLrb76e9PzApHK33RztGD9hPK1atZrsZ1557SXefvc/PP/Cs1x93RUcdOAhAMw551xUjauidevWnH3mBdTU1LD7PjtO9XV/eo15552XMWNG02HBhfjk049ZqENHZputJQ898iA77bAbf9x2R/bpuRv77XPAb7+RklShLIElNXrrLjU/R97+EjUJ5+/SnePvfY2jNl+W/379Aw8P/WzS41o0bcLE8rRv1YRqMmH5jnPSb4tlp3jOidU1jJvw/7fSTayZ+jELT77zFe9+Pppn3/+a0VUT2GbFjiwwR6mUnbN1c34YV81/vx7DZf98m9N36DbV55j0Abt1C8ZNqOH1j79jqQVmp89GS3H0Xa/w7Q/jmas8VfyT33pOSZIkNSxNmzZljjnaUVNTQ7NmzVhnrfU4+9zTadasGbO1/P+L/mutsS4nnXYs/3n7LWpqqll2mS6MHz+eo487itFjRnPuny6iZfnxe+/Zg72n4fiENVdfm7vu+Qv9BvZlxa4rMWrUKI7ofzAtW7ZigQU60G6Odlx86fkcfFBfmjQp3ZB87ZU3AqVzfQ/o0Zv7H7yPhx75O6NGfU/vAw5h9OjR9D+6L+MnjKfX/gcDcOHF59L30KMmve6xJ/Tnhx9/YMyY0Vx20TWs2HUlTjrtWCKCPr0OY/75FuDIAYcy5PF/seACHWrtvZakhigyp/32ZUlq6CIiP79o+yl+/YR7XqMmk9O278bfXv2Y5z/4hqZNgpbNm7LOkvMx4usxbLDM/Jxx/1CWW6gdz77/NYN6rslJg18nE34YN4HTtu9Gy+ZNpylHnxuf57K9Vp309VPvfsWIr8ew+xqduXrIu3w88kfGTqjm7J1WZJ0zHmbFReamVfOmHLH5Mrz92SjmmX22Scc3/OONT/nnsM8ZNXYCPddbgi4LteOI216iXasWjJ1QzYW7rsQVj71Dn42WmvR6a5/+0GTPuUC7Vhx6y4ucv0t3mjWd8qSgBQ67m8yM6Xy7JUmSVMciIseMnPZzfGtTjwP35Lqrbpqmx556xokcf8zJM/V6tfEc//1wBINuuo4Tjz110q+1nbupn3UlVTxLYEmNyi+VwLPa/5bA0+PSf77NvmsvTpvZpv1mjrMeHMqALbv86mMsgSVJkhqeIkvgvfbbhYN792XVVVYv5PVnxFnnns4C8y8w2YSzJbCkxsDjICSpABNqkpdGfDNpOdz0OPhnE73T6rcK4Fc//JZxE6onHS0hSZIk/ZYbr7+96AjTbcBRxxYdQZIK4SSwpEalvkwCNzROAkuSJNVPrVq1+ryqqmr+onM0ZC1btvxi7NixCxSdQ5LqkiWwpEalVYumn1dNqPFD8nRq2bzJF2PHV/vBWJIkqRGKiIOBA4A1M3PMLHi9+YAXgMMz8566fj1JagwsgSWpFkREU+B+4O3M7DsLXzeAvwBjgB7p/6lLkiSpFkXEusCdwBqZ+cEsfN2Vgb8D62fm0Fn1upJUqabc/iNJmhGnAi2BfrPyRcul737AysBBs/K1JUmSVNkiYmHgdmDPWVkAA2Tmi8CRwOCImGtWvrYkVSIngSVpJkXEjsA5wCqZ+VVBGRYHngZ2zMzHi8ggSZKkyhERrYAngL9k5jkF5rgQWArYKjOri8ohSQ2dJbAkzYSIWB74F7BZZr5ccJZNgUHAapn5UZFZJEmS1HCVjxwbBLQAdivyyLGIaA48DDyTmccUlUOSGjqPg5CkGRQRcwP3An2LLoABMvNh4ELg3vLkhiRJkjQjDgG6AT2L3jmRmROAnYDdynfgSZJmgJPAkjQDyovgHgTezMwji87zk/LUxm3AOGCfoj+0S5IkqWGJiPUpnQO8RmYOLzbN/4uI7sBDwIaZ+UbReSSpoXESWJJmzBlAU2BA0UF+rlz69qA0uXFIsWkkSZLUkETEIpQGCvaoTwUwQPnOu76U7nqbu+A4ktTgOAksSdMpInYG/kRpEdzXReeZmojoDDwD7JKZQwqOI0mSpHqufJzYk8CtmXle0Xl+SUScD3QBtnRRnCRNO0tgSZoOEdEVeBTYJDNfLTjOr4qIjYGbKC2K+7DoPJIkSaqfykeK3UjpbuE96vORYhHRjNKxEC9k5sCi80hSQ+FxEJI0jSKiPaVFcIfW9wIYIDMfBc7FRXGSJEn6dX2B5YD963MBDJCZE4GdgZ3Ld+hJkqaBk8CSNA3KEwd/B17NzH5F55lW5amOm4EaYK/6/qFekiRJs1ZEbAjcCqyemSMKjjPNIqIb8AiwcWa+VnAcSar3nASWpGlzZvnfRxeaYjqVS9/9KU12HFZwHEmSJNUjEbEopQJ4t4ZUAAOU78w7lNJdb+0LjiNJ9Z6TwJL0GyJiV+B0Sovgvik6z4wof8B/ltIH/H8VHEeSJEkFi4jWwFPAnzPzwoLjzLCIOAfoBmxRPipCkjQVlsCS9Ct+dpvZRpn5esFxZkpDvdVPkiRJtat8ZNgtQDUN/MiwhnpsmyTNah4HIUm/ICLmobQIrk9DL4AByhPAZ1G6Za510XkkSZJUmCOApYADGnIBDJMWxe0CbF++g0+SNBVOAkvSVJQnCh4CXsjMgUXnqS3lqY8bgabA7g39Q78kSZKmT0RsDNwErJaZHxadp7ZERFfgUWCT8nnBkqSfcRJYkqbubGACcGzRQWpTufQ9gNLkxxEFx5EkSdIsFBGdgZuBXSupAAbIzNeAPpTuepun6DySVN84CSxJ/yMi9gBOAlbNzJEFx6kTEdEJeA7YMzMfLTqPJEmS6lZEtAGeBq7LzIuLzlNXIuIsYGVgMxfFSdL/swSWpJ+JiO6UjoHYMDPfKDpPXYqI9YG/UFoUN7zYNJIkSaor5SPBbgPGAftU8pFgEdEUeBAYmpne+SZJZR4HIUllETEvcA/Qu9ILYIDMHAKcDgwuT4ZIkiSpMh0FLA70quQCGCAzq4FdgW3Kd/hJknASWJIAiIjmwMPAM5l5TNF5ZpXyVMggYDZKZ8P5h4IkSVIFiYhNKX3eWy0zPyo4ziwTEcsD/6J0LMTLReeRpKI5CSxJJecAY4Hjiw4yK5VL317AEpQmRCRJklQhImJx4CZgl8ZUAAOU7+w7CLinfMefJDVqzYoOIElFi4i9gN9TWgRXXXSeWS0zx0bEdsBzEfFaZj5cdCZJkiTNnIhoC9wLnJKZjxedpwiZeWdErAjcERGbZuaEojNJUlE8DkJSoxYRKwN/B9bPzKFF5ylSRKwL3AmsmZnvF51HkiRJM6Z85NcdwGigR2M+8qu8KO5vwDuZ2bfgOJJUGI+DkNRoRcR8wN3AgY29AAYoT4icCtxbnhyRJElSwzQA6AQc1JgLYJi0KG534PflOwAlqVFyElhSo1ReBPco8HhmNqpzgH9NeWrkOmB2YKfG/pcGSZKkhiYiNqf0eW61zPy46Dz1RUR0AYYAW2TmiwXHkaRZzklgSY3VeZRujzux6CD1Sbn0PYjS5MiAguNIkiRpOkTEEsCfgZ0tgCdXvvPvQODu8h2BktSouBhOUqMTEfsAm1NaBFdTcJx6JzOrImJ74PmIeDUz/1F0JkmSJP26iJgdGAyclJlPFhynXsrMeyKiO3BnRGzsojhJjYnHQUhqVCJiFeABYL3MfKvoPPVZRKwN3ENpUdx7ReeRJEnS1JWP9LoT+BY4wCO9fll5Udx9wPDMPKToPJI0q3gchKRGIyLmp7QIbn8L4N9WniA5ERhcniyRJElS/XQ0sBBwsAXwrysvitsD2Kx8h6AkNQpOAktqFCKiBfBP4F+Z6TnA06g8VXINMCewo3+pkCRJql8i4vfA1cAqmflp0XkaiohYFvg3sGVmvlB0Hkmqa5bAkhqFiLgMWBjY1nOAp09EzEbpA/JfM/OMovNIkiSpJCJ+BzxF6TPu00XnaWgiYlvgYkoF+hcFx5GkOuViOEkVLyJ6ABsBq1kAT7/MHPezRXGvZeYDRWeSJElq7MrHdd0HHGcBPGMyc3BErAjcFREbZeb4ojNJUl1xElhSRYuI1YG/Autm5n+KztOQRcSalDZOr5WZ7xYcR5IkqdGKiCaUdl18mZkHFp2nISu/l4OBjzKzT8FxJKnOuBhOUsWKiAUobUnuaQE888oTJscD97koTpIkqVDHAvMDhxYdpKEr3ym4J7BR+Q5CSapITgJLqkjlRXD/Ah7OzFOKzlNJIuIqYD5ge4/XkCRJmrUiYivgSkrn2H5WdJ5KERFLA48D22Tms0XnkaTaZgksqSJFxBXAAlhU1rryorjHgL9n5qlF55EkSWosImIp4AksKutERGwDXEapYP+86DySVJtcDCep4kTE/sD6uAiuTvxsUdwLEfFqZv6t6EySJEmVLiLmoHR27TEWwHUjM/9aXhR3d0Rs4KI4SZXESWBJFSUi1qC0JXntzHyn6DyV7GdL99bJzLeLziNJklSpysvL7gU+ycyDis5Tycrv9T3A55nZq+g8klRbXAwnqWJERAdKi+D2tQCue+UJlGOAweXJFEmSJNWN44G5gb4F56h45TsJ9wLWK99hKEkVwUlgSRWhfE7tEOCBzDyt4DiNSvn85Q7Adh6/IUmSVLsi4g/ApXhO7Sz1s/OX/5CZzxSdR5JmliWwpIoQEVcD8wA7WETOWhHRAvgX8Ehmnlx0HkmSpEoREUsDjwNbZ+ZzRedpbCJiK+BKYNXM/LToPJI0MzwOQlKDFxEHAmsBe1sAz3rlhRk7AD3LkyqSJEmaSRHRjtKuiwEWwMXIzPsplcB3l+88lKQGy0lgSQ1aRKxFaXHD2pn5btF5GrOIWA34G7BuZv6n6DySJEkNVXk52X3AfzPz4KLzNGbl/y7uAr7OzAOKziNJM8pJYEkNVkQsBNwB7GMBXLzyhMpA4L7y5IokSZJmzElAO+DwgnM0euU7DfcG1irfgShJDZKTwJIapPLtWP8G7svMM4vOo/8XEZcCi1BaouHxHJIkSdMhIrYDLqK0CO6LovOoJCJ+BzxFaRnyU0XnkaTpZQksqcGJiACuBeYAdkr/j6xeiYjmwD+BIZl5QtF5JEmSGoqIWBYYAmyZmS8WHEf/IyK2oPT3kFUz85Oi80jS9PA4CEkNUW9gVWBfC+D6JzMnADsC+5QnWSRJkvQbImJOYDDQzwK4fsrMvwOXAfdERMui80jS9HASWFKDEhHrUFrMsGZmvl90Hv2yiFgFeBBYLzOHFZ1HkiSpvoqIpsBfgfcy87Ci8+iXle9KvAMYBfR0KEVSQ+EksKQGIyI6An8B9rIArv8y8wXgKGBwebJFkiRJU3cy0IbSZyfVY+XSd19Kdyb2LjiOJE0zJ4ElNQjl260eB+7OzLOKzqNpFxEXA0sAW2dmddF5JEmS6pOI2B44n9IiuC+LzqNpExGLA08DO2TmE0XnkaTfYgksqd4r33J1PdAa2MVbrhqW8qK4R4CnMvPYovNIkiTVFxGxHPAYsHlmvlR0Hk2fiNic0t9TVsvMj4rOI0m/xuMgJDUEfYCVgP0sgBue8qK4nYA9ypMukiRJjV5EzAXcCxxhAdwwZeY/gIuAu10UJ6m+cxJYUr0WEetROgd4zcz8oOg8mnERsRLwD2CDzHyz6DySJElFKS+Cux/4T2YeXnQezbjyXYu3Az/i0IqkesxJYEn1VkR0ovSBak8L4IavPOFyBKVFcXMVnUeSJKlApwGzAf2KDqKZUy5996N052KfguNI0i9yElhSvRQRrYAngNsz89yi86j2RMQFwDLA710UJ0mSGpuI2BE4h9IiuK+KzqPaERGLAc8AO2Xmv4vOI0n/yxJYUr1TvqVqENAc2N1bqipLRDQDHgaey8yji84jSZI0q0TECsA/gU0z85Wi86h2RcQmwI2UFsV9WHQeSfo5j4OQVB8dCnQFeloAV57MnAjsDOwaETsVnUeSJGlWiIi5KS2CO8wCuDJl5iPA+cA95TsbJanecBJYUr0SERsAtwGrZ+aIguOoDkXEipQmgjfKzNeLziNJklRXyovgHgTeyMyjis6julO+q/FWYAKwt0MtkuoLJ4El1RsRsQilD0y7WwBXvvIEzGHAveXJGEmSpEp1BtAUGFh0ENWtcunbA1iB0h2OklQvOAksqV6IiNbAk8DNmXl+0Xk060TEecDywJbloyIkSZIqRkTsDJxJaRHcN0Xn0awREZ0pLYrbNTMfKzqPJFkCSypc+Zapm8pf7uktU41LeVHcP4CXM7N/0XkkSZJqS0R0BR4FNs7M14rOo1krIjYCbqG0KO6/ReeR1Lh5HISk+qAvsCxwgAVw4/OzRXE7RMQuReeRJEmqDRHRntIiuEMsgBunzPwncDal489aF51HUuPmJLCkQpWvjt9MaRGcV8cbMSdlJElSpSjf6fR34BXvdGrcvOtRUn3hJLCkwkTEopRuj9rNAljl4vcQSpMS7YvOI0mSNBP+BCRwdNFBVKxy6XsA0IXSHZCSVAgngSUVonw71FPAoMy8qOg8qj8i4mygO7C5i+IkSVJDExG7AadSWgQ3sug8qh8iYhHgOWD38jERkjRLWQJLmuXKt0TdAkwA9vGWKP1cRDSldPvk65l5VNF5JEmSplVEdAMeBjbKzDcKjqN6JiI2AG6jdBTeiILjSGpkPA5CUhGOAJYEelkA639lZjWwC7BdeZJGkiSp3ouIeSgtgjvYAlhTk5mPUToqZLCL4iTNak4CS5qlImIT4EZgtcz8sOg8qr8iYgXgn8CmmflK0XkkSZJ+SXkR3EPA85npOcD6ReW7Iv8MNKe0G8VSRtIs4SSwpFkmIjpT2oy7iwWwfktmvg70obQobp6i80iSJP2Ks4HxwHFFB1H9Vi59DwR+BxxZcBxJjYiTwJJmiYhoAzwNXJuZlxSdRw1HRPwJWJXSRLCL4iRJUr0SEXsAJ1FaBPdtwXHUQEREJ0qL4vbKzEeKziOp8lkCS6pz5Vuebgd+BPbzlidNj/KiuAeAtzLz8KLzSJIk/SQiulM6BmKDzHyz6DxqWCJiPeAOYI3M/KDoPJIqm8dBSJoV+gGdgd4WwJpe5UVxuwJbR8SeReeRJEkCiIh5gXsoLTu2ANZ0y8x/A6dRWhTXpug8kiqbk8CS6lREbAbcAKyamR8XnUcNV0QsBzwGbJaZLxedR5IkNV4R0Rx4GHg6M48tOo8arvJdkzcArSjtTrGkkVQnnASWVGciYnHgRmBnC2DNrPKETW9Ki+LmKzqPJElq1M4FxgInFB1EDVu59O0FLEbpDkpJqhPNig4gqTJFRFtgMHByZj5RcBxViMy8KyJWBO6IiE0yc0LRmSRJUuMSEXsBW1C606266Dxq+DKzKiL+CDwXEa9l5kNFZ5JUeTwOQlKtK9/SdAcwCujpLU2qTeVFcX8D3s3Mw4rOI0mSGo+IWBl4EFg/M4cVnUeVJSLWAe4C1szM94vOI6myeByEpLowAOgE9LEAVm0rT9zsBmwZEXsXnUeSJDUOETE/cDdwoAWw6kL5DspTKC2Ka1t0HkmVxUlgSbUqIrYArqV0e9wnRedR5YqILsAQYMvMfKHgOJIkqYKVF8E9Cvw7Mz0HWHWmfFfltcAcwE4O1UiqLU4CS6o1EbEEMIjShxULYNWpzBwKHADcXZ7MkSRJqivnUzrq7KSCc6jClUvfPpTurBxYcBxJFcTFcJJqRUTMTmkR3ImZ+VTBcdRIZOa9EdEduDMiNnJRnCRJqm0RsS+wKaU73WqKzqPK97NFcc9HxKuZ+feiM0lq+DwOQtJMK9+ydBcwEjjAW5Y0K0VEE+A+4L+ZeXDReSRJUuWIiFWB+4H1MvOtovOocYmItYB7gbUy892i80hq2DwOQlJtOAZYEDjYAlizWnkiZw9gk/KkjiRJ0kyLiAUoLYLraQGsIpTvsDyB0qK42YvOI6lhcxJY0kyJiN8DV1G6Pe7TovOo8YqIZYB/A1tl5vNF55EkSQ1XRLQA/gn8MzNPKjiOGrHyXZdXA3MDOzh0I2lGWQJLmmERsSTwJLBtZj5ddB4pIv4AXAqskpmfF51HkiQ1TBFxObAQsJ3nAKtoETEbMAS4PzNPLziOpAbKxXCSZkhEzEFpEdyxFsCqLzLzvohYEbgrIjbMzPFFZ5IkSQ1LRPQANgBWswBWfZCZ4yJie+CF8qK4B4rOJKnhcRJY0nQrL+K6G/giM3sVnUf6ufL/Pu8FPsnMg4rOI0mSGo6IWB34K7BOZr5ddB7p5yJiTUqDOGtn5jsFx5HUwLgYTtKMOBaYDzi06CDS/ypP7OwJbBgRPYvOI0mSGoaIWBC4E+hhAaz6qHwH5nGUFsXNUXQeSQ2Lk8CSpktEbA1cTmkR3GdF55F+SUQsBTwBbJOZzxadR5Ik1V/lRXCPAf/IzFOLziP9moi4ElgA+KNHlkiaVpbAkqbZz0q1rTPzuaLzSL+lfNHiCkqL4rxoIUmSpqpcqs0PbG+ppvruZxctHsrMU4rOI6lhcDGcpGkSEe2A+4CjLYDVUGTm38qL4u6OiA0yc1zRmSRJUv0SEQcA6+IiODUQmTk+Inbg/xfF/bXoTJLqPyeBJf2m8qKtwcBHmdmn4DjSdPnZIsMvM/PAovNIkqT6w0Vbash+tshw3cz8T9F5JNVvLoaTNC1OAOYCDi86iDS9yhM9ewHrlCd9JEmSiIgOwB3APhbAaojKey+OprQorl3ReSTVb04CS/pVEfEH4BJKZ6p+UXQeaUZFxJLAk8C25c3KkiSpkYqI2YAhwP2ZeXrBcaSZEhGXAx0pfc71SBNJU2UJLOkXRcQywOPA7zPz+aLzSDMrIn4PXE3posanReeRJEmzXkQEpc8DcwM7pH8pVgNXXhT3T+BfmXli0Xkk1U8eByFpqsq3Ew0G+lsAq1Jk5gPA5ZQWxc1WdB5JklSIA4E1KB0DYQGsBi8zxwM7AvtFxLYFx5FUTzkJLGkK5UVafwWGZ+YhReeRalN5+ucuYCRwgH/5kySp8YiItSktjF0rM98rOo9UmyJiVeABSovi3io6j6T6xUlgSVNzMjA7cETRQaTaVi599wHWpDQJJEmSGoGI6EhpEdzeFsCqROU7OPtTWhQ3Z8FxJNUzTgJLmkxE/BG4gNKZqV8WnUeqKxGxBPAUsH1mPll0HkmSVHcioiXwb+DezPxT0XmkuhQRlwCdgW1cFCfpJ5bAkiaJiC6UtiRvkZkvFhxHqnMRsTlwPbBqZn5cdB5JklT7ykdBXUvpTredPQpKlS4imgOPAo9n5vFF55FUP3gchCQAImIuSovgjrQAVmORmf8ALqG0KK5l0XkkSVKdOAhYBdjPAliNQWZOoLQobu/ynZ6S5CSwJIiIpsDfgHcz87Ci80izUnk66A5gNNDDvxxKklQ5ImJd4E5gzcx8v+g80qwUESsDfwfWz8yhReeRVCwngSUBnAK0Ao4qOog0q5VL330pTQgdVHAcSZJUSyJiYeB2YC8LYDVG5Ts8j6S0KG6uovNIKpaTwFIjFxE7AOdSWgT3VdF5pKJExOLA08COmfl40XkkSdKMKx/z9ARwZ2aeXXQeqUgRcRHwO2DrzKwuOo+kYlgCS41YRCwHPAZslpkvF51HKlpEbAYMorQo7qOC40iSpBlQPurpBqAlsKtHPamxKy+KewR4OjOPKTqPpGJ4HITUSP1sEdzhFsBSSWY+BFwA3BMRrYrOI0mSZsjBwIp41r8ETLYobrfynaCSGiEngaVGqLwI7gFgWGYeUXQeqT4pTw/dBlQB+/qXR0mSGo6IWJ/SOcBrZObwYtNI9UtEdAceAjbIzDeLziNp1nISWGqcTgeaA/2LDiLVN+XStwelCaKDC44jSZKmUUR0onQhdw8LYGlK5TtAD6e0KG7uovNImrWcBJYamYjYCTiL0iK4r4vOI9VXEbEY8Aywc2YOKTiOJEn6FeVjnJ4EbsvMc4vOI9VnEXEBsCywpYvipMbDElhqRCJiBeCfwKaZ+UrReaT6LiI2AW4EVsvMD4vOI0mSplQ+yulGoCmwu0c5Sb8uIppROhbihcwcWHQeSbOGx0FIjUREtKe0CO5QC2Bp2mTmI8B5wL0uipMkqd46DFgO6GkBLP22zJwI7AzsXL5TVFIj4CSw1AiUr/Q+CLyemUcVnUdqSMrTRbcA1cBe/uVSkqT6IyI2oHQO8OqZOaLgOFKDEhErAg8DG2fma0XnkVS3nASWGoczgAC81UeaTuXStyelCaPDCo4jSZLKImJRSgXw7hbA0vQr3yF6GKW73toXnUdS3XISWKpwEbErcDqlRXDfFJ1HaqjKf9F8FtgtM/9VcBxJkhq1iGgNPAXcmJkXFJ1Hasgi4lxgBUqL4iYWnUdS3bAElipYRHQDHsHbe6RaEREbUToawltOJUkqSPmoppuBBPb0qCZp5pSPD/wH8Epm9is6j6S64XEQUoUq385zD3CwBbBUOzLzn8BZlG6Za110HkmSGqnDgaWB/S2ApZn3s0Vx25fvJJVUgZwElirQz67kvpSZA4rOI1WS8vTRTZTO2d7Dv3xKkjTrRMTGlP4cXi0zPyw6j1RJIqIr8CiwSWa+WnAcSbXMSWCpMp0FVAPHFB1EqjTl0vcAYBlKk0iSJGkWiIjOlI6B2NUCWKp95TtID6F019s8ReeRVLucBJYqTETsBpxKaRHcyKLzSJUqIhYBnqM0Dfxo0XkkSapk5WOYngZuyMyLis4jVbKIOBtYCdjMRXFS5bAElipIRHQHHgI2zMw3is4jVbqI2AC4DVgjM4cXnUeSpEpUPorpVmA8sI9HMUl1KyKaAg8Cb2bmkUXnkVQ7PA5CqhARMS+lRXAHWQBLs0ZmPgacSemWuTZF55EkqUIdBfwO6GUBLNW9zKwGdgW2jYjdi84jqXY4CSxVgPIiuIeB5zLz6KLzSI1JeTppEDAbpTMK/YNVkqRaEhGbADcCq2bmR0Xnkf6PvfsOj6pM3zj+fdMLSYCE3nuT3lVAEbEriF1sqKDruqvrWta17K7+dlddV3fdBhbsDRVsoAgi0pEiVXovCT2QkD7v749ziCSEEjLJmXJ/riuXV8jMmSdjcjLznPd97nBijOkIfIszFmKR1/WISMVoJbBIaHgOyAMe87oQkXDjNn3vAlrirFQSERERPzDGNMcJgrtWDWCRqufuMP0F8Im781REgphWAosEOWPMTcATOKsj9ntdj0i4MsY0AuYDt1hrJ3tdj4iISDBzxyzNAcZYa//ldT0i4cwY8xegN86K4AKv6xGR06MmsEgQM8Z0B74CzrXWLve6HpFwZ4wZAHwInGmtXe91PSIiIsHIHbX0PnAYGKFRSyLecoPivgBWW2vv87gcETlNGgchEqSMMbVxguDuUgNYJDBYa6cDT6OgOBERkYp4CGgG3K0GsIj33KC4G4BL3Z2oIhKEtBJYJAgZY6KBKcAMa63mAIsEEHf10mtAAnCd3ryKiIicOmPMhTh/R3tZa7d5XY+I/MwYcwYwDbjQWrvQ63pEpHy0ElgkOD0PZAFPel2IiJTkNn3vxlnB9JDH5YiIiAQNY0xL4A2cIDg1gEUCjLsD9S6coLjaXtcjIuUT5XUBIlI+xphbgQtxVkcUeVyOiJTBWptrjLkSmG+MWWKt/crrmkRERAKZMaYaMAH4o7V2hsfliMhxWGs/NsZ0A8YZYwYpKE4keGgchEgQMcb0BCYCA6y1K72uR0ROzBjTD/gIOMtau87rekRERAKRO0ppHHAAuFOjlEQCmxsU9xmw3lr7K6/rEZFTo3EQIkHCGFMH+BjnhbEawCJBwF3J9EdggrvCSURERI71O6AhcI8awCKBz92ReiNwobtTVUSCgFYCiwQBY0wMThDcd9baJ7yuR0ROnbu66RUgBbhab25FRER+Zoy5GHgZZ9TZdq/rEZFTZ4xpD0wHLrbW/uB1PSJyYmoCiwQBY8y/gCbAFdZan9f1iEj5GGPigO+Az6y1f/a4HBERkYBgjGkFzASutNbO8roeESk/Y8xQ4B9AT2tthtf1iMjxKRhOJMAZY0YAg4DeagCLBCc3KG4YTlDcj9baiV7XJCIi4iVjTBJOENwTagCLBC9r7XhjTFfgI2PMedbafK9rEpGyaSWwSAAzxvQGPgf6W2tXeV2PiFSMMeYsYDxOUNxar+sRERHxgjEmAic4dY+1dqTX9YhIxbi/058CW6y193hdj4iUTcFwIgHKGFMX58XxHWoAi4QGd6XTEzhBcUle1yMiIuKRR4G6wL1eFyIiFefuWB0ODHJ3sopIANJKYJEA5AbBfQt8Y639o9f1iIj/uEFxo4E04CqNeRERkXBijLkU+B9OENwOr+sREf8xxrQDvgcutdbO87oeESlJTWCRAGSM+S9QDyckQw0ikRBjjIkFpgETrbVPe12PiIhIVTDGtAFm4IQdz/G6HhHxP2PM5cC/cYLi0r2uR0R+pmA4kQBjjLkTOAcFwYmELGttnjHmKuAHNyjuC69rEhERqUzGmGScILjfqwEsErqstZ8ZY7rhBMUNVFCcSODQSmCRAGKM6YszUL+ftXa11/WISOXS77yIiIQDNzRqPLDDWnu31/WISOXS77xIYFIwnEiAMMbUB8YBI9QMEgkP7kqo3+MExSV7XY+IiEgleRxIBX7tdSEiUvncHa03Aee4O11FJABoJbBIADhqPugka+1TXtcjIlXLGPM/nDngQzUGRkREQonmg4qEL80BFwksagKLBABjzBigFjBMDSCR8GOMicG5EDTZWvtHr+sRERHxB2NMW5wG0KXW2nle1yMiVc8YcxnwX6CXtXaH1/WIhDMFw4l4zBgzCjgL6KMGsEh4stbmu0Fx840xi621n3ldk4iISEUYY1Jw5t4/rAawSPiy1n5ujOmCExR3rrU2z+uaRMKVVgKLeMgYcxbOwPyzrLVrva5HRLxljOkNfIETFLfK63pEREROhxsK9SmwxVp7j9f1iIi33HPCx8Bua+1Ir+sRCVcKhhPxiDGmAfAhcKsawCIC4K6UegT41F1BJSIiEoz+AFQH7ve2DBEJBO6O15uBs92dsCLiAa0EFvGAGwQ3HfjMWvtnr+sRkcBijPk30BgnRENjYkREJGgYY4YC/8AJgsvwuh4RCRzGmNbATJww5Fle1yMSbtQEFqlixhgDvIyzOuJqq19CESnFDYqbCnxrrX3S63pEREROhTGmPc5Ch4uttT94XY+IBB5jzMU474d7WWu3e12PSDjROAiRqncX0AdnDIQawCJyDGttPnAVMMJdUSUiIhLQjDHVgQnAg2oAi8jxWGsnAv8BPnZ3yIpIFdFKYJEqZIzphzMQ/0xr7Tqv6xGRwGaM6QV8CQyw1q70uh4REZGyGGMigc+ADdbae72uR0QCm7s79iNgP3CnFkeJVA2tBBapIsaYhsAHwM1qAIvIqbDWzgceAia4K6xEREQC0R+BasBvvC5ERAKf2/S9FWeH7F3eViMSPrQSWKQKGGPigO+BT6y1f/W6HhEJLsaYl4DmwOXW2iKv6xERETnCGDMM+DtOENwur+sRkeBhjGkJzAaGWWtneF2PSKhTE1ikkrlbXV4DEoFrtdVFRMrLGBMNTAFmWGsf87oeERERAGPMGcA04CJr7QKv6xGR4GOMuRDn/XIva+02r+sRCWUaByFS+e4BugMj1AAWkdNhrS0ArgZucldciYiIeMoYUwMYDzygBrCInC5r7VfAP4FP3B20IlJJtBJYpBIZYwYAHwJ9rbUbvK5HRIKbMaYHMAk411q73Ot6REQkPLlBcF8Aq62193lcjogEOXf37AdANlo8JVJptBJYpJIYYxoD7wM3qQEsIv7grrR6ACcorobX9YiISNh6GogDHvS6EBEJfm7TdwTODtp7PC5HJGRpJbBIJTDGxAMzgA+stc95XY+IhBZjzItAG+BSBcWJiEhVMsZcDTyHEwS32+t6RCR0GGNa4ATFXW2t/d7rekRCjZrAIn7mbmV5HYgBbtBWFhHxNzcobjIwx1r7qNf1iIhIeDDGdAKmAhdYaxd5XY+IhB5jzGDgDZyguK1e1yMSSjQOQsT/fgV0Ae5QA1hEKoMbFHcNcIO7IktERKRSGWNq4gTB3acGsIhUFmvtZOAFYLy7w1ZE/EQrgUX8yBhzLs4c4D7W2o1e1yMioc0Y0w34GhhorV3mdT0iIhKa3CC4icAKa+1vvK5HREKbu7v2PSAPuFWLq0T8QyuBRfzEGNMEeBe4UQ1gEakK7kqs+3GC4mp6XY+IiISsPwNRwENeFyIioc9t+t6Os8P2Xm+rEQkdWgks4gfGmARgJvCOtfZ5r+sRkfBijPk70AG4WEFxIiLiT8aYa4G/4gTB7fG6HhEJH8aYZsBc4Dpr7TSv6xEJdmoCi1SQu1XlLcAAw7VVRUSqmjEmCmcsxAJr7cNe1yMiIqHBGNMZmAKcb6390eNyRCQMGWMG4bzf7mOt3ex1PSLBTOMgRCruPpwVeHeqASwiXrDWFgLXAte4K7ZEREQqxBiTihME9ys1gEXEK9baKcDfcILiEryuRySYaSWwSAUYY84D3sG5KrnJ43JEJMwZY7oA3wCDrLVLPC5HRESClLvDZBLwo7X2Qa/rEZHw5u6+fRuwwE1afCVyerQSWOQ0GWOa4jSAb1ADWEQCgbtS61c4KyVSPS5HRESC11/d//7O0ypERCgOirsTZwfufd5WIxK8tBJY5DS421BmAW9aa1/wuh4RkaMZY/4GdAYuckdFiIiInBJjzA3A0zhBcHu9rkdE5Ah3IdZcnIVY33pcjkjQURNYpJzcrSjvAEXAzdqKIiKBRtt4RUTkdBhjugKT0VghEQlQGskocvo0DkKk/B4A2gAj1QAWkUDkrv69DhjmrugSERE5IWNMGk4Q3D1qAItIoLLWTgWeQUFxIuWmlcAi5WCMOR94E+htrd3idT0iIidijOkMTAHOV7K7iIgcj7uD5GtggbX2Ya/rERE5EXd37ls4Cxtv1OIskVOjlcAip8gY0xwnkfR6NYBFJBi4K7l+ibNSIs3rekREJGA9CxQCj3pdiIjIyRwVFNcG+I3H5YgEDa0EFjkFxphEYA7wirX2n17XIyJSHsaYZ4AewAUKihMRkaMZY24CngR6WWv3eV2PiMipMsY0BubhZPV843U9IoFOTWCRk3C3mrwP5AK3aquJiAQbY0wkMBFYYa3VagkREQHAGNMNZwzEQGvtMq/rEREpL2PMOcAHOEFxG72tRiSwaRyEyMk9CDQH7lIDWESCkbW2CLgeuNwYM9zrekRExHvGmNo4QXB3qwEsIsHKWvsd8H/ABHcHr4gch1YCi5yAMeYCYCxOENxWr+sREakIY0xH4FucsRCLvK5HRES8YYyJBr4BZltrNQdYRIKau3v3dSAOuE6Lt0TKpiawSCnGmAicPx71gNnA1dba772tSkTEP4wxVwPPAT2BHGttlscliYhIFTHGVAOygReBVsBl7m4REZGgZoyJB2YAH+K81k2w1mZ7W5VIYInyugCRAHQDMADoAzylBrCIhBJr7Th3BuSHwCFjzIvW2m+9rktERKrEjzgN4ItxguDUABaRkGCtzTHGDAXmA1nAdUB/b6sSCSyaCSxyrLOBHsAaYIXHtYiIVIbZgMHZ8XC2x7WIiEgVMMbUA9KAJ4H/Aj5vKxIR8btC4J/AH4AexpgYb8sRCSxqAosc63KgDU5jpKm3pYiIVIq2QCf340qPaxERkaoxGEgCIoELgGhvyxER8bs44BKcXlcszu5eEXGpCSxyrMPAU0BTa+1Yr4sREfE3a+1zQDPgJUDhACIi4aEBsAg411p7gbV2j9cFiYj4k7V2o7X2bOAKYDXQyOOSRAKKguFEREREREREREREQphWAouIiIiIiIiIiIiEsCivC5DgFB8TlZ5bUFTH6zqCUVx0ZEZOfmFdr+sQkcAXFx2Znlfo07nWD2KjIjJyC4p07hWR44qOjE8v9OXqnFtBURFxGQVFOTrfisgpiYqPSS/KLdC5t5wi46IzCnPyda6VctE4CDktxhi75537vS4jKKXd+ALWWuN1HSIS+IwxdvtT/bwuIyQ0eHyGzr0ickLGGPvCFelelxH07v+0rs63InLKjDH27t2K4imv/9a6TedaKTeNgxAREREREREREREJYWoCi4iIiIiIiIiIiIQwzQSWCnvg1SmkH8jmUE4+rerV4HdXn0lacgIAM1duZWPGAW46t+Mx93vm4zlcfVY7mtetXsUVQ0FhEdFRkSe93Zrte7ni6Y9Y9q872bkvi9+9OY2k+Bj6dWjMtf3a8Yv/fk1cTBTV4qL5v5vOKb7fL//3NTHRkRjgmVsHEhWp6y0iUjEPf7aWjIP5ZOUV0aJWPA+d14TUxBgAZm88wKa9udzQ49ixYM9/u5krO9emWWp8VZdMQZGP6JOc/yYs3cWb83dy37mN6d+iBtl5RTz25XoAhnSqxYCWNTj7xQWc1TyFLg2SuL57XW5+awX1UmJIjo3i9xc0Kz7WB4symLhyD3WTY7i9T31a106s1O9PRELXh0se4mBuOrkFh6id1IqL2z5Etdg0ANbtmcWe7E30aXLjMff7atVzdG94FbWqNTvma5WtyFdAZET0CW/z1arn2J21gdjoJC5q8yBr98xi7Z4ZHMzdxaXtHyU1oQkfL3uUg7kZjOr7HgAvzx1OSnx94qOSuKzD48XHysxJ5/OVTwNwbsu7aZDSofK+OREJedN/+wbZ6QcoOJRD9Vb16PXIUOLTkgHYPmsVmRsyaH/TgGPu98OzE2h9VV9Smlf9WOGigkIio0/cVvvh2QkcWJ9OTFI8PR8aQlxqEvP/8gkFh3Jo0L89zS/pzru9H6FBv3bU7tKMdsP7F9932/crWTNuDtbno98zw4mpVvWv5yW0qAksFfb87YOKm7192zbkyXe/Jyoiguv6t2fR+nQWrNtJalICkRGGuau3k3k4j7/ecm6Zx8rMzuWxt6eTmhTP4K7NiYgwfLN4I7sPHubJ6/sxbelmZq/aRmJsNE8NH8Ark39ky+6DZGbn8vTwATzx7vdUi4uhS/M6DDuzbYlj79yfxbiZP7F+537uH9KLprWrn/D7KvL5eHPacgZ2bgLA2p37uLxXK4b0bcOvx0zm8t6tSIqP4W8jzuP2f35R4r7xsVH4fJa0lAQ1gEXEL565vFVxs7d302T+9NVGoiIM13Stw4/bDrFw6yFSE6OJiID5mw6SmVvI05e0KPNYmTmF/GHSBlIToxnUpiYRBqau3sfu7AIeG9yM6ev2M2dTJokxkTx5UXPGzt3B1gO5zv0uas5TX28kMSaSzg2qMaRT7RLHTj+Yx8c/7mLD3hx+NaARTWqe+MXqkE61ySv8OZ9g0k97GNqpFv1b1uDej1YzoGUNEmMiyC3w0ahGHAAJMRFYC3WTY0ocK8JAfLRzzq2dVPJrIiLlcU3nZ4ubvc1T+/Dpij8SaaLo2fhaNu9fzOZ9C0mMSSXCRLBh7zxyCg5yZaf/K/NYOQWZTFj2BImxqXSocz7GRLAyYwqH8nZzWfvHWb17Ouv3zCE2KoErzvgjMza8yr7DW8kpyGTIGX/i0xV/JC4qkUbVu9Ct4dASx87MSWfBtnHsztrAoNb3kZbY5ITfV6SJJjIimuiIOOKjk+nWcAjdGg5he+ZyVmZM5bxWv+T6ri/y9sJ7iu8TE5mAtT5S4uqVONa8Le9yQZvfkBJfjwnLnuCaLs+d5rMtIgID/nZLcbO3/pltmP3kB0RERdLmurPZtWgDGQvWE5+WhImMYOfcNeRnHubsvwwv81h5mYeZ9dh7xKcl0eT8zpgIw+ZvlpCz+yB9nryGrd8tZ+fs1UQnxnHmn65j2StTOLR1D3kHDnPW09cz+8kPiKkWR60uTWl1ZZ8Sx85O38+aD2dzYH0G3e+/lOSmtcus4YiIqEgio6OIioshNiWBTZMWkbP7IBExUSS6C+KiE2MpzMknqUlaifuu/mAWA/91B9tn/sSGzxbQ9gZlhUjFqAksfvXG1KU8fu3ZpCUn8Ksxk7lhQAdqVIvj4h4t+ObHjRgDuw5k8+OGjDLv/9GsVdx4zhn0adMAgIXrdlLo81Hk8zFt6WZ27DtEu4apXNKjJVm5+XwyexUDOjYhN7+QtTv3k5mdxwXdmnNux5IvgIc//ykt69Xg5oGdilcer92xj9enLi2+TUxUJE9e//NJ9eWvf+SWgR35x2c/ANCpaW1G/msiH8z8ibsv6kZCTDS5+YXc/MJntGtY8mT97K0DMcbwn4kL+X7FFvp3aFzh51ZE5Ii3f0jn0cHNSE2I5jfj13Bd9zpUj4/mgnapTF2zD2Ngd1Y+S3ZklXn/8Ut3cX33OvRqkgLAoq0HKfRZinyW6ev2s/NgHm3rJHBhuzSy84qYsGw3/VtUJ7fAx7o9ORzIKWRQm5oMaFmjxHFve2cFLdISuLFH3eKVx+t2H+bNH3YW3yY2MqLE6t3Sdmbm06VBEgBHki6+ursrRT4Y+f5PnN28Ov+9pi3GGJ74cj2b9uXQ1G00X9WlNld3rcOyHVm8PHs7D57X9HSeXhGREuZsepNL2z9GtZhU3l98H72bXE9iTA061ruQlRlTAMOhvF1sPbCkzPsv3PoxvZvcQPPU3gBs3rcIny3EZ4tYvXs6B3J2UDe5DZ3qXUxeYTaLtk+gTa3+FBTlkpG1lpyCA3SoO5i2tUqugHt13i3UqtaCvk1uKl55nHFoLbM3vVl8m6iImBKrdwe1/jXGGJbu+JKF25y6fNbHzI1jGdzmN2XWf3OP0Rhj+GTZY+zJ3kRaYlMADuTspHp8faIj4ygoyjndp1dE5Bgr3/iOPo9fTXxaEtN+/Rptb+hHbPVEml3Ujc3fLMFgOLwrk90/bizz/ms/mkO7G/tRr09rADIWrsdX5MNX5GPrd8vJ3rGfmm0b0uySbhRk5bLuk3k0PKcDhTkF7F+7k7wD2TS9oAuNzim5w2HSTf+gest6tL9pQPHK4/1rd7Li9WnFt4mMjaLvE9cUf97t/ksxxrDhiwWs+WgOOXsOUf/MNrQa1oepd4/h/Jfv5qqpf8AW+fh6xL9p2K99icc0xlCtfk3S56/zy3Mr4U1LFKVSRZifwyrf/34lT1zXj16t65OTX1Dm7W2pz0d/tZgnr+vHoM7NyMkv4FeX9aRn6/r8duxUMrPzaFw7hYeH9eXZ2wbSrUVd/nXXBRQVWe57+ZsSx7nnku4UFPl49Zsfmbd6OwA+nyU3v7D4I7+wqMR9lmzM4H+TFvHDup289s0S3p+xkseuPZuPfzeMD2f+xJJNGbRpmMqb91/Ogexc9mflFt/XuN93WnICWTllf68iIv5y9Ll23OIMHh3cjB6NkskpKCrz9rbUyfbVOTv4/eBmDGxdk5wCH7/o14gejZL53efrOJBbSOPqsTwwsAl/vqwlXRsm8Y8rW1Pks/x2wtoSx7nrrIbkF/l4fd4OfticCYDPWvIKfT9/FPlO+L3UTY5hx8G8Ev9mjCEq0vk48jlAzcRosvOKStwOIDUxmqy8sr93EZGKMke9hfphy4dc1uExmtbsQX5h2Y1QW+oV7vcbXubS9o/Tvs55FBTlcF6rX9KsZk/GLXmYwwUHSE1ozIVtH+Sqzn+lSY1u3ND1n/h8hbz/4wMljnNOy7sp8hUwc+NYNuyd7zyW9VHgyyv+KPTll6zdPU9Wi00jtzAbn/Xx6fInObvZbdSIb1D293vkPjGp5BVmF/97SnxdDuTspKAol6jIuFN56kRETos56rXu6g9m0eeJq6nbsyWFOfll3t6WerG7dMw39H3iapoM6kTh4Xy63nsxdXu15PsH3yQvM5ukJmn0fGgI/Z+9iTrdmjPwX3fgKyziu/vHljhO519cRFF+Ictf+5ad85zXwdbnoyiv4KiPwjJrj09LpiArl8R6NYitnkhEVKSzjc29TURUpPNvZcjeub941bBIRWglsPjVLed14ukPZhEZGcFN555BszrV+c/EhVSLi6Fp7RRe/HQ+C9btpHOzsrdMDDuzLY+9/R1fL9rABd2a061FXZ75ZA479h6iV+v6vD51Ket37ic+JprqiXG0b5TGo29OI7/Qx/1X9OLvE+YRGx1Jq/o1Sxy3b9uG9G3bkKzcfCbMXUPNpHjaNEzl+dsHHfd7+e8vLgKc+b4jzu/Mmu37eH7CXJITYunQOI02DVL5z8RFPDh2Kjl5haQkxPLL/33Nv+66gCff/Z7DeQVk5eTz4p3n++8JFhEBhvesy1++ccZB3NijLk1T4xk9axuJsZE0qRHHS9O3smjbQTo2qFbm/Yd0qsUfJm3gm1X7OL9tTbo0TOL5aZvZkZlPz8bJvPXDTjbsySE+OoIa8VG0q5vIE1+uJ7/Ix70DGvPP6VuIjYygZVrJUQ+9m6bQu2kK2XlFfLZ8NzUSomldO5FnLm913O/lu7X7GfdjBokxkSTFRnFR+1Qe/3IDny3bzdDOtdiwN4eXpm/FGDirubNy+Tfj1xATaTDG0KFeNV6avpWL2qcyf/NBluw4xIHDhTw06MRbokVETlXfpjfz5cr/I8JE0afpcNISm/Hd+v8RG5VIamITpqz5J5v3L6RhSucy79+t4ZVMWP4EK9In06HuYBrX6MrXq57jQM4OmqX2YvamN9mdtZ6YyHgSoqtTL7kdnyx7jCJfPoNa/5pv1vyDqIgY6lRrWeK4LVL70CK1D3mF2Sze/inVYmpSN7kN13R+9rjfy9S1L7Hv8FYO5x9gWKe/MHXtS2zZv5gCXx5tavWnc/1L+Xjpo2zZv5hJPz3DRe0e5r3F9xEVEYPB0CClA1PW/JNO9S6md+Pr+XLln8EYBjQf6dfnXETCW/tbzmHe0x9hoiJoN3wAKc1qs+S/XxFTLY7kJrVY9OIXZCxcT63OTcu8f6thfZj12HtsmvwjTQd3oXbX5vzw7Kdkbd9H3V4tWfHGNDLXZxAVH0Ns9Wqktm/EzEffoaigiO73XcLCF74gMiaK6i1LjsGp37c19fu2dlYPT5hPXGo1arZpwIC/3XLc72XxP7/k4Na95O3Pot8zNxEVF8PMR99h85SlNDm/MwfWp7PoxS8xBhr0awfAt798hYH/uoPWV5/JtPtew1dQRL+/lj36QqQ8TOkrJCKnwhhj97xzv9dlBKW0G1/AWmtOfksRCXfGGLv9Kc3+8ocGj8/QuVdETsgYY1+4It3rMoLe/Z/W1flWRE6ZMcbevXvsyW8oJfy31m0610q5aSWweGrtjn18Mmd18ec3D+xIvRplr1wTEZHTs273YT5dtrv48xt71KVucqyHFYmIhK6MQ2tZvH1C8ed9m9xESnxd7woSEQlx+9fuZN34ecWft795AIl1a5zgHiLhSU1g8VSr+jV5eFhfAO76z6QSDWBrbYnZP/7k81keHDsVYww9Wtbluv4/D3z/2/i5bN19kMzDefzrrgv4etEGxk5ZyoNX9mbAGU2YuXIrz34yl1b1anDVWW3p27ZhpdQoIuIvLWsl8MDAkuMR7h23ipeublv8eWWfc3/3xToM0K1RMtd0rVP8tb9N3cyEZbv57t7uREUaPl22m1kbDrDzYB5/vrQlmTmF/GvGVpqlxvPwoKaVUp+IiD/VSWrFhW0fLP787YX3MLz7v4s/r9TzrfXx0dJHMECTGt3p1fjaEl//YcuHLNz2CXed+T6ZOelMXfsSFh9nNr2ZOkmtmfTTM+QWHqJVWj861b+4UmoUEfG3Gq3q0fOhIQBMuXt0iQZwZZ5zrc/H9w+9BcZQp3tz2l53dvFjTn/gDUyEIbFeDXo8cDkA+9fs4NMhz3Dz0r+TvXM/Mx99h5ikeBqc3Y62N2j3n1Q+NYGlSmzelcn/Ji0CoEvzOjRITeLVyT/StUVdCot8XN67Nau27uX58fPo1bo+r0z+kT5tG9CteR3emb6CIp+P+y7vxYK1O5m7ejuNaiXTuFYKMVERxMdEc0G35tz9n0nFc3xPZt6a7XRuVoebB3bk7v9MKtEEXrdzP//7xUU8+/Ectu05yLAz25JfUDJ4KDE2moIiHw1Tk/37RImI+MGW/bm8PNsJwexUvxoNqscydu4OujZMoqDIcukZaazadZgXv9tCz8bJjJ27g15NU+jaoBrvLcqgyGe5t38jFm49xPzNmTSsHkfjGnFERxriYyI4v00q9360mpeuanNK9fyw5SCd6lfjxh71uPej1SWawL89rwnbMn8O1ryiYy2u6FiLSSv3sHb3YQa2rsnvBzfj3YXaoi0igWdv9mamrx8DQKPqnamR0IAZG16jcY2u+HyFdG5wGTsPrmLy6hdoVrMnMza+RvPU3jSu3pV5W97FZ4sY1OpXbN6/kA1751EzoRE1ExoTGRFNTGQ8HeoO5u2Fv2R493+dUj0b982nUUon+jYdztsLf1miCXwgZwcH83ZRLTYVgOkbxhAdGU9eYRbVYtNYvvMrDuXtJjIimpQ4rVwWkcBzcPNulv5vMgC1ujSlWsNUlr8yldrdmuErKKLFFT3Z99N2Fj7/GXV7t2LZK1Oo16c1tbs2Z9U73+Mr8tHtvkvJWLCenXPXkNQ4jeTGaURERxGVEEPTwV2Y+osxnPefU5tzvnPeOmp1bkr7mwYw9RdjipvAefuziYiKpP+zNzH7yffJ2r6XhLo1WPnWdBqdewbgrF5ufllPWg7pxXf3vaYmsFSJiJPfRKTixk5ZQnxsFNWrxbFy6x7ACWv71WU9WbdzPy3r1aBto1QeGNobY6B3m/rcfVE33py2jOdHnMcfb+jP2ClLABjUpRm/HdqH75Zt5tKerfhq0XoWrU+nW4uSL1b/8tFsfv/Wd8Ufyzf/vBV6x74sGqQmARARUfKqYI+W9bj+uQks3bSLlvVKBswBnNm2Ae89OIRHrz6T5yfMO+brIiJee3P+TuKjI6geH8WqDCfJvU/TFH7RrxHr9+TQIi2BtrUTuO+cxhgDPZskM/LMBry9IJ1nLm/JExc24835OwEY2Lom95/bmOnr9nNx+zS+WbWPxdsO0bVhydE9z03dxBMT1xd/rNiZVfy1nQfzqJ/ijJ+IOIWFGM9/u5n/zdpOh3oaDyQigW3WpjeIjownIaY6Ow/9BECL1L6c1+qX7MpaR+1qLaiX3JbBbe7HGEPzmr04p8Uo5mx+i2s6P8cVHZ5k1qY3AGhX5zwGt/kNq3d9R6d6l7A8fTKb9y+icY0uJR5z0k/PMH7Z48Uf2zNXFH8tM2cn1ePrAxyz8m3auv8xoPmdxZ/vPPgTZze7lQEtRvHdutHsytpAi9S+XNnxz0zfMLoyni4RkQpZ8fo0J8ytRiJ7f9oGQL2+rel678UcWJ9O9RZ1qdmuAd0fuByMoV7v1nS+6wJWvvkd/Z+/hTP/eC0rxn4LQONBnejxwOVs/W4FzS/tzqavfiRj0QZqd21e4jHn/3U8M3//bvHHnuVbir+WvXMf1Y6E0h91zo2rWY3kJmnMeuw9Dm7aTdbOAyx7eQrtbz6n+Nxcq1MTVn8wi4k3vEDLK/tU5tMmUkwrgaVKWOCGAWfQsp6zLWPmyq3Exzo/fj43nPDol6lJ8THHHOPIybKgyFf836jICBrXSuHvE+bxn7svLHH7/IIicvMLiz/3HRWCWK9GNdan73f+3VcyHHHOqm289+AQJsxdzeTFG7i4R8kk5iN1VE+MI6+gEBGRQGOt5drudWmRlgDA7I0HiI+OLP4aUOKFalJsGS8H3C8XuufcQp8lKtLQsHos/5y+hX8MK7kKOL/QklfoO6qGn79WNzmWDXtyAPCdQh7tAwObcF7rmny0OIN7+jc6+R1ERDxj6d3kempXawHAuj2ziImKd79y5IR3VGMgOumYIxj360U+53VlkS0kMiKKmgmNmLLmH9zQ7aUSty/05VPgy/u5AvvzuTclri67sze4//7zCfdg7i72Hd7MJ8sfZ8v+xazaNY2UuLrER1enyBaQX5RN3eQ2xEenEBkRhdFaIREJQNZa2g3vT3V3Adj2WauIcnsH1uecC4++ABZdLe7Yg7hf9xU6u319BUVEREWS1CiNRS98zsB/31ni5kX5BRTlFfxcw1EvZhPr1uDA+vQjxZW4X5d7nF3K0x94neTGaax4bSoH1u0kfcF6lr/2Lb6CQvo8NozaXZvzzaj/0WRQp3I/HyLlpSawVIk7zu/Cn8fNolZKIo1rJdO2Yeoxt0lOiOXJd7/nvM5Ni//t5nM78tvXplLks/z68p4sWLuTbxZvYO6q7Qxyb3dZr1Zs3pVJckLJkKMnrz/+doo+bRrw8exVLN+8m34dGgPwy/99zb/uuoDGtVJ44NUp7DmYw19uPodvl27i/RkrSYyLJik+lvT92UxZspGDh/MYeUHXij85IiJ+dluf+jwzZTO1qkXTqHocbeokHHOb5LhInvpqA+e2/nnHw/AedXnks3UUWcsv+znjIKas2c+8zQc5t5VzEe+SDmls3Z9HclzJlxC/v6DZcevp1TiZ8Ut3seKLLM5ungLAfZ+s5sUr2/Da3O0s3HKIR79Yx+8HN+OTJbtYt+cwmTmF3HdOY7bsz+XZKZtYtyeHlmkJDOtS2x9PkYiIX5zdbAQTf3qGpNg0aiY0ol5y22NuEx+dxGcr/ki72ucV/1vfJjcxbslD+GwR57W6l837F7IyYwob9s6lXe2BAHSufyn7Dm8hPrrk+LHLOjx+3HqapfZm4fbxbM9cTqu0swB4d9GvuKHbP7m9t7Pi+O2F99C29rmkxNVl/LLfU2SLGNjqHlITGjN+2WP8lDGF9nUGVfi5ERHxt463n8f8v3xCfK1kkhqlUbPdsfk8MUnxzP7DBzQ+r2Pxv7W/+Ry+/+2b2CIfXX99CRkL1rPlmyXsnLOm+HYtLu/BoS27iU0u+bq57xPXHLeeen1asfaTucxYvoUGZ7cD4NtfvsLAf93B3Kc/IndfFjVa1yOhdkrxiIlvf/kKZ4wYyP41O1j4/OfEpCSQ2l6LHqRqGGtPYUmOSCnGGLvnnfur/HHfm76C+qnVGHCGE3C0fe8h/vT+TB4Y0ovWDY5tLAeitBtfwFpbOZPpRSSkGGPs9qe8mw/2waIM6qXE0L+F0wDenpnHXyZv5NcDGtOq9rGN5UDW4PEZOveKyAkZY+wLV3gzf3z+lvdJiatPm9r9Adifs50vVv4fg1vfR52k1p7UdLru/7SuzrcicsqMMfbu3WOr9DFXvTeTavVr0HCAkw2UtX0vc5/6iO6/uYwaretXaS2n67+1btO5VspNTWA5LV41gUOBmsAicqq8bgKHEjWBReRkvGwChxI1gUWkPLxoAocCNYHldGgchAStu/4zif/94iK/HOuVyT+yfPNudh88zPMjzqNujWpYa7np759xQbfmXHN2Ox598zsApi3bzPQ/Dyep1PgJEZFQdu+4Vbx09bHbnE/H2Lk7WJmeze6sfJ65ohX7sgt4ff4OrIXVuw7z6Z2duWzMj7Svm0iTGnH8op+2yIlIeHl74T0M7/5vvxxr/pb3WbLjS1Li69G/2e3ERlfj61V/o9CXX/wYL35/CfVTOpCa0JjzWv3SL48rIhIsptw9mkH/HeWXY616byYbvlhAYr0adLxzEDHV4vjh2U8pyi9g0H9HUZRXwMzfvwvA1mnLuea7PxGTFO+XxxY5GTWBpUp9NGsVs1dtIzE2mqeGD+DlrxezZfdBaibFc/8Vvbjlhc9p3ziNNdv3cla7RizekM5F3VtyRpM0fvHfr7m0Z0v2Hcrh0WvOKj7mc5/M5VBOPrn5hTw1vD/3jp5M3RrVOKdjYwZ2anpKdd0xuAsAExesY+7q7Qzp04Y3vl3GOR2dsROx0VE8f/sgDh3OI6+gSA1gEQkK45fsYs6mTBJjInnyoua8Nnc7W/fnUSMhil8NaMwd766kXd1E1uw6TN9mKSzZnsWF7VJpXzeRX3+8movap7HvcAEPD2pafMwXpm3mUF4RuQU+nryoOb/5ZA11kp2REee4c4NP5rY+zja7r1buYd6mTC7vWItnLm/F9+v2076uEyCXGBNJQZGlQYrOtyISHBZu+4T1e+YQG5XAFWf8ke83vML+w1tJiKnJ+a1/zWvzR1A/uR3ph9bQMu1Mtu7/kTPqXUSDlPa8s+hXdKp3Mdn5+7i43SPFx/x69fPkFhyioCiXIWf8kfcW30dyXB3a1B5A29rnnlJdhghiIp0GQ3JcHRJiqnNd1xd4e+E9xbeJjUqkyJdPjfhj52uKiASiNR/PYefs1UQnxnHmn65j2ctTOLR1D7E1qtH9/kv56taXSG3fiP2rd1D/rLbsWryRZhd3JbVDY76952WaXdKd3H2H6P3osOJjLvjbp+QfyqEwp4CznrqOb3/1Kol1q9NwQAcaD+x4gmp+ZiJMcVhdYp3qxFZP5Nx/jGDK3aMBiIyNZsDfbiH/UA5FuQVqAEuVUuyrVKkd+w7RrmEqd1/UDYAinyUhNpqJC9ZhrcVieXBoH/qf0Zg61RN5/vZBfLVoPQBnNKnFXRd1IzuvgP1ZuQCs3raXH9buIDEumryCQnZnHia3oJDzOjdhwBmNix93d+Zhfv/WdyU+snMLStSWk1/IZ/PXcl7nZmzMOEBWbv4xAXYfz1nN0L5tKuvpERHxq50H82hbJ4E7z2wAQJEP4qMj+Pqnve45F+4/pzH9WlSnTlIMz1zekq9X7QWgfd1E7jyzAYfzi9h/2DlfrtmVzYIth0iMiSSv0MeerHxyC32c06oG/VpUL37cPVn5PDFxfYmPw/lFJWrLKSjiyxV7GNj658bxhGW7GdrJCX5775Yz+PvQ1kxcuZecgpL3FREJRAdydlA3uQ0DWjiryaz1ER2ZwPKdk7DWgrUMbvMArWv1Jzm2Dld3eY7l6V8BUD+5PQNajCSv8DDZ+fsBSD+4mk37FhAblUihL49DebspKMqlbe2BtK7Vv/hxD+XtZvyyx0t85BVmF3+9R6OruaXnGPo2Gc709aPLrP2uvh9wfdcXWbrzS/KLcirrKRIR8ZvsHfup2bYhne4aDICvyEdUfAybJi1yz7nQ47eX03BAexLqpDDg+VvYNGkxAKkdGtH5rsEUHs4nd38WAPtWbyd9/jqiE+Moyivg8O6DFOUW0Hhgx+LZwQCHdx9k5u/fLfFRkJ1X/PXW15zJ4Fd+QfubBrDkf5OPW//aT+bScmjvynhqRI5LTWCpUr+6rCc9W9fnt2OnsmPvITZmHOB3V59JzWrxxQ3hiAhDTGQk1eKjiYmKJL/QefNf4P63sMhXfDyLpVPT2jw8rC//GDmYhmnJvDRyMDv2ZvHkuzNK3C43v7DEx9Fy8gt55I1pPHbNWSTFxzBjxVbWbt/HfyctYtysVRw67JzUpy/bzLnu6mARkUD3i36N6NEomd99vo4dmXls2pfDQ4OaUiMhmiIfJERHEBFhiI6MIDE2kpioCAoKnXNsgc/JDCj0/ZwdYC2cUb8aDwxswvNDW9Ogehx/H9qanZn5PPX1xp9vB+QV+kp8HC2noIjHv1zPI+c3pVqssynpQE4BBkiJdz43xhlxlhwXRUGR8gtEJPCd1+qXNKvZk3FLHuZAzg72ZG/k4nYPkxBTA58tIiYqgQgTQVRENLFR1YiKiKHI51xkK7LOa1Of/XmRgsXSMKUjF7Z9kOu6vkCNhIZc3+1FMnN38NmKP3HUDSnw5ZX4ONqR82lSbBq5RzWHy7pNfHRycU0iIoGs670XU7dXS75/8E2yduzj4MYMev3uSmJrVMMW+YhKiMFERBARHUVMtTgiY6IoKnDPtW5vwVdwVF/AQlqnJvR8aAjn/mMESQ1TOfeft5O1Yz9z/vDBUbezFOUVlPg4WvH5tFYyBe7itbJs+24ljc7tcNyvi1QGjYOQKvX61KWs37mf+JhoUhLj2JeVy0tfLCD9QNZJ77t6+z7+9P4MYqOjqFEtDoC2DdPIL/Tx+NvTycrN5+Fhffn7hPkU+Xx0a1G3+L61U5xVxcfz6JvT2LH3EC98Op+hfdtw88CO3DywIzNXbmVjxgGSEmJZtW0PrerXJCJCs9dFJDi89cNONuzJIT46gurxUew/XMh/Z24j/WD+Se+7dtdh/jx5I7FREdRIiAagTZ1ECooy+OOkDWTnF/HAwCb847stFFlL1wZJxfetVS2GZy5vddxjPzlxAzsy8/jn91u5omMtzmxWnQlLd3NFp1oAHMot5NEv1hMfHUGdpBiS4/RyRUQC3+xNb7I7az0xkfHER6eQnb+fb9f+m4O5GSe9b8ahNXy+4mmiImJJjHF2SNRLbkuhL59Plz9JbmE2F7Z9kG9Wv4APH02qdym+b1JcLa7p/Oxxjz138ztsObCEw/n7ubjdI+QWHOKzlU+xZf9ipq9/md6Nr+Ojpb8jOjKO5Lg6xEcnV/i5EBGpbCvemEbm+gyi4mOITUkkd382i/81icMZB0563/2rdzD3T+OIjIsmrkY1AGq2bYCvoJDZT7xPflYuPR8awsK/f471+ajdtVnxfRNqpzDgb7cc99gr35rO7iWbyNufTa9HryT/UA5z/vghuxZtZOnoyXQaNZh9q7ZTvVVdTITWZUrVMtZqdY2UnzHG7nnn/ip7vC27M3l72vISs4CDVdqNLyjFU0ROiTHGbn+qX5U/7tb9uby7ML3ELOBg1+DxGTr3isgJGWPsC1ekV/nj7ju8hbmb3y0xCziY3f9pXZ1vReSUGWPs3bvHVtnjHdyyh5/enl5iFnAw+m+t23SulXLTZQcJCo1rpYREA1hEJBg0qhEXUg1gEZFAVjOhccg0gEVEAl1y47SgbwCLnC41gUVERERERERERERCmJrAUqVmrtzKW9OW+fWY/R95iwVrd7J97yF+PWYyd/1nEgCH8woY9e9J/Pa1qbw2ZQkAj7wxjV+Nmcy9o7/G5zt2FMrMlVu5/OlxPPDqFOas2kZOfiG/eXUKo/49iec+mVvm45c+5uIN6Zzzu7dLBNiJiHhp9sYDvLvAv1ucB/1rIQu3HmTG+v38dsIaRryzkpkbDpBX6OPhz9by8Gdr6fP8fA7lFjJj/X7u/2QNv/54NVl5hccca/bGA1z16lIe/mwt8zZllvl4/5u1jce+WMfTbgDdF8t3c/NbK/z6PYmInK51e2Yxd/M7fj3ms9POZdO+hfisjw+XPMS4JQ8xf8sHZd725bnD+XDJQ3y+4ikAFm0bz0szh7B61/fHPb61llfn3VJc99IdE/l46e+KjwGwdvdMnvl2AABb9v/Ic9POo8h37HlcRKQqbJ+1ipVvTffrMT8Y8DjpC9YDsOgfXzLjkbf56W3n3PnJRU8z/bdvsPilice9//41O3i9/a/xFRZRkJXLt/e+yrf3vsrWacvxFfmYctdopt33GjN//+5xj7Ftxkre7/dY8eeHdx/knZ4Pk7khg5y9h5h08z/ZNl2ve6Xi1AQWv/rta1M5lJPPoZx8Hhw7lZ+27uH/PpzFr8dMZu2OfcW3e2/6CqYv3wxQ3LR97pO5PPHO9zw09luKfKfeQG3fOI0ererRIDWJf4wcXPzva3bs44wmtfjbiPP4Yc0OCgqL+Ost5/LPkYNJTohl76GcY45ljCExNpqCIh8NU5OJj4ni77cPYvQ9F7Fj36EyH7/0Mbs2r8sZTWqdcv0iIhX1yGdrycorJCuvkN99vo5VGdn89ZtNPDB+Det2Hy6+3QeLMvh+/X4A7h23CoAXpm3mT19t4NHP11FUxsWx42lXJ5HujZLp16IGfxvSmheubM2XK/YQGxXBM5e34rHBzejTLIWkuCjGLd7F34e24uqudfhyxZ5jjmWAhJhICoosDarHHvP1/EIfa3cd5ulLWxIXFcGW/blcekYtUuIiy/lMiYicnnFLHiK3IIvcgiw+WvIwOw/+xJcr/8L7i+9n16F1xbebv+X94sbr2wvvAeDr1c/z6fI/8NGSR/DZolN+zPrJ7Wlaszsb982nUUonru78LGt2zyjztjGRCVjrIyWuHgDdGg6ld+PrTnj8OZvfonWt/gD4bBFzN79NhIkiMaYmAHmF2azZ/T0NUs4AoHGNLjRIUZK9iFSe6Q++SX5WDvlZOXz/0Jvs/Wkb8/7vY6b9+jX2r9tZfLtV780sbopOuXs0AAv+9imzn3yf7x96C185FmSltm9I3R4t2L1kE7t/3ARAfG0nIDM6MRZffiHVGqaWeV9fkY+Vb02n0bnOeXLDxEW0GtaHgS/dzppxsynKySc6KZ5zXxzB4fQDZR6jICuXbdNXknZGo+J/W/Lfr2h+aXenltQkml3U7ZS/H5ETUdy2+NXFPVowaeF6sJaLurcgOiqSvIIiEmKj+eKHdfRsVa/M+63etpcf1u6ge8t6ZGbnsnNfFg3TnBPvBzNWsnTTruLb9mnTgMt6HT91/ohOTWrz5Q/reOzt6WQcyGZfVi51qieyIf0AeQVF1EpJOOY+Z7ZtwFntGpK+P4u/fjSHF+88nx83ZvDnD2dxTscmx32sEx1TRKSyXdguja9/2ofFckHbVKIjDflFPhJiIpm4cg89Gped9L5mVzYLthyiW6MkMnMKST+YR4PqcQCMW5zBsp1Zxbft3SSFSzqkHbeGf8/YyvXd6hR/PmHZbq7o+PMFMWMM9VNi+WHzwWPu26dpCn2bVSfjUD5/m7qZ54aUPMfvzykkNTEagHopMezMzKNxjbhTeGZERPyjY72LWJ7+FRbLGfUuJDIihkJfHjGRCSzZ+SXNavYo837pB1ezad8CmtToRk5BJpk5O6mR0BCAH7Z8yLbMn3fINU/tTef6lx5zjMycnVSPrw8459Ky3NxjNMYYPln2GHuyN5GW2PSE38+e7E3kFWbRqHpn9mRvIitvLwW+PIZ2fIqJP/2VjENrWbjtYwa0GMmE5U+eylMkIlJhzS7qyqZJi7EWml7YlciYKIryC4hOiGXD5wup26tlmffbt3o76fPXUadHC/IOHCZ7536S3Mbt6g9msXvp5uLb1uvTmhaXHXvOPrAhg9QODenx2yv4+rZ/03RwFy4d91uMMUy+/T80u7ArUfExJe6z7OUptL/5HBb/40sAsnfso3bXZs4XjSEqIYainHy+uuUlarZtUGbti/75JZ3vGsysx98DYN34eTQe2JEds1eX78kTOQVaCSx+NeCMxsxcuZXvV2ylf4fGvPz1Yn59eU+uOqstOXkFxbeLjoqksMhZcZabX4jF0qlpbR4e1pd/jBxc3AAGKCjykZtfWPxxqmMWIiIMv7/mLJ4ePoDkhFjSkuPZtOsAL33xA/9304Ay73PkhXX1xDjyCpytbl2a1eHDh6/khzU7yrzPyY4pIlLZ+rWozqyNB5i54QBnN6/Oa3N38Mt+jRjaqRY5BT+fM2MiTfFq39xCH9bCGfWr8cDAJjw/tHVxAxig0GfJK/QVfxSeYJXwC9O2cFbz6nRqkFT8b9+v28+AFjVK3G5nZh71kmNK37343JsSF0Vu4bHn+BrxUew77PwNST+YT90yjiEiUpla1+rP2j0zWbt7Bq3S+jFjwyuc1+peujccRkHRz7vLIiNi8FnnNWRBUS4WS8OUjlzY9kGu6/pCcQMYoMgWUuDLK/44cr/SUuLqkpnrrICztuxz8ZHzaLWYVPIKs0/6/azdPZOMQ2v5bv1oFmz9iJjIeFLi6gKQEF2dvMJsth1YysRVz7Jl/2IWbvvkFJ4lEZGKaTigA9tn/MT271fSsH97lo35hq6/uoRWV/WhMCev+HYRMZH43NeMhTkFYCGtUxN6PjSEc/8xorgBDOArKKIor6D4wxaWvSMjsW4NYlMSi48PP59bY5LjKSo49hy9Z+kmlo6eTPqC9Sx/7VsS69Ug+6gd0LuXbqZG2wZc+Ma95B3IJnd/VhnH2Mz8v45n16KNrPl4DukL1rNuwnw2T17C8rHflvcpFDkhrQQWv4qMiCApPgZrLVGREZzVriF/nzCPyIgI4qJ/3rZ7ZtsGPP3hLFZv30uRz9K2YRr5hT4ef3s6Wbn5/OXmc4mLcX48h59zBsPPOeOkj33ocB5/eG8Gi9anM/qrRYy6sBu/eXUKBYVFXNarFZEREVz37AS6t6zLo29+x2+v7MPqbXtJS04oHt8wccF6pizZyMHDeYy8oCubd2Xy7y8X4rOWto2cFXAvfbGAey/9+cph6WPWq1HNn0+piMhJRUYYkmIjsRaiIg19m6bw4vQtREUYYqN+vt7bu2kKf/1mE2t2HabIB23qJFJQlMEfJ20gO7+IP13cgrho5/bXd6/L9d3rnvSxxy/ZxRfLd5N+KI+t+3MZ3rMeqzOyaVkrgYgI54XzVV1q89sJaygosjx9SQu+X7ef1MRoOtRzzpdf/7SXqWv2cSi3kBF9nVUS/5u5jbvOdpolMVERtEhL4ImJ64mOMDSpGe/X509E5GQiTCRxUclYfERGRNEi7Uy+WfMiESaS6MifL6C1SO3Dlyv/TMahNfhsEfWS21Loy+fT5U+SW5jNlR2fLr59nyY30KfJDSd97GapvVm4fTzbM5fTKu0sAL5d+28Gtrqn+DbvLb6PqIgYDIYGKR1YtWsaP2z9kJjIROKiqxEdEcfBvF20rX0OAH2bDqdv0+Gs2zOLPdmbiItOolH1zoxf9gQFRTkMaDGKkX2d+ZVvL7yH7g2v9NdTKSJyXBGREcQkJ2B9PiKiIql/VlsW/v1zIqIiiIyNLr5d/b5tmPd/H7N/zQ6sz0fNtg3wFRQy+4n3yc/K5ew/30hUnHP7dsP70254/5M+dr0+rVg3fh4zH32HWp2bkn8ohxkPv0VkXAwJdasTm5zAj//5is53DcZEOK+Xz/vPSAC+/eUrnDFiIIW5+cz83busHT+PVlf2oUbr+iz5z9d8/9CbFB7OJzYlgcX/mkTXX15U/LiXvP8bwBlr0XpYX1oP6wvAD89OoPVVff3zxIq4zPGuJouciDHG7nnnfq/LAJyZwv/7xUUnv2EZ/vn5D4w4vzPV4k59VdlfPprN764684S3+eX/vubFO88nKvLYxfZpN76AtbbsvXwiIkcxxtjtT/Xzuowy3TtuFS9d3fa07vufGVu5pVd9EmPLnum7fs9hftyWxbAutf1WQ4PHZ+jcKyInZIyxL1zh3xDNinh74T0M7/7vY/49v/AwMza+ynmt7j3lY83b/C6tap1NzYTGFarp3UW/4toufycy4vhrie7/tK7OtyJyyowx9u7dYz17/Cl3j2bQf0ed0m3n/3U8vR4ZWqHHO51jrHpvJtXq16DhgJ/nsv+31m0610q5aRyEBL2CQh8L1u48+Q3L8KvLeparAQyctAG8eEM6uQWFHGdkm4hISCjwWRZuPXa+76n4Rb9Gx20AA7RISzhpA/iL5bupnaSxECISuop8BWzat/CYf4+JSihXAxigd5MbKtwA3rL/Rwp9ecedSywiEox8BUWkL1h/SretaAP4dI6Rs/cQGQvXE1s9scKPLaKVwHJaAmklcLDRSmAROVWBvBI42GglsIicTKCtBA5WWgksIuXh9UrgYKWVwHI61ASW0xIfE5WeW1BU5+S3lNLioiMzcvILTz5oU0TCXlx0ZHpeoU/nWj+IjYrIyC0o0rlXRI4rOjI+vdCXq3NuBUVFxGUUFOXofCsipyQqPia9KLdA595yioyLzijMyde5VspFTWAJOsaYy4DfWWtPPJeh7Pu+ASy11j7v/8pEREKPMebvQK619tFy3i8C2AAMs9Yeu59ZRERKMM6chYXAI9bayeW8bwtgLtDIWptbGfWJiIQSY0wtYC3Q1Fp7oJz3vQ240lp7WWXUJlJZNBNYgtEoYMxp3ncMMNJomJmIyEkZY+KAm4BXyntfa60PeBnnnC0iIifXHagOTCnvHa2164EfgSv9W5KISMi6BZhQ3gaw60PgTGNMI/+WJFK51ASWoGKMaQz0xTnpno7ZQAFwjr9qEhEJYcOARdbaDad5/9eAq40xyX6sSUQkVI0CXnYvop2O0ejCm4jISbmLwkbinDfLzVqbDbwH3OHPukQqm5rAEmxuB96x1h4+nTtbZ/7JaJwTvoiInFhFdl5grd0JfAtc77eKRERCkHux7CqgIulInwJtjDFt/VOViEjIOhfIwxmjc7pGA7cbY6L8U5JI5VMTWIKGe3K9nQo0JFxvAxe5M4BERKQMxph2QCvgswoeagwwSmN4RERO6AZgqrU2/XQPYK0twGkia7GDiMiJjQRG2wqEZFlrlwFbgYv9VpVIJVMTWILJJcBma+3yihzEWrsfmADc6oeaRERC1UjgNbepUBHf4My47FHhikREQpB7kWwUp7ktuZSXgZvcme4iIlKKMaY2cCHO4rCK0hgeCSpqAkswGUnFVwEfMRoFxImIlMkYE89pBsKVdlRAnFamiYiUrSeQDEyt6IHcGe6LcGa6i4jIsW4Fxp9mIFxpHwJ93OwikYCnJrAEBWNME6A3px8IV9pcIBdnFpCIiJQ0DFhgrd3op+ONBa5SQJyISJlGUrFAuNLGoJVpIiLHMMZEAHfin50XuFlF76KAOAkSagJLsLgDJxAuxx8HOyogTi+QRUSO5a9tyQC4My6nAjf665giIqHAGJOCc+GtIoFwpX0GtDLGtPfjMUVEQsG5wGFgnh+PqYA4CRpqAkvAc0+mI/DfKIgj3gYucGcCiYgI4DYNWgBf+PnQo1FAnIhIaTcAU6y1Gf46oDvL/TWc1W4iIvKzkcCYigTCleZmFm3CyTASCWhqAkswuBTYaK1d4c+DujOAxqOAOBGRo/krEK60qUASzuxLEZGw5+dAuNJewQmIi6+EY4uIBB138ddg/BMIV5rG8EhQUBNYgkFlvTiGnwPi9LsgImHPbRYMxw+BcKUdFRCnF8giIo5eQDXgW38f2J3pvgC4yt/HFhEJUrcBn1hrMyvh2B8CvYwxTSvh2CJ+o8aXBDT3JNoT+KiSHmIekI0C4kREwGkW/GCt3VRJxx8LDHNnYIqIhDt/B8KVNtp9DBGRsHZUIJy/R0wC4GYXvQPcXhnHF/EXNYEl0N0BvO2vQLjS3FlA2rohIuKozJ0XuDMvv0EBcSIS5tyLYVfi30C40r4AWhhjOlTiY4iIBIOBQBYwvxIfYwxOQFx0JT6GSIWoCSwByz15VkYgXGlvA+cbY+pU8uOIiAQst0nQDP8HwpWmgDgREWf0zmRr7a7KegAFxImIFBsFjPZnIFxpbobRBhQQJwFMTWAJZJcC6621KyvzQdyZQJ+ggDgRCW9HAuEKK/lxvgUScWZhioiEnaMC4Sp7oQM4M96HKyBORMKVu9hrEPBuFTzcaLTLWAKYmsASyCp1W3IpY1BAnIiEKbc5cCOVEAhXmgLiREToDcQD0yr7gdwZ7z8AV1f2Y4mIBKjbgI8rKRCutI+AngqIk0ClhpcEJGNMM6A7lRcIV9p84BDOrCARkXBzDTDPWru5ih5vLDBUAXEiEqZGAWMqMRCuNAXEiUhYOioQrkoWl7lZRm/jZBuJBBw1gSVQHQmEy62KB3NnA2nrhoiEq5FUzbZkANwZmJNxZmKKiIQNY0x1YCjwRhU+7BdAMwXEiUgYOg84CCyowsccA4xQQJwEIjWBJeBUYSBcae8Cg4wxdav4cUVEPGOMOQNoCnxZxQ89BgXEiUj4GQ58VZmBcKW5s95fQ4sdRCT8VHogXGluptF64LKqekyRU6UmsASiy4A11tqfqvJB3RlBH6OAOBEJL6OAV6sgEK60aTgzMXtX8eOKiHiiigPhSnsFuNEYk+DBY4uIVDl3cdd5VE0gXGkawyMBSU1gCURevTjGfdw7FRAnIuHAbQbcQBUEwpWmgDgRCUN9gFiqIBCuNHfm+zwUECci4eM24CNr7UEPHvtjoIebdSQSMNTokoBijGkOdMM5aXrhB5yZQYM8enwRkap0DTDHWrvFo8d/HScgrrpHjy8iUpWOBMJV2bbkUpR/ISJhoaoD4UpzA+LecmsQCRhqAkuguQN4q6oC4Uo7KiBOWzdEJBx4ufPiSEDcVyggTkRCnDGmBjCEqg2EK+1LoIkxpqOHNYiIVIXzgQPAQg9rGAPcpoA4CSRqAkvAcE+Ot+FhQ8L1LnCeAuJEJJQZYzoBDYGJHpeigDgRCQfDgUnW2t1eFeDOfn8VLXYQkdA3kioOhCvNzThaC1zuVQ0ipakJLIHkCmC1tXaVl0W4M4M+AkZ4WYeISCUbiTeBcKVNw5mR2dfjOkREKsVRgXCebEsu5RXgBgXEiUioMsbUAwbiTSBcaRrDIwFFTWAJJCPxfhXwEaNRQJyIhChjTCJOINyrXtfirtAYg1amiUjoOhOIBqZ7XYg7A34Ozkx4EZFQNAIYZ6095HUhOFlHXd3sIxHPqcElAcEY0wLogneBcKUtBPbjzBISEQk11wCzrLVbvS7E9QYwxJ2ZKSISakbibSBcaWPQyjQRCUFeB8KV5mYdKSBOAoaawBIo7gTetNbmeV0IlAiI0wtkEQlFgbItGQB3RuYk4CavaxER8Sf34tYVeBsIV9pEoKE7G15EJJQMBvZYa70MhCvtSEBcjNeFiKgJLJ5zT4a3Ai97XEpp7wLnujOFRERCgjGmM9AA+MrrWkoZDYxUQJyIhJibgYnW2j1eF3KEAuJEJISNInBGTALgZh6tQgFxEgDUBJZAcAXwk7V2tdeFHM2dITQOBcSJSGgZCbwSAIFwpU3HmZl5pteFiIj4g3tRayQBtPPiKK/iBMQlel2IiIg/GGPqAwOA97yupQwawyMBQU1gCQQBtS25FAXEiUjIcN/sX08ABMKVpoA4EQlBZwGRwPdeF1KaOxN+FgqIE5HQMQL4MEAC4Ur7GOjsZiGJeEaNLfGUMaYl0AkY73UtZXFnCe3BmS0kIhLsrgNmWmu3eV3IcbwBXKGAOBEJEaMIrEC40pR/ISIhwRgTiZMzFFCjII5ws4/eRAFx4jE1gcVrdwJvBEog3HFo64aIhIpA3ZYMgDszcyLODE0RkaBljKkJXEZgBcKV9hXQwJ0VLyISzAYDu6y1i7wu5AReBm5VQJx4SU1g8UwAB8KV9h4wwJ0xJCISlIwxXYB6BF4gXGkKiBORUHAz8IW1dq/XhRyPOxv+FTSGR0SCXyCPmATAzUD6CScTScQTagKLl4YAK6y1a7wu5ETcmUIfooA4EQluo3AC4Yq8LuQkvseZoXmW14WIiJwO9yJWwCXUH8erwPUKiBORYGWMaQD0B973upZToDE84ik1gcVLAX+17ihjcALiIr0uRESkvIwx1YBrCcBAuNKOCojTC2QRCVZnu/+d4WkVp8CdET8TZ2a8iEgwGgF8YK3N8rqQUzAe6ORmI4lUOTWBxRPGmFbAGQRoIFxp7myhXSggTkSC03XADGvtdq8LOUVvAJe5MzVFRIJNoAfClTYajYQQkSAU6IFwpblZSG+ggDjxiJrA4pUjgXD5XhdSDtq6ISLBKph2XuDO0PwCBcSJSJAxxqQClxLYgXClfQXUc2fHi4gEkwuBdGvtYq8LKQcFxIln1ASWKmeMiQVuIfAD4Up7H+jvzhwSEQkKxphuQG3ga69rKacxwCgFxIlIkLkZ+Nxau8/rQk6VOyv+FbTYQUSCz0iCaKEDgJuJtAIY6nUtEn7UBBYvDAGWW2vXel1Iebgzhj5AAXEiElxGEhyBcKXNACw/z9YUEQloQRYIV9qrwLXuDHkRkYBnjGkI9MN5jx5sNIZHPKEmsHghqLYllzIaBcSJSJAwxiQRJIFwpSkgTkSCUH/AhxO0FlTcmfHfo4A4EQketwPvB0kgXGnjgTPcrCSRKqMmsFQpY0xroAMwweNSTou19kcgHWf2kIhIoLsO+M5au8PrQk7Tm8Cl7oxNEZFANxIYHUSBcKXpwpuIBAV3UdYdBOniMjcb6Q20GliqmJrAUtXuBF4PskC40rR1Q0SCRbBuSwbAnan5OQqIE5EAZ4xJAy4B3vK6lgr4GqjtzpIXEQlkFwE7rLVLvC6kAsYAt7iZSSJVQk1gqTJBHAhX2vtAP3cGkYhIQDLGdAfSgMle11JBo1FAnIgEvluAz4IpEK40d3b8y2ixg4gEvmAeMQmAtXYdsBQFxEkVUhNYqtKVwBL3ZBe0rLXZOI3g272uRUTkBEYCLwdhIFxps3BmbPb3uhARkbK4F6mCLqH+OF7DCYhL8roQEZGyGGMaAWcRnIFwpWkMj1QpNYGlKo0kiLcllzIauEMBcSISiNw379cAY72upaLc2ZoawyMigWwAUAjM9rqQinJnyH+HAuJEJHDdDrznLs4KdhOAdm52kkilUxNYqoQxpg3QDvjU61r8wZ09tB1nFpGISKC5AZgWxIFwpb0FXOLO3BQRCTSjCO5AuNJGo5VpIhKAjDFRBHEgXGluVtLraLGDVBE1gaWqjATGBnkgXGnauiEigSpUtiUDxQFxn+HM3BQRCRjGmFo4iwKCORCutG+ANHe2vIhIILkI2GqtXep1IX70CnCzMSbO60Ik9KkJLJXOPZndjHNyCyUfAGe5M4lERAKCMaYHUBPnTXwoGQ2MVECciASYW4BPrbX7vS7EXxQQJyIBbBShM2ISKA6IW4IC4qQKqAksVeFKYLG1dr3XhfiTO4PoPRQQJyKBZRROIJzP60L8bDbOzM0BXhciIgIhFwhX2ljgGgXEiUigMMY0BvoSGoFwpWmXsVQJNYGlKowiNF8cg/N93e7OJhIR8ZQxJhm4ihAIhCtNAXEiEoDOAfKBOR7X4XfuTPlpwPVe1yIi4joSCHfY60IqwadAWzdLSaTSqAkslcoY0xZojTPLMeS4s4i2oYA4EQkMNwDfWmt3el1IJXkLuFgBcSISIEItEK40BcSJSEBwF13dToguLnOzk8aixQ5SydQElsp2JBCuwOtCKpG2boiI59xtyaG88wJ35uanwK0elyIiYc4NhLuQ0AqEK+0boKY7a15ExEsXA1ustcu8LqQSKSBOKp2awFJp3JPXTTjBEqHsA6CvO6NIRMQrPYAUYIrXhVQyBcSJSCC4FZhgrT3gcR2Vxp0tr4A4EQkEIRcIV5qbobQYJ1NJpFKoCSyVaRiwyFq70etCKpM7k+hdFBAnIt4K1UC40uYAeTizOEVEqpwxJoLQDYQr7TXganfmvIhIlTPGNAH6AB96XUsV0BgeqVRqAktlCultyaWMQQFxIuIR9835MEIwEK40d/amxvCIiJfOAXKAuR7XUemstenAtzgz50VEvHA78E6IBsKV9hnQ2hjTzutCJDSpCSyVwhjTHmgFfO51LVXBnU20BWdWkYhIVbsRmOq+WQ8HbwEXujM5RUSq2ihgTAgHwpU2GhilMTwiUtWOCoQL6VEQR7hZSmOBO72uRUKTmsBSWe4EXgvxQLjStHVDRKpcOATClebO4ByPAuJEpIoZY2oDFwBve11LFZqCM3NeAXEiUtUuBTZZa5d7XUgVehm4SQFxUhnUBBa/M8bE4wTCveJ1LVVsHNDHnVkkIlJVegJJwFSvC6liY3AC4vRaRkSq0q3AJ6EcCFfaUQFxWuwgIlUtXOavF3MzlRYBV3ldi4QevXGSynAVsCDUA+FKc2cUvYMC4kSkaoVLIFxpc3Fmcp7jcR0iEiaOCoQLi23JpYwFhikgTkSqijGmKdALZ7FVuBmN8/dGxK/UBJbKEHZX646igDgRqTLGmBTgSsIgEK40dxanxvCISFUaCGQD87wupKq5M+en4MygFxGpCnfgBMLleF2IBz4HWrpZSyJ+oyaw+JUxpgPQAvjC61q84M4q2oQzu0hEpLLdCHxjrc3wuhCPvANc4M7oFBGpbCOB0WEUCFfaGBQQJyJVwBgTDYwgPHdeHB0Qp9XA4ldqAou/hWMgXGnauiEile6oQLiwfHEMxQFxn6CAOBGpZMaYOsD5OBefwtVUnBn0Pb0uRERC3qXABmvtCq8L8dDLwHA3c0nEL9QEFr9xT07DcU5W4Wwc0MudYSQiUll6A4nAt14X4rHRKCBORCrfbTiBcJleF+IVd/b8GDSGR0Qq3yjCd8QkANbaTcAPKCBO/EhvmMSfrgbmW2s3e12Il9yZRe/gzDASEaksI4ExYRgIV9p8nBmdA70uRERCk3uR6U7CvCHheh240p1JLyLid8aYZkAP4COvawkAuvAmfqUmsPhTuKYll2U0MMKdZSQi4lfGmOo4gXCve1uJ944KiNMYHhGpLOcBh3BWZIU1dwb9NyggTkQqzx3A22EaCFfaF0BzN3tJpMLUBBa/cE9KzQjTQLjSrLUrgfUoIE5EKsdw4Gtr7S6vCwkQ7wDnuzM7RUT8bRThHQhX2mgUECcilSDcA+FKc7OWXkWLHcRP1AQWfxkFvGqtLfS6kACirRsi4nfum27tvDiKO6PzE5yZnSIifmOMqQsMAt71upYAMg1nJn1vrwsRkZBzGbDOXVQljleAGxUQJ/6gJrBUmDEmAWdL2Kte1xJgPgJ6uDONRET8pQ8Qj/MmXH42GrhTAXEi4me3AR+FcyBcaUcFxGllmoj4W9gHwpXmZi7Nx8lgEqkQvVESf7gamBvugXCluTOM3kIBcSLiX6NQIFxZfgAO4szuFBGpMAXCndDrwFB3Rr2ISIUZY5oD3VEgXFlGo13G4gdqAos/6Grd8Y1BAXEi4ifGmBrAEOANj0sJOO6sTq1MExF/GgRkAgu8LiTQuDPpJ6OAOBHxnzuAt6y1uV4XEoC+BJoaY87wuhAJbmoCS4UYYzoCjYGJXtcSiKy1PwFrcWYbiYhU1HDgKwXCHdc7wCB3hqeISEUpEO7EFBAnIn7hLpq6DWVelMnNXlJAnFSYmsBSUSNRINzJaOuGiFSY+yZbOy9OwFp7EGcLoQLiRKRCjDH1gIEoEO5EpuHMqO/jdSEiEvSuANa4i6ikbEcC4hK8LkSCl5rActrck88NKBDuZD4GuikgTkQqqC8QA3zncR2BbgwKiBORijsSCHfQ60IClcbwiIgfjUSrgE/IWrsFmIsC4qQC9AZJKuIaYI57MpLjcGcavYUTLCIicrqOBMJpW/KJLQAO4MzyFBEpNwXClcvrwBAFxInI6TLGtAC64iyekhPTLmOpEDWBpSK0LfnUjQFuU0CciJwONxDuCpw323ICbpNcL5BFpCIGA/ustQqEOwlr7W7gK+Amr2sRkaB1J/CmAuFOyUSgsZvNJFJuagLLaTHGdAIaApO8riUYWGtXAWuAy72uRUSC0k3AJGvtHq8LCRLvAQPdmZ4iIuWlbcnlMwYYqYA4ESkvY0wMcCvwsselBAUFxElFqQksp0uBcOWnlWkiUm4KhCs/d4bnOBQQJyLlZIypD5yLAuHK4zucmfV9Pa5DRILPFcAqd9GUnJpXgBsUECenQ01gKTdjTCJwPQqEK69PgK7uzCMRkVN1FhAFTPe6kCAzGgXEiUj5jQA+tNYe8rqQYHFUQJwWO4hIeWmhQzlZa7cCs4Frva5Fgo/eGMnpuBaY7Z585BS5M47eBO7wuhYRCSojUSBcuVlrFwL7gPO9rkVEgoMxJhLndZpGQZTfG8AV7gx7EZGTMsa0BDrjLJaS8hmDRkLIaVATWE7HSHS17nQdCYiL8boQEQl8xpiaOLPE3/C6liClMTwiUh6DgT3uRSQpB3dm/UQUECcip+5O4A1rbZ7XhQShSUBDY0xnrwuR4KImsJSLe5JpgALhTou1djWwCmf2kYjIydwMTFQg3Gl7DzjXnfEpInIyo9Aq4IoYA4xSQJyInIwC4SpGAXFyutQElvIaBbxirS3yupAgNhqdrEXkJNw30dp5UQHuTM8PUUCciJyEMaYBMADn4pGcnulAJHCm14WISMAbAqx0F0nJ6XkFuN7NbBI5JWoCyylzTy7XoUC4ivoE6OzOQBIROZ6zcf5Of+91IUHuSEBcpNeFiEhAGwF8oEC406eAOBEpBwXCVZC1dhswEwXESTmoCSzlcR0wwz3ZyGlyZx69iTMDSUTkeEahQLgKs9YuAvbgzPoUETmGe5HoTjQKwh/eBC53Z9qLiBzDGNMK6AiM97qWEKALb1IuagJLeYxEL479ZQxwqwLiRKQsxphU4FIUCOcvGsMjIidyAZDhXjSSCnBn2H+JAuJE5PgUCOc/k4B6xpguXhciwUFNYDkl7kmlLvCVx6WEBGvtGmAFziwkEZHSbga+sNbu9bqQEPEeMEABcSJyHNqW7F+jUUCciJTBGBOLAuH8xs1qegUtdpBTpCawnCoFwvnfGHSyFpFSjgqE084LP7HWZuEExI3wuhYRCSxuIFw/4H2vawkhMwADnOV1ISIScIYAy91FUeIfrwHXKSBOToWawHJSxphqOMPGX/O6lhAzHuiogDgRKaUfYHHeRIv/KCBORMpyO04gXJbXhYQKBcSJyAlo54WfuZlNM3AynEROSE1gORXXAd9ba7d7XUgocWcgvYFWA4tISQqEqwTW2sVABs7sTxGRI4Fwd6CGRGV4E7jMnXEvIoIxpjXQAQXCVYbR6MKbnAI1geVUjELbkivLy8At7mwkEQlz7pvlS3DePIv/aQyPiBztQiDdWvuj14WEGnem/RcoIE5EfnYkEC7f60JC0NdAHWNMV68LkcCmJrCckDGmG1Ab56QifmatXQssRwFxIuK4BfjcWrvP60JC1PtAf3cGqIiItiVXLgXEiQhQHAh3C1pcVikUECenSk1gOZmRwMsKhKtU2rohIkcHwqkhUUncmZ/v48wAFZEwZoxpBJyNAuEq00ycGff9vC5ERDx3JbDUWrvO60JC2GvAtW6mk0iZ1ASW4zLGJKFAuKowAejgzkgSkfDVH/ABs7wuJMSNAe5QQJxI2BsBvG+tzfa6kFB1VECcVqaJyEi0CrhSuRlO36OAODkBNYHlRK4DvrPW7vC6kFDmzkR6HWdGkoiEr1HAaAXCVS539udOnFmgIhKGjDFRKBCuqrwJXKKAOJHwZYxpA7TDWfwklUu7jOWE1ASWE9GctKqjgDiRMGaMSQMuBt7yupYwoRfIIuHtImC7tXaJ14WEOnfG/ec4s0BFJDyNBF5XIFyVmAzUcrOdRI6hJrCUyRjTHUgDvvG6lnDgzkZaCgz1uhYR8cQtwGcKhKsyHwBnG2Mael2IiHhC25Kr1hhgpALiRMKPMSYOuBkntEwqmQLi5GTUBJbjUSBc1dPKNJEwpEC4qufOAH0PBcSJhB03EO4snItBUjVmAUU4s+9FJLxcCfyoQLgq9RpwjZvxJFKCmsByDPdkcQ0KhKtqnwLt3JlJIhI+zgEKgdke1xFujgTERXldiIhUqTuA9xQIV3WOCojTYgeR8DMK7byoUm6m03Tgeq9rkcCjJrCU5QZgmrV2p9eFhBMFxImErZEoEK7KubNAt6OAOJGw4V70uR3tvPDCm8DF7gx8EQkDxpi2QBucxU5StUajkRBSBjWBpSzaluydl4Gb3dlJIhLijDG1cAKKFAjnDY3hEQkvFwNbrbVLvS4k3Fhr9+M0ghQQJxI+RgJjFQjniclAmpv1JFJMTWApwRjTA6iJAuE8Ya1dDyxBAXEi4eIW4FP3zbFUvQ+BM90ZoSIS+hQI5y0FxImECXdR000oEM4T1lofzgIzrQaWEtQEltJG4QTC+bwuJIxpZZpIGFAgnPcUECcSPowxjYG+KBDOS7OBAmCA14WISKUbBix2FzmJN14DrlZAnBxNTWApZoxJBq5CgXBe+xRo685QEpHQdS6QB8zxupAwNxoFxImEgzuAd621h70uJFy5s++12EEkPIxCCx085WY8TcPJfBIB1ASWkm4Aplpr070uJJxZawuAsSggTiTUjQTGKBDOW9baZcBWnNnMIhKCjgqE0ygI770NXOTOxBeREGSMaQe0Aj7zuhZxxvB4XYQEDjWBBSjeljwKvTgOFAqIEwlhxpjawIUoEC5QaGWaSGi7BNjsXvQRD7kz8CeggDiRUHYkEK7A60KEb4AabvaTiJrAUqwHkAJM8boQAWvtBmARziwlEQk9twLjrbUHPK5DHB8Cfd2ZoSISerQtObCMRgFxIiHJGBOPEwj3ste1SImAOC12EEBNYPmZAuECj7ZuiIQgY0wEzrgX7bwIEO6M0HdRQJxIyDHGNAF6A+O8rkWKzcWZiX+Ox3WIiP8NAxZaazd6XYgUGwtc5WZASZhTE1iOBMINwzk5SOD4DGjtzlQSkdBxLpCD8yZYAsdo4HYFxImEnDuAdxQIFzgUECcS0rTzIsC4mU9TUUCcoCawOG4EpigQLrC4M5ReQ6uBRULNKGC0AuECi7V2ObAZZ3aoiIQAY0w0CoQLVG8DF7oz8kUkBBhjOgAtgc+9rkWOMRoYpTE8oiZwmFMgXMB7BbhJAXEiocEYUwcYDLzjdS1SJo3hEQktlwAb3Ys8EkDcmfjjUUCcSCi5E3hNgXABaSqQjJMFJWFMTWDpCSThnBQkwLizlBYAV3ldi4j4xa3AJwqEC1gfAr3dGaIiEvy0LTmwHQmI03tSkSDnBsINR4FwAUkBcXKE/uDKKGCMAuECmmamiYQA903uSNSQCFjW2hycVdp3eF2LiFSMMaYpzmIHBcIFrnnAYZxZ+SIS3K4GfrDWbvK6EDmuscAwY0yK14WId9QEDmPuL/+VwOselyIn9gXQwhjT3utCRKRCBgJZwHyvC5ETGgOMUECcSNA7EgiX43UhUjZ3Nr7G8IiEhpFoxGRAs9ZmAFNQQFxYUxM4vN0IfOOeDCRAKSBOJGQoEC4IWGtXABuBS72uRUROjxsINwLtvAgGbwODFRAnErzcQLjmOIuXJLApIC7MqQkcpo4KhNOL4+DwCjDcnbUkIkHGGFMXOB8FwgULjeERCW6XAeuttSu9LkROzFqbCXwC3OZ1LSJy2kYBryoQLih8C1QDenldiHhDTeDw1RtIBKZ5XYicnDtb6QcUECcSrG4FPnbf7Erg+wjo6c4UFZHgo23JwWUMcKcC4kSCjzEmAWeH8Ste1yInd1RAnHYZhyn9oQ1fI1EgXLDRyjSRIOS+qb0T7bwIGu4M0bdRQJxI0DHGNAN64FzMkeAwH2dm/kCvCxGRcrsamGet3ex1IXLKxgJXKiAuPKkJHIaMMdWBoSgQLth8CTR3Zy6JSPA4DziEs5pfgseRgLhorwsRkXK5A3hbgXDBQwFxIkFNOy+CjLV2F/ANzgpuCTNqAoen4cBk95dfgoQ7Y+lV9AJZJNgoEC4IubNE16OAOJGgoUC4oPYOcL4xpo7XhYjIqTHGnAE0RYFwwUgBcWFKTeAw4/6Sj0QvjoPVK8CNCogTCQ5uINx5KBAuWGkMj0hwuRxYa639yetCpHzcmfkfo4A4kWByJBCu0OtCpNymAQk4WVESRtQEDj99gHgUCBeU3FlL83FmL4lI4LsNJxDuoNeFyGn5GOjhzhgVkcCnbcnBTQFxIkHCDYS7AWenqgQZBcSFL/2BDT+jcALhtC05eGllmkgQUCBc8HNnir6FAuJEAp4xpjnQDQXCBbMfgIM4O2hEJLBdA8xVIFxQex0Y6mZGSZhQEziMGGNqAENQIFyw+xJo6s5gEpHAdT5wAFjgcR1SMQqIEwkOdwJvWWtzvS5ETo+7SEWLHUSCwyi00CGouRlRX+NkRkmYUBM4vAwHvrLW7va6EDl97swlBcSJBL6RaOdF0HNni64FLvO6FhEpmzEmBmf8zste1yIV9i5wnjtTX0QCkDGmE9AImOh1LVJhY4CRCogLH2oChwn3l1pX60LHkYC4BK8LEZFjGWPqAQNx3sxK8NPKNJHAdjmwWoFwwc+dof8RCogTCWQjUSBcqJgGxOFkR0kYUBM4fPQFYoDvPK5D/MBauwWYgzOLSUQCzwhgnALhQsbHQDd35qiIBB4tdAgto1FAnEhAMsYkokC4kOHuWByDFjuEDf1hDR8KhAs9Y9BICJGAc1QgnBLqQ4Q7Y1QBcSIByBjTAugCfOJxKeI/C3Fm6g/yuA4ROdY1wGx3UZKEhjeAIW6GlIQ4NYHDgPvLfAUKhAs1E4FGxpiOXhciIiUMBvZaaxUIF1rGALcpIE4k4NwJvKlAuNChgDiRgKadFyHGzYyahALiwoKawOHhJmCitXaP14WI/xwVEKcXyCKBRS+OQ5C1dhWwGueiqogEgKMC4bTzIvS8Cwx0Z+yLSAAwxnQGGuA0DCW0jAZGKSAu9KkJHOKOCoTTi+PQ9CpwvQLiRAKDMaY+cA7wnselSOXQGB6RwHIF8JO1drXXhYh/WWsPAeNQQJxIIFEgXOiaDkTjZElJCFMTOPSdCUTi/FJLiLHWbgVmA9d6XYuIAE4g3Ifum1cJPR8DXdwZpCLiPe28CG0KiBMJEG4g3PXAK17XIv6ngLjwoT+ooU+BcKFvNFqZJuI5Y0wkTnCYGhIhylqbB7yJAuJEPGeMaQl0QoFwIctauxDYC5zvdS0iwrXATGvtNq8LkUrzBnCFAuJCm5rAIcwYUxO4HOcNq4Sur4CGxphOXhciEuYGA3ustYu8LkQq1cs4AXExXhciEuaOBMLleV2IVCqtTBMJDBoxGeLcDKmJOJlSEqLUBA5tNwFfKhAutLkzmV5BL5BFvKZtyWHAnT36EwqIE/GMexHmVtSQCAfvAee6M/dFxAPGmC5AfRQIFw4UEBfi1AQOUUcFwqkhER6OBMQlel2ISDgyxjQABgDve12LVAkFxIl4awiw0lq7xutCpHK5M/Y/RAFxIl4aCbxirS3yuhCpdN/jZEqd6XUhUjnUBA5dZwMGmOF1IVL53NlMM1FAnIhXRgAfKBAubHwCdHZnkopI1dNCh/ByJCAu0utCRMKNMaYacB3OoiMJcQqIC31qAoeukSgQLtyMRidrkSrnvim9EzUkwoY7g/QNnP/vIlKFjDGtgI7AeK9rkarhztrfjTN7X0Sq1nXADAXChZU3gMvdjCkJMWoChyBjTCpwGQqECzdfAfXcmU0iUnUuADKstYu9LkSq1MvArQqIE6lydwJvKBAu7GgMj4g3RqL562HFWrsX+BIFxIUkNYFD083AF+4vr4QJd0bTK+gFskhV07bkMOTOIl2BM5tURKqAMSYWBcKFq/eAAQqIE6k6xpiuQB2cxUYSXhQQF6LUBA4x7i/pSNSQCFevAte5s5tEpJIZYxoC/VAgXLjSGB6RqjUUWGatXet1IVK1rLVZwAfA7V7XIhJGRqFAuHA1Aydj6myvCxH/UhM49PQDLE5ImIQZa+12nBO2AuJEqsaRQLgsrwsRT0wAznBnlIpI5dO25PA2BrhDAXEilc9dVHQt8JrXtUjVOyogTruMQ4yawKFnFAqEC3damSZSBdw3oXegnRdhSwFxIlXHGNMa6IAC4cKWO3s/A2cWv4hUruuB6e4iIwlPbwCXuplTEiLUBA4h7i/nJSgQLtx9DdRxZziJSOW5CNhprf3R60LEUy8Dt7izSkWk8owEXrfW5ntdiHhKix1EqoYyL8KctXYf8AVO5pSECDWBQ8stwOfuL6uEKQXEiVQZbUsW3Nmky1FAnEilcS+y3Ixz0UXC2wdAP2NMA68LEQlVxpjuQC1gste1iOfGACMVEBc61AQOEQqEk1JeBa5VQJxI5TDGNMIJSlAgnIBWpolUtiuBpdbadV4XIt5yZ/C/jwLiRCrTSOBlBcIJTtaUxcmekhCgJnDo6A8UAbO8LkS8Z63dAUwHrvO6FpEQNQJ4z1qb7XUhEhAmAB3cmaUi4n9a6CBHG40C4kQqhTEmCbgGBcIJxQFxo9Eu45ChJnDoUCCclDYGrUwT8TtjTBROIJxGQQgA7ozS11FAnIjfGWPaAO2AT72uRQKDtXYJsBO40OtaRELQ9cB37qIiEYC3gEsUEBca1AQOAcaYNOBiFAgnJU0GahljunldiEiIuQjY7r4JFTlCAXEilUOBcFIWjeERqRwKhJMS3Mypz3EyqCTIqQkcGm4BPrXW7ve6EAkc7gynl9HWDRF/07ZkOYY7q3QJMNTrWkRChTEmDgXCSdk+AM42xjT0uhCRUOEGwqWiQDg51mgUEBcS1AQOckcFwmlbspRlLHCNO9tJRCrIDYQ7E/jQ61okIGkMj4h/XQn8aK1d73UhEljcmfzvoYA4EX8ahRMI5/O6EAk4s3EyqPp7XYhUjJrAwe8coADnl1KkBHeW03c4s51EpOLuQIFwcnyfAu3cGaYiUnHaliwnciQgLsrrQkSCnTEmGbgaBcJJGY4KiNNihyCnJnDwGwmMViCcnIDSPEX8wH2TeTtqSMhxuDNLx6KAOJEKM8a0BdqgQDg5DmvtUmAbCogT8YfrgW+ttTu9LkQC1lvAxW4mlQQpNYGDmDGmFk5A0dte1yIB7Rsg1Z3xJCKn72Jgq7V2mdeFSEB7BbjZnWUqIqdvJDDWWlvgdSES0DSGR6SC3BGTo9CISTkBN4PqUxQQF9TUBA5utwATFAgnJ+LOdHoZvUAWqShtS5aTcmeX/ogzy1REToMC4aQcPgDOdGf2i8jp6QHUwFk8JHIiCogLcmoCB6mjAuHUkJBTMRa4WgFxIqfHGNMY6IMC4eTUjEFjeEQqYhiwyFq7wetCJLBZaw+jgDiRihqJAuHk1MzByaQa4HUhcnrUBA5e5wJ5wFyvC5HA5852+ha4wetaRILUHcC77ptNkZP5FGjjzjQVkfLTzgspDwXEiZwmNxDuKhQIJ6dAAXHBT03g4KVAOCmv0cAobd0QKZ+jAuE0J01OiTvDdCxaDSxSbsaY9kAr4DOva5Hg4M7q34Izu19EyudGYKq1Nt3rQiRovAVc5GZUSZBREzgIGWNq46TgKhBOymMKUB1QQJxI+VwCbFYgnJTTK8BNCogTKbc7USCclJ/G8IiUkwLh5HRYaw8AE1BAXFBSEzg43QqMd3/5RE6JAuJETpu2JUu5ubNMF+HMNhWRU2CMiQduQoFwUn4fAn3dGf4icmp6Akk4i4VEykMBcUFKTeAgY4yJwFkhoYaEnI6xwFXu7CcROQljTFOgNwqEk9OjmWki5XMVsMBau9HrQiS4uDP738GZ4S8ip2YUCoST0zMXyMXJqpIgoiZw8DkXyAHmeV2IBB931tNUFBAncqpuB96x1uZ4XYgEpc+BVsaYdl4XIhIkRqJtyXL6xgC3KyBO5OSMMSk4u5Ve97gUCUJuNpXG8AQhNYGDzygUCCcVo4A4kVNgjInGaQJr54WcFnem6WvoBbLISRljOgAtcC6eiJSbtXY5sAlnlr+InNiNwDcKhJMKeBu4wM2skiChJnAQMcbUAQajQDipmKlAMtDD60JEAtwlwAZr7QqvC5GgpoA4kVNzJ/CaAuGkgkajC28iJ3RUIJwWOshpczOqxqOAuKCiJnBwuRX4xFqb6XUhErwUECdyypSWLBXmzjZdgDPrVETK4AbCDce5aCJSEeOA3saYJl4XIhLAegHVgG+9LkSC3hicgDj1FoOE/kcFCfeXaiS6Wif+MRYY5s6CEpFS3EC4njhvJkUqSgFxIid2NfCDtXaT14VIcHNn+CsgTuTERgFjFAgnfjAPOIwC4oKGmsDBYyBwCJjvdSES/Ky1GcA3KCBO5HjuAN5WIJz4yRdAC2NMe68LEQlQWugg/jQGGKGAOJFjuYuArsRZFCRSIW5WlcbwBBE1gYPHkat1CoQTfxmDAuJEjuEGwo1AoyDETxQQJ3J8biBcc+BLr2uR0ODO8t8IXOp1LSIBaDgw2Vq7y+tCJGS8AwxWQFxwUBM4CBhj6gKDcH65RPzlW5xZUL28LkQkwFwGrLfWrvS6EAkpLwPD3dmnIvKzUcCrCoQTP9MYHpFSFAgnlcHNrPoEuM3rWuTk1AQODrcCHysQTvzJnQE1Bq1MEylN25LF76y1m3FGOikgTsRljEkAbkSBcOJ/HwE93Rn/IuLoDcQD07wuRELOaOBOBcQFPv0PCnDuL9GdaFuyVI7XgSsVECfiMMY0A3oAH3tdi4SkMWhlmsjRrgbmuRdJRPzGnen/NgqIEznaKOBlBcJJJfgByMLJspIApiZw4BsEHMT5pRLxK3cW1GSc2VAi4lx0e0uBcFJJvgCauTNQRUTbkqVyHQmIi/a6EBGvGWOqA0NxFgGJ+NVRAXFa7BDg1AQOfCOB0QqEk0qkgDgRigPhbkM7L6SSWGsLUUCcCADGmI5AExQIJ5XEne2/HgXEiYCz6OdrBcJJJXoXGGSMqeN1IXJ8agIHMDcQ7jycXyaRyjINZzZUb68LEfHY5cBaa+1PXhciIe0V4EYFxIkwEicQrtDrQiSkaWWahD0FwklVcDOsPkYBcQFNTeAAZBz1gRHAR9bag17XJKHrqIC4UcaYNGNMrNc1iVQlY0yiu0VOL46l0rmzT+cB17h/60XCijGmjjEmCbgBBcJJ5fsI6G6MaaZzroQj9+e+LxCHAuGk8h0JiEswxtT0uhg5lprAgakNzta4O4Fxxpgoj+uREOZeGf4KZ0bUGOBCbysSqXI3AX8HugKzPa5FQpy7AvhdnFWQixTMKWHoH8DTwFwg3+NaJPQlAu8BD6PRIxKeFgC/BMYCes0hlW07TqbVX4DHPa5FyqAmcGA6CDQGCnBSbVt6W46EuGrAFGAV0AnI9LYckSp3EOgDrASmGmP0t1EqUw/gWZy/7Wk4Scoi4eQgzvidFOAZj2uR0HcX0A+4FudnTyTcHMY5596Ms+hHpDK9gXOuHYz6CgFJb3QD0x6gJlAXuMZau8rjeiSEWWsPAecATYHmgMICJNzsB9oB9YD+7ogUkUphrZ0B3AskA/nW2iKPSxKpagbnNccOFJIole8vwNc451ztrpRwFIEzCmK0tXas18VIyBsG+IC2QK7HtUgZ9IcwAFlr840xPwG3WWvneV2PhD5r7U/GmG7AdJwtHCLhZAuwAjjbWnvA41okDFhrPzHGXAc86nUtIh5YDXwGXKeLblLZ3J+xR4wxcUCC1/WIeGApTgP4Ba8LkdBnrT1ojLkAZ6fxRq/rkWMZa63XNYiIiIiIiIiIiIhIJdE4CBEREREREREREZEQpiawiIiIiIiIiIiISAgL6ZnA8THR6bkFhXW8riMYxUVHZeTkF9T1uo5wFR8TlZ5bUKSf3XKKi47MyMkv1M9tFYuLjkzPK/Tp57WCYqMiMnILivTzW0X0c+s/+tmtWtGRcemFvjz97FZQVERsRkFRrn5uK1lMVHx6QVGufl4rQXRkXEZ+YY5+hqtAXHxcel6uzrunIzYuNiM3R+faqhYZH5Puyy3Qz2wFRcRFZxTl5IfUz29IzwQ2xti9HzzidRlBKfXav2KtNV7XEa6MMXbX/27yuoygU/uut/Rz6wFjjN3xfwO8LiPo1f/9dP38ViFjjN3+pzO9LiMkNHhitn52q5Axxj530U6vywh6D06qp5/bKmCMsS+P2OV1GSHpztdq62e4ihhj7A+5G7wuIyj1jGuun1MPGGPs1RkveV1G0BtX596Q+/nVOAgRERERERERERGREKYmsIiIiIiIiIiIiEgIC+mZwEd74OWvSN+fxaGcPFrVT+V31/YnLTkBgJkrNrMx/QA3ndf5mPs9M24GV/c7g+Z1a1R1yRQUFhEdFXnC23w8ayVjJy/it8PO5pxOTSny+fjzBzM4lJNH/zOacGmvNvS6bzT9OjSha4t6DB/48/c4fdkmxs1Ygc9anhlxPknxsZX9LUk5/faduWRk5nAop4CWdZN55PIupCXFATBrdTobdx9i+Nmtjrnfs58v4arezWheO7mqS6agyEd05ImvLz37+RI27DpItbhoHrqsMxkHcvjn18tpXjuJ313RFYCnxy8iO6+Q+jUSufeCDsX3vff1WcRER2KAv17Xi6iTPJZUrYcnrCH9UD5ZeYW0TEvgofObkpoYA8DsDQfYuDeHG3vWO+Z+f5u6iWFd6tAsNb6qSz6ln9nxS3bx5vwd3H9uE/q3rEF2XhG//2ItAEM61eacVjU5++/zOat5dTo3TOKGHvX4+McM5m/KxGfhmStaERHh7CRKP5jH/33tbCm86+xGdKhXrXK/QTmphz9bT8ahfLLyimiRFs9D5zUmNTEagNkbM9m0L5cbuh87Vu35b7dwZedaAftz++myPczamMnOzDz+fGlzaiZE89hE52dvSMdanN08hV9/spa4qAgSYiL508XNeOG7rWw7kMfB3EJeHNqKxFjndUj6wXz+75vNANx1Vn061E2s3G9QTurj5Q9xMC+D3MJD1E5syQWtHqJabBoA6/fOZs/hjfRudOMx95u89m90qz+MtMRmVV0yRb4CIiOiT3ibxTvGM2fLGwxq+Rtap/Vnf85WJqx8nLioarRMPZueDa/jmeln0TL1LBqldKFnw+v5eMWDGCJIjqvL+S1/U3yszNx0Jq5+GoABze6mfnKH4z2sVIG3Zv2WzMMZ5BQcom5KS4Z0e4SkeOdndvXOWew6uJF+bYYfc7/PFj1Ln5ZXUTu5eVWXTKGvgKiT/MzOW/8J01e9zqVdHqB9gwFs2buM71e/yYHDGfRrPZzOjQcD8O6c3xEfk8zQ7r/jn9/cSI2EesTHJHNVzyc4cDidSUv/ibU+BrS9hQY12gHgsz7emf0Qxhia1+rOma2uq/TvWU7sL7/8Pbt37iL7YBZN2zTnrid/Q41aqQAsnD6Xres3M2TEtcfcb8xTL3LRDUNo1KJpFVcMhQUFREWf+Od48rgvWPDdHHZt38lDL/6JOo3q8b8//J3sQ1n0PPdMGjRrzAf/fp3sQ1mcc/lgLrzuiuL7zv92FpPem4D1WR588Q8kJum1baBY+OD75KRnUpiVS1LLOpzx8CXEpiUBsGvWWrI27qb58GPHo614biJNrupJtWa1qrpkfAVFRESfuA8GcHBNOt8N/SeXLnkKX14hix8dB0Cjod2p1bsFPz7+CYXZeSS1rE2731zIwt++j4kwxNerTvvfXFh8nJz0TJY+9SkAbX4xkOodGlbONxYgwqYJ/PydFxY3e/u2a8QTb31LVGQE1w/oyKJ1O/lh7XZSk+OJjIhgzqqtHMzO468jzi/zWJnZufz+jamkJScwuFsLIiIMkxetZ3dmNn+48VymLd3I7JVbSYyL5qmbz+PlrxaydXcmB7Jzefrm83jy7W+pFhdDlxb1GHZW+xLH3rnvEB/OWMH6nfv4zdAzaVqn+gm/r2FntSevoLD484k/rGV3ZjbRUZHUreH8cifGxpCTX0jj2ikl7vv+9GX8555LmbFiM5/NXc2N53Y6jWdWKtPfbuxT3Ozt26oOf/h4IVERhuv6tmDRpr0s2LCb1GpxREYY5q7bRWZOPn+5tmeZx8o8nM/j4xaQWi2WwZ0aYoxhyrJt7D6UyxNXduO7lTuZvTaDxNgo/nRVD16dtoote7PJPJzHU1f34A8fLyQxLpouTVK5smfJN47pBw7z4bwNbMg4yH0XdaRpraQTfl/RkRFER0YQHx1JSnwMtZPjeXxoN96Z5TTVtu3LJsIY/nJdLx54ew65BUXEuX8I4mOi8FlLWlKcGsAB6JkhrYubvX2apfCnSRuIjDBc260Oi7cdZOGWg6QmRhMZYZi3KZODuYU8fWnLMo+VmVPIkxPXkZoYzfltUjHGMHX1XnZnFfDYhc2Zvm4fczdmkhgTyZMXt+C1OdvZeiCXzJxC/nhxC/40aQPVYiPp1CCJoZ1rlzh2+sE8Pvoxgw17cvj1OY1pUvPETbyhnWuTX+Qr/nzSyj0M7VybAS1rcu+4nzinVU0SYiLJLfTRuIZzoea7tft46ep2vLdgJ3M2HeCs5s7FxPcWpHP/uU2olxLLk1+u59khrSvylIsfPHN5i+Jmb+8myfzp601ERRiu6VKbH7dlsXDbIVIToomIgPmbD5KZW8TTF5fdQMvMKeQPX20kNSGaQW1qEGEMU9fsd35uBzdh+voDzNl0kMSYCJ68sBlj5+1k6/48MnML+cOFTXnq680kxkbQuX41hnQq+cI7/WA+Hy/ZxYa9ufyqf0Oa1Iw74fd1Rcc0ruiYxqSVe1m7O4d9hw8ytGMt+reszr0fr6VHoySqxUby18taMOqD1QBs2JPDS1e15u/TtrItM482tZ0L5u8tyuD+cxpSLzmGJydt4tnLW/jhmZeKGHbGs8XN3uY1+/DF6j8RYaLo0eAatmQuZvOBBSTGpBJhItm4bx45hZkMaf9/ZR4rpyCTz356ksSYVNrXHoQhgp92TyErbw+XtH2MNXums37fHGIjE7ms3R+Ytfk19uVsJacgk8vb/pEvVv+R2MhqNEzpTNf6Q0scOzM3nUXbP2L34Q2c1+LXpCY0OeH31bX+UAp9+cWf78paR6e6l9C53hWMW/Ybeja8jtioBAp8udRMaMzhgv1EmGiu7PAXPl/1Rw7kbKd6fAMA5m97l0Etf0P1uHp8+tMTXHXGcxV81qUibjrrb8XN3lZ1+zLuhz8QYaI4s9V1bNy9iPW7FpAUl4oxkazNmEtOfibX9/lLmcc6nJfJB/MfJykulU6NBmMwLNs2hYM5uxnW8wlWbv+ONemziY1K5Jref+Lbla+yN2sL2XmZXNv7KcbN/wNx0Yk0SetC7xZXljj2gcPpzFn3IRmZG7ik833USm56wu+rd4srS/zMNk7tyPAznyM77wCTlv6Tzo0Hs2TLZBrWaMfe7O0AxEYlYK2lRoJzYXzKitHERMaTW5BFUlxa8bHWZcynSVpn+re5iVen/0JN4ADwu3/9X3Gzt2u/nvzjkb8QGRXJpTcNY8WCJSybt5gatWoSERnBj7N+4NCBQzz4wpNlHuvQgYP8/cGnqFErlbMvGkhEhGHmpGns27WHX/35EeZOmcGiGfOJr5bA/c/8ng//+yY7Nm/j0P5M7n/uMf7xyF9ISEqkfbeOXHDt5SWOvXtHBhPfHc+WtRu57eF7aNi88Qm/r/9n767jo7rSP45/btwd4iEQAsElWEuBustWt75tt90qdXfduuv+6u5UqDstUCzBJYQgCUkgQNxH7u+PeydCPBm7M8/79cqrm2TkMPvwcOfMOed75OnHc+Tpx/P7Vz+yLW8Lm1ato7xsL/4B/gxKjGfE+FHc9b9HAbjz/GvaTQJ/+9487n39CVb88Te/zvueE/91+gBfZWEv2Y+f2TLZO+iA4ay+70sUXx/Sz5xO+cod7FuxjcDYMBRfH/YuLcBU1cCk/57W6WM1V9Wz+u55BMaGkXjEWBQfhdKf19O4p4bxd5/E7j82sefvLfiFBjDhvlPY8voC6orKaa6sZ+IDp7D63i/xDwskekIaaadMaffYDbuq2PHpMmoKyhh17VGEpcd1OgYb1WJl63uLSThU+8Cs+LvVpJ0yhfg5WSy98h0SDh5F9hNav1xxw4c0V9Tj4+/L5EfOYPW9X1BfXEFIsvbebNsHfzP6hqMJSYxi1V3zWu7nqbxmEritt39Zyd1nH0xcRAhzX/6Wcw4ZT3RYMMdOHcHPKwtQFIXdVbWsKug8dOPThes599DxzMhKBWBFfgkWqxWLVeX3Ndso2VdDVmocx00bQW1jM/MWbeDg8ek0NJvJL9lHZW0jR2UP55Dx7d9AnvP4Z2QmxnL+4RNbVh5vLt7HWz+vbLlNgL8v955zSJd/toLScg4clcppB43hsufn89q1J/HbIxdgsapc8NQXzB6b3u72iqKQHBvBsrzi/ryUwone/mszd508idiwIK5552/OPjCD6NAAjpmYyi9ri1EU2FPVwKod+zq9/2fLtnH2zOHMGK5NhuVs24PZqmKxqvyxoZSSinpGJUVx7MRUahtNzFu+nTmjEmk0mcnfVU1lfTNHjk/h4FFJ7R73/Jd+JyM+gvNmZbasPM7fVcXbf25uuU2Any93nzK55ftrjxmLoih8s7KQz/VxtVVaWU9SjLbKLDYsiH01jSTr3z961jQUReHlXzbw16ZSZmV1XFUq3MN7y0q5/cihxIYGcP28PM7MTiAq2J+jR8fxa94+FAXKappZXVzT6f3nrd7NWdmJTE/XPsDKLarGbFWxqioLtpRTWtXEyPhQjhkdR12ThS/XlDF7eDSNJitb9tRT1WjiiKwY5mTGtHvcC95dR8agYM6dmtSygjN/Tz3vLitpuU2Arw93Ht31iqPS6iYmpGgfdihoK3x/vHIyFitc8uF6DsqIbvl5UlQgpVXN7e6bFBlEkL8PjSZrxwcXLvXeil3cfsQQYkP8uf7LLZw5eTBRIX4cNSqGXzdXoKCwp7aZ1SW1nd7/izV7OGtyPNOGaP0wt6hG67WqyoKCSkqrmskaHMLRo2L0ut3L7IxIGs0+bNnbQGWjmcNHDmLO8Kh2j3vhBxvJiA3mnCmtK+a37KnnneW7W24T6Kdwx5Hp7e735G+F/FlQxf+dOZJPVpYxMVlbnaMAwXoN/vvDTS2TvZNTwzn/vY34+sDVs1tXQpRWN5MUESh166aWFL7LsSPuIDQglk/WXse0lLMI8Y9ibPzRbCz7FUVRqGnaw86q1Z3eP7dkHtNSzmJozHQACitzsaoWrFjYvHcBlY2lJIRlMTb+GJrMdaws+ZIRcbMxWRopq9tCg6mK0YOOZERc+5DQN3MuYFBoBjNSz21ZeVxWm8/fhe+03MbPJ5Djsu7s8s+WHDGO91dfQU7xZ8we+h8ArjnwJ6yqhXdXXswF2W8RE5zG1xvvpryhiKrGXS2TwFWNpUQFJeHvG4TJ0tj/F1jY3Z+b3uaUKdok7lt/XcNBI84mNDCaiUOOYW3RLygoVDXsYfveVZ3ef2nBZxyUeTaZCTMA2FqWg8Vqxqpa2FD8BxV1JSRFj2LSkGNpNNWybOs8RifNodncyK6qfOqbK5mQdiSjkw9u97gv/HI+CZEZzB55XsvK49LKfBZservlNn6+AZw29e5u/3zLt37JT+te5vRp91HXVElB2XJmjzyPvza/D8B/Dv4/FEXhoyV3UFa9jZ3lGzhv5pNYrM38vO4VTp16FwAVdSXEhGr1rCiy+MHdzHvtQ6568GaiBsXwwH9u4cR/nU5EdBRzTjiCRT/8DorCvt172JCzttP7f//Rl5x0wRlMnKkt4lm3bBUWiwWrxcqSX/6irHgXGWNGcPCJR1JfW8ePH89n+mEzaWpoZEfeVmoqq5h13GHMOPygdo97w2n/YciIYZz87zNbVh5vzyvg81ffb7lNQGAAcx+6td39/u+BZ1j66yIe/fBFvnnvcybPms5RZ57I3Rdez3/ffQ6AD194k6PObD/hDNq8QnxqIqv/zun36ykca+s7Cxl354kExoax4tr3ST/rAAKiQkg+Zjylv6wHoLGsmvLVhZ3ev/DzFQw9+wDipmsLAfblbMdqsaJarez+YxP1pZVEZCWSfOx4zHVNFH6RQ/ycLCyNJmryd2OqqifpyLHEH5zV7nEXnf9/hA8fzLDzZrasPK7O38XWtxe13MYn0I/xd7V+8JD/2gKGnXcgm57/GYD6kkqiJ2ofdCh6jFvF6kLWPvwNCQdnERgTSmhaLKvu+py6onIaSitbJoEbSioJSYrGN8gfS2PrezZPJf+SAD5Ka9jfRwvWcs/ZBzNtRAr1TeZOb6+q7b//v+9XcM/Zh3DEpAwamsxcfdIMpo1M4abXfqSqtpG0wVHccvosHv/3kWQPT+LFK4/HbLFyzf++b/c4Vx0/nWazhdd/zGHppp0AWFWVJpO55avZZOn2z5IYE05UmLZC0rb1WFEU/PSVl50p2VdDYoxs2TAa2/+/AB8vKeCukyczJWMQDc1d1Mh+hfvqb5u4++TJHD42mYZmM3OPGsPUYYO4+YOlVNU3kxYXxs0nTODRs6YzeWgcz18wE7NF5br3/m73OFccMRqTxcqbf+SxdIuW/my1qjSaLC1fzeb2Y1L0v3Nx4UHUNpo6DDUhMpjSijoA9tU2Ehse1MV9O/87KtxTm5Llk5W7ueOoYUwZEkFDFxNK+/fa1xYXc+dRwzh0RAwNzVaunJ3G1LQIbv1qM5UNJtKig7jxsHQePjGTSakRPHNqFhYr3PhFXrvHuXxWCiaLyltLilm2o0p/LpUmk7Xlq+2q384kRARQWtXU7mdar1Xw99X+oCraH6C0qpmEiID2961uotFkJdBP/hl2d23r9tNVZdx+5BCmpIZ3Xbf7ff/6klLuOGIIh2ZG02CycsWsZKakhXPb/K1UNppJiw7khkPT+O/xw5iUEs6zJw/HYlW58auCdo9z2YHJNFtU3lq2i+U7qgGwqtBktrb52v/Z4YZD07jv2HQ+W1VGQkQAJdWtF7drS+sYOTiE18/KoqrBTEW9iSXbq3nn3FGcPH4Qv2wub7ltYnhr3QZJ3bo9pc21bU7xJxw78g7So6bQbGno4h7ta+ev7a9x7Mg7yRp0GM2WBg4ZdiXp0VOYt/5WGkyVxISkcmTmjZwy5mHSoibxz/HPYlHNfLruhnaPM2foZViszSwufJNtFcu0Z1KtmK1N7b66s6L4U44dcTv/mfYxOcWft/z5fH38Wo6WOHjY5Zw46n7CAuKICWld7RYZmEhVYykmSyP+vnLsmTtrO8G5eMvHnDr1LjIGT6HZ3HnN7t/tft3wKqdOvZtxKYfTbG7g6PFzGT54Ku8vvpn6piriwtM4cfLNnHPgowwdNJkLZz+PxWrmnYXXtXucI8degdli4veNb7Jl91LtuVQrJktjy5fZ0vMkwdRh/+DW47/lj41vUFC2nPK6nXyR81/W7fyVPTU7Wv6OhgXF0mSqIyokkdDAKEIDo2ky17U8TnRoIhV1JS3jEO5N8Wmt42/em8fcB29h/IzJNNZ30Xv3K+SPXniTuQ/dwoFHH0xjfSPn33Ap42dM5pGr76K6ooqk9BT+c9e13PLs/YyZOoF7X3sCi9nMg5fd1u5xzr32YkzNzXz6yrusXrwCAKvVSnNjU+tXU8c6/s9d13L9E3fy7fvzGJyUQHh0JH5+fi3zJV++8THhkRHMOvawTv84ZTt3MTip4/FZwj0pbS5yt3+8lPF3nUTs1KFY6rvocfu9Oct/9Q/G33UiiYeNxtzQTNZVhxM3dSi5N39Cc2U9oWmxjLnpWCY/cgYxk9OZ+tx5qBYrK67/sN3jjLjiUKzNFra88Sd7l2nHlmFVsTSZWr6s+83NVawpIv///mDfiu0UvPkXwYmRNJRUtrtN9IQ0Zn90BXuXbwNg5BWHMfGBUwmKCyc0LbbldsGJkTSUVmJpNOET2P2xKZ7AK1cC/+vwSTzw4R/4+fhw/mETGZoQzYvfLiMsOIAhg6N4+ou/WbGlmAlDEzq9/2kHjeaOt3/lh5wtHJ09nMkZiTz62V8U761h+sgU3vp5JQWl5QQH+hMVFsSYtEHc9tbPNJutXP+PA3jqi8UE+PuSmRTb7nEPGJXKAaNSqW1s5svFG4mJCCYrJY4nLzm603EA/LZqKx8vWEdokD/hIQEcP20Et731Cz+v3MoRkzIoKC3n6S/+RlFg1lht+92VL33Di1cczxmzx3LNK99hslh55MLOj74Q7uNfs0bw4Bcr8fP14byDhjN0cDgv/7yBsCB/hsSF8ewPa8nZupcJabGd3v+UaUO569MV/LRmJ0eOT2FSehyPfbOakop6pmUM4u0/N1NQVk1wgB9RoQGMTo7mjo+X02yxcu3RY3n6+7UE+vmSGd/+WJEZmfHMyIynttHEVznbiQ0LZGRSFE+cM6PLP8tzP66jaF8dlXVNPHLWNHbsreHhr1axZXc1wxMiOX36MMxWlbs+Wc6QuHCC/H2Z+9Yinr9gJvd+nkN9k5naJhNPn3uAXV9jYV/nTkvk4Z+24eujcM7UBNJjgnll4U7CAn0ZEh3E8wsKySmsZnxS58eHnDxhMPd+V8DPm/ZxRFYsk1LCeeK37ZRUNTE1LZJ3l5WwdW8DwQG+RIf4MyohlLu+2YLJYmXunDSe+6OQAD8fhseFtHvc6elRTE+Poq7Jwldry4gJ8WfE4FAe7eZYhj/yy/k0dxchAb6EB/pyzOg47vxmC1+tKePkCYPZuree5xYUoqC0HPswe3g0t32dj9micvqkTJ5fUMgxo+M4MzuRR37ahqLAxQcm2+8FF3Zx7pQEHv55B34+Cudkx5MeG8T/FpcQGqDX7Z87yd1Zw7ikzj88/ce4OO79YTs/55VzxMgYJiaH8eTvRZRUNzE1LYJ3l+9i674GggN8iA72Y1R8KHd/t41mi5W5s1N4bsFOAv18GB7X/oiS6ekRTE+PoK7Jwtfr9hId6s+IwSE82s2xDG8uLWXLngaqGs1cOyeFhIhA7vpuK1+v3cvJ4+MYMSiY/y0u4bb5BTSYrEQG+ZEWHcgtXxewr87E/ccO5fk/d3LM6Fj+OXkwj/xSiKLAJQfIDgx3MyPtPL7b/F98FT+mp55DXMhQFmz7H4F+YcSEpPFbwXPsqMwlObLzo78mJZ7M15vuYUPZz4wefARpkRP5Of8JKhtLSI+eyt+F77C3bisBvsGE+EeTGD6arzbcidlq4rCMq/m14Fn8fAIYHNp+Z8+wmBkMi5lBk7mO1aVfEeofQ3z4SE4d+1iXf5a8Pb+TU/wJAb6hBPmFM3LQwfyy5WmC/SNIDB/Fnrqt/FbwHAoKGTHa6rfv8/5LnamcwaGZhAcO4reC5xgbfyxTU87k+80PoygKs4ZcYr8XXAzY7Kx/MW/Fg/j6+DFr5HkMjhjKT+teJsg/jEHhQ/hu9bNs3ZPDkNiOmS2gHcHw8dK7WF30ExNSj2TooEnMX/kY5XUlDB88jQWb3mZ3VQEBfsGEBkaREj2aj5bcgdnazLHjr+Xb1U/j7xtIQmT7bI0RCTMYkTCDRlMty7d9RVhQLEnRIzlv5hNd/lnW7fyNv/M/JtA/lOCAcOqaKllT9BPN5gay009gfOoRjE89gr01hfy1+X0GhQ/hrb+uwc83AAWF1NixHDH2Uj5ccjtWq5mjxl1FXuki9tYWccDwM1ha8DlF5evISpxl1/8PxMCdcvFZvHDX4/j5+fKPi/5JakY67z/7GiHhoSSnp/LmYy+xbtkqsiaN7fT+R/3zRJ6+6UH++u5XZh17GKOnTuD/HniW3TtLmHDAFOa9+gE7tmwjKCSYyJgoMsdl8cQN92NubuaCm6/gzUdfxD8wkPSR7a8FJh00jUkHTaO+to6fP/2GyLgYho3K5LYXOj8SCOCTl99he14B1RVVXHz7XOJTEnni+vtY/MPvzDzmEFYvXsGbj73EjMMPYk/pbi68+Qruvfgm7n3tcY49+x88eNmtmE1mbuzi6AvhesPOP4i1D32Nj68vQ889kLChg9j88m/4hwUSNiSOjc/+RHnOdqLHp3Z6/7RTprDq7nmU/LSOpCPHEjNpCOsf/56Gkgpipw6j4J2F1BaU4RvsT0BUCJGjk1l5x2dYTRZGXXMkG5/5EZ8APyKGt/+gYNCM4QyaMRxzXRNFX+YSGBNKxMhEsh/v+liG6S+eD8Cyq98l48JZWBpNrLrjM4q+zCXtlCnU7dhL3su/oVpVIvWdw2sf+pqm8joiMuMJGhzBxmd/IuW4CaSfNYN1/50PikLmfw62z4vtxhR1/6VWHkRRFHXfx7f2fEPRQew/H0FVVaXnWwpHUBRFLXvlPFcPw3AGX/au1K0LKIqiljw0p+cbim4l3bFA6teJFEVRi+/vGIQh+i757sVSu06kKIr6+DGdH1kmeu+m7xOlbp1AURT11YvKXD0Mj3TJG4Olhp1EURR1eeNWVw/DkKYGDZM6dQFFUdTTdz/v6mEY3qfxcz2ufr1yJXBfbS7exxeLN7R8f/5hE0mM6T74SghXy99VxRfLt7d8f/6sTBKiQrq+gxAulr+nnq/WtL5RPHdqIgkRsn1XuLcte+r5au3elu/PmZLQ7vgPIdxRWW0+q0q/avl+euq5RAZ1vgNOCHdQWpnP8q1ftHw/O+t8okKkZoWxbM8r4KdP5rd8f/K/z2KQHJ8g3FR1/i6Kvsxt+X7YeTMJTojs5h7CCGQSuBdGJMdyy+na9ptLn5/fbgJYVdV2567Zk9WqctPrP4KiMCUzibPmjGv53d3v/kZdYzMLNxTy7o2n8tuqrWwo2oO/rw8PnH8YOfklvP3LKkKC/Lni+GlkpXSfrig8T2ZCJDef0H4L3eVvLOTli1qDAxxdvzd/uBRFUcgeGseZB7RuU7rnsxzqmkws3rybty8/mC+Wb2drWTVhQf7cfMIEBkcEd/PIwlNlDgrhxsPS2/3sqk828sIZo1q+d3TN3vZ1PooCk1MjOGOy9ubSZLFy4xebUVUYFO7PXUdnsHFXLS/9VYSqwu1HDWNfXTMv/FnEsNhgbjliaA/PJDzJ8EEh3HBo+8TtuZ9t5vnTWo8XcXjdfrNVq9uUcM6YNLjld5+v3sOyHdWoKjxywjCe/qOIrfsaCQv05cZDU9lc1sB7K7RjTi49MIkRg+WDQm8xOCyTIzNvbPezD1ZfydkTXmz53qF1q1r5Yv2tgMKQqGympJzR8ruftzxFRcNOTJYGzprwAsuKPqC4ei176gqYkHgS/1kRJAABAABJREFUg0IzWFL0LgG+IcxJv5T48JEOGaNwL4lRmZw4+eZOf/fagsu5eM7LLd87unbfX3wziqIwbFA2B2a2blfevOtvVmz7Ch/Fl5On3EFDczXfr3kOVbUyJ+tfWKxmvl/zHIMjhnFy9m3dPIvwVOkjM/jPXdcCcNcF17WbAHZk3e4qKuHVB5+luamZB956ut3v/nf/0/z0yXw+XvUTfn5+/PTpN6z442/Kiku5+Zn7KdlexLzXPyQ4JJhzrr2YYaMyu3gW4WkiMhMYc9Ox7X629Iq3mf7Sv1q+d2TdqlYrubd8AopCbHY66f+c3vK7PX9voejrXBQfH8bdcSJ5L/1CQ3ElppoGpj57LjVby9j03M+EDxvM2NuOd8j4jEomgdvYUVbJy98uB2DisARS4iJ47cdcJmckYrJYOWlGFpuK9vDE54uYPjKFV3/I4YBRKUzOSOK931djsapc+48DWJFfzJJNO0kbFEna4EgC/HwJDvDnqOzhXPbCfF656oRejWdp3k4mDEvg/MMmctkL89tNAt9/3qFYrSoXPfMlI5JjeezThbx27Un8kJPPN8vyyMkv4ZGLjiDQ35c73/6VZy87tptnEp5gx94a/vfrRgAmDIklJTqU1//IY1J6HGaLlROzh7CppJKnvlvDtIzBvPb7JmYMH8yk9Dg+WLwFi1XlmqPHkrN1L0u27CY1Noy0uDACfH0IDvDjyPEpXPHmQl668KAeRqJZVlDGhLRYzpuVyRVvLmw3CXzfadlYrSoXv/onmQmR+OvBhcH+vkQGywo6b1FY3sD/LS4GYEJyGMmRQby5pJiJKeGYLSrHjxvEpt11PPP7DqYOieCNv0uYnh7JxJRwPlyxC6uqctWcNHKLqlm6vYrUqCDSYoLw91UI9vfliKxY5n66kedPH9XDSDTLC6sYnxzOOVMTmfvpxpZJYH9fH549TUuxveJj7e/YW0tKePSkEeypbeb95aXcdHg6dx41jA9WyBZtT1dY0ciri7WQnvHJYSRHBvLm0lImJYdjsqocPyaWTWX1PPNHEVPTInhzaSnThkQwKTmMD3PLsKgqc2clk7OzlmU7qkmJCiQt2la3PhwxMoa5n+fz/Km9e5O1vLCG8UlhnDMlnrmf57ebBP5jSyXPn5rJR7m7+Xt7tR4SqxDk70NEkB/fb9zHg8cNI9DPh3u/38YT/xjezTMJIyuvL+TP7f8HQErkeKKDUli04w1SoyZhtZoYn3gCu2ry+GXL06RHT2PRjtcZGj2d1KhJLC/6ECsWDh02lx2VuWyrWEp0cAoxwWn4+QTg7xvM6MFH8OHqqzhrwgu9Gs/2imWkRI5neuq5fLj6qnaTwEcMvx6AbzbdT7O5nhlp2vFYn6y9ngmJJ/JT/uP8Y9SD+PkGMX/jPZw+7kk7v1rCneyp2cEv6/8HwJDYCcSGpfDbxtcZGjcJi9VM9tATKa7YxDernmJ4/DR+2/AamfEzGDpoEgs3f4BVtXDM+GvYuieH/F1LiAtPJS4sDV+fAAL8gpmQdiSvL7iCf895qVfj2bJ7GUPiJjB75Hm8vuCKdpPAf2x8k8iQeAJ8g/H3DWL++scJ8A2m0VRLeFAcEcGDOHXKXfy1+X2HvFbCfRRvK+LD598AYNTkcSSkJvHJK+8wZsoEzCYzh516DAUbNvP6wy8w4YBsPn75bSbNnMqYKRP46q1PsFqsXHDz5axdupJVi5aTOCSFpPRU/AP8CQoJYtaxh3H3hddz/5tP9Wo8CalJ3PW/R7nrgus6/O7Su6+jtLCk5fsjTz+eI08/nt+/+pFteVtY/MMf3PTUPQQEBfL0TQ9y5yuP2OdFEm6nbsdeNv/vDwCiJ6YSkhzDljf+JGbSEFSThZQTJ1G1qZQNT/1A3LRhbHl9AXHTM4iZnM629/9GtVrJuvoIynO2s2dJAaFpsYSmxeLj74tvcABJR45l6ZXvtJzn25O9y7YSPT6VYefNZOmV77SbBC548y+C4iPwDQ7AN8iPMTdq812b//c71XmlxExOZ/xdJ7Ht/b+7enivJZPAbbz500qCA/0J8vdlY9EeUuIiOGBUKpceM4XLX5jP8KQYslIHceOpM1m4fgczslK4/LhpXPHiNzx76TFU1Tfx5LxFjEuP5/BJwzhxehaXvzCf5y8/jpte/5G4yBAmZ7QPU3n4kz+paZO+ePbB4xibrn0iWFJeQ3JsBEBLImdbf6zZxpxx6QCcPmsMN73+E74+CgnRYVx8dDYPf/wncZEh1DT0nGArjO+tBZsJDvAj0M+XjcWVpESHckDmYC45dBRXvrmIjPgIspKiuP7Y8SzK28X04YO57PDRXPXWIp4+7wCq6pt5+ru1jEuN4bCxyZwweQhXvrmIZ88/gFs+XEpceBCT09uvKH/k61XUNppavj/zwAzGpsQAUFJZT3KMtqqs0/rdWMrsUdrfh2uPGYuiKHyzspDPl23j7JkyEeEN3l5WQrC/D4F+PmzcVUdyZBDT0yO5+MAUrv50ExlxIWTFh3LtIUNYvLWSaUMi+M/MFK75bBNPnDyC6kYzz/xeyNikMA4bEcNxYwdx9aebeOqUkdz2dT5xof5MTIlo95yP/bKN2iZLy/f/nJzAmEQt4KukqpmkSO34ic5qdkVhFemxQQA0mKyEBPiSFBlIaXX3yfbCs7yzbBfB/r4E+ils2l1PcmQgM9Ij+feMRK7+PJ+MuGCyBodw7cGpLN5WxdS0CP5zYBLXzMvniZMyqG608OyCnYxJDOXQzGiOGxPL1Z/n89Q/hnP7N1uJC/VnUnL70LnHfy2kpl3dDmZMQigApdVNJEVqH5757Fe2tm+TIrQ6vXp2Moqi8N2GfXyxZg8XTE/ksV8LiQv1b/f4wvMsLnybAN9g/HwC2VWzieigFIbFzOCg9Iv5cPVcBoVmkBA+ksOHX0fBvsWkR09j9tBL+WjN1Zw+9kkaTFX8WvAMSRHjyBp0KOMTjufD1XM5Y9zTfLHhVsIC4kiNnNTuOX/c/BiN5pqW76emnElSxBgAqhpLiQxKAkBRfNrdr8FUzZcb7sCimvD3DW75GapKiH8UB6ZdyI/5jxEWENfu8YVnWrDpLX1SNZDiio3EhqUwIv4ADhtzCa8vuJKEyAySo7M4fuL15JUuYnj8dI4Yexlv/HkV5x/0NA1NVXy7+mlSY8cxLvUwstNP4PUFV3LBrGd5f/EtRATHkT5ocrvn/Cr3ERqaa1u+n5l5JqmxWrBXRV0JMaFaqOv+tVtcsYmL57zMovwP2VD8BzvLN3DezCexWJv5ed0rnDr1Lge/WsJdfP7q+wSGBBEYGMiW9XkkpCYx6aBpnHnlBdxz0Q0MyRxGxugR/Pu2q8hZsISJB07h7Kv/zb3/vpE7X3mYmspqXn/kRUZOGM3Mow/m0JOP4Z6LbuCu/3uUR6++m5hBcYyZ2n7H5yv3PU1dTWtPPOH80xkxvncLIfb3fw88w9JfF/Hohy+SPDSNV+57iuhBcdTV1PZ8Z2FYBW8vxDfYH98gf6o2lhKSHMOgGRlkXnIwy656h/CMwURmJTL6+qMpW5RP3PQMRlx2KMvmvsuUp87GVFXPhqd/JHpcComHjyHl+Iksu+odpjxzDrm3fEJQXBgxk4a0e851j36Luaax5fv0s6YTNSYFgIaSSkKStcBtZb+L3KpNpUx/+V9s+3AJu//YRMKho2naV0vFmiIyL5asmu7IJHAbKirnHjyB4UnaJNbC9TsICfAHwKrn57WdFwgP7nhWpaK/5TKbrdp/LVb8fH1IHRTJU18s5uUr2y9FbzJZaDKZW763tgnqS4wOo6C0osPPbeYt3sh/LzgMgKOyh3NU9nA+/nMdwYF+ZCbF8uQlR7NzbxUvzF/Wp9dBGJMKnH3gcDLitUmvRXm7CA7Q/orb6qdd/Qb5d3gM2+/Nlv3qNzaMZ75fywsXzmx3+2azlUZT68SBam39XWJUCAW7q9s9f1tfrtjOg2dM0Z9Xe+K48CBKyut6+0cWBqeqcOaUBDLitA8LFm+tJNjfF+i8ZsMCO/6TZfu9SW/SJqsVP1+F1OhAnv2jkOdOz2p3+2azSpOptVDb9dyIAAr2NnT4OcDqnTV8u24vdx8zDIBgfx/qmy3srW2W81+9jIo2CZsRp01OLd5WRbC/NhHQErbbpnDDg3y7fCyzXrdmq4qfr0JKVCDP/bmTZ09pvwq42WKlydxat21DfRMiAti6T7t4tu7Xam3fllY3kRwV1NprQ/0pqWpieFwwj56YQXFlE68sKu7dCyAMSmVqypkMCtV25RTsW9wywaqi1ZZCa90G+XWWfaH93mrVrlutqhlfHz+ig1P5teBZzhz/XLtbm63NmK2tH5KpbS4SIoMS2FO3tcPPAYL9IzhrwvP8sfUliqvXkBY1mZUlXzAh8SQABocN59Sxj1HRsJMF217p8yshjEVVVQ4aeTYJkVrt5pUuIsCv69oN9u+6di167VqsWu3Ghqfy7epnuGh2+xXsJkszJkvrpIRKa3ONDk1kd1WBPrb2tZsYNQIfH19CA6NoMtURFZJIaGAUFquJJrNc33oTVVU56V9nMCRTu27MWbCEoGCtbq1WvW7bXCuEhnes25b3Zfpcgdlkws/Pj6Qhybzx6Ivc9/oT7W5vam6iubFNz7W2r8+++M9d1zLzmEP49v15/OvGy7jthYfYVVjMe8+81u/HFO5PVWHYOQcQnqHtKitblI+vvktX7WRCzC8sqMNj2Oraqs8RWE0WfPx8CU2NYeMzPzHthfPa3d7abMbS1LqoTG1zMRucGEVNQVmHnwNEjExA8fUhIDoEc10TTeV1rLn/Syb99zQU3/Yf0In2ZBK4jYuPyuahj/9kcGQoqYMiGZXa8RzdiJBA7nnvNw6bOKzlZ/86bCI3vPYjFquVa07SjoP4aWUBf2/a2XK7E6dnUVhWRURI+78o955zSJfjmZGVyueLNrB2x25mjdE+MbnypW948YrjqahtwMdHaXm8D/5YQ+6WUlTgsYuOYPnmYj5asJbaRhN3ny2fhHiDfx88koe/XsWg8GDSYkPJSorqcJuIoADu/TyHw8YktfzsvIMyuen9JVisKlfrx0H8vK6YJVvKOHSsdrsTJg+hcG8tEfsd1XD3Ke1XTrQ1PWMwny/bxrqiCmaN1LbVz31rEc9fMJOKuiZ8FFoe77kf11G0r47KuiYeOWvaQF8KYRAXzUjm0V+2ERcWQGpUEFnxoR1uEx7ox/3fF3DoiJiWn50zNZFbvsrHalW5Uj8O4te8fSzdXtVyu+PGDqKwopGIoPb/zN159DC6Mm1IJF+sLmN9aS0zh2mfOl/72SYePimT899dy5FZcdz6VT73Hz+c86cncfvX+VhUlVuOGEpheQOP/rKdLXvqGT4ohFMnSsiHp7pwegKP/lrEoFB/UqMDGdnJOboRgb488ON2DsmMbvnZudnx3Dp/KxarylX6cRC/bK5g6Y5qDsmMAuC4MbEUVXas2zuOTO9yPNPSIvhizV7Wl9Zx0FDtQ8Br5+XzzCmZzM6I5PZvtmK2qJw2cTAv/rWTosomKhvM/Pe4YeQU1fDJyjLqmy3cdsSQLp9DGN/MIRfyw+ZHCQscRExwKglhWR1uE+QXwTeb7idr0KEtP5ueei6fr78Fq2rh0GFXsaMyl417fmFrxVJGDtKuYccnHE95fSHB/u13XhyXdWeX40mPns7Kki8oqV7P8FjtmKmP1lzDmeOf5csNdwIqTeY6Zg65EID8fX8yI+1VAHZU5LCi+GOaLHUcO+KOAb0uwv0dOvrffJnzMBHBg4gNSyM5umPtBgdE8OmyexmbcljLz2aPPI/3Ft2kHwdxNVv35LC26Gfydy1hbIpW49npJ7CvppCQgPa1e9rUu7scz/D46Swt+Jyi8nVkJWqZMW/8OZeLZj/PpCHH8MHft9LQXMO5Mx8nIWo4Hy65HavVzFHjrmJPzQ6+zHmYXVVbSIwczozhp9vjJRJu6IzLzufle58kJj6OpCEpZIwe0eE2YZHhPHvbwxx4ZOt79ZP/fSYPX3UnFouVC266jLVLV7Lw+99ZuWg5Bx51MACHnnIMxdt3EhbZvm7nPnRrl+Opra7h+dsfYcOK1Xz4wpucddWF3HvxTdz72uN8/NLbrF2ay2PX3MPch27h+w+/ZHteAdUVVVx8+1zWLl3JN+9+Rn1tPVc92Pm53MIzDL9oNuse+YagQeGEpsYQkZXU4Tb+EUGsvu9LEg9tXWU+7LyZ5Nz0kXYcxFztOIjSX9azd2kBCYeNBiDlhEnUFe7Df7/sn/F3ndTleOKmD6Nw3gpy1+9k8EHa36FlV7/LtOfOI/no8eTe9gnmmkYmP3Ymiy94Fb/wINY++DXDL5yNX2gA6x75luotuwnPjGfIaVPt8RJ5BEXtZIWep1AURd33cdfN0FE++GMNSTERHDw+HYDivdXc/8EfXH/KgYw0SEBb7D8fQVVVx5zwLXqkKIpa9sp5Pd/QAT5aXEBidAhz9KMaisvreOCLXK4/djwjEt07DXTwZe9K3bqAoihqyUOu+7Dp49xdJEYEMnu4NuFWXNnIf3/axrUHp5E5uOPEsrtKumOB1K8TKYqiFt9/oMue/+OVZSRGBDA7IwqA4qomHv55B9fMSSFzkLEC2pLvXiy160SKoqiPH+Oa88eX7/yYyKBERsTNBqCyoZjv8h7isOHXEh/WcZLDnd30faLUrRMoiqK+elGZq4fBovyPiA5JZHSydr1SXlvM5yse4PiJ15MYZazatbnkjcFSw06iKIq6vHGr0593/jufMTg5gemHaR+W7Soq4YU7H+Pft13F0CxjHJ83NWiY1KkLKIqinr77eZc89/aPlhCcGEX8HO1Du/riCtY++DWjrjuKiBEJLhlTf30aP9fj6lcmgUWnZBLYtVw5CWxkMgnsGq6eBPYUMgnsXK6eBPYkMgnsXK6cBPYkMgnsHO4yCeyJZBLYeVw1CewJZBLYNVw5CexJPHESWA7LcLBLn59vt8f6fc02/vnwJ7z762oANhXt4cKnvuC6//uehet3APDi/KXc8sZP3Pve73Z7XuHdLn9jod0e66PFBZz74m/c+P4S8koq2VBcwY3vL+GG95dw3GM/2O15hPe66pONdnusBVvKOffttby/XJts+augghvm5XHhe+tYWKCd137H/Hxu/CKPuZ9uxLr/gaxC9NLczzbb7bH+3FLJee9u4IOc3S0/U1WVCz/YyAc5u2kyW7nl6wJu+bqAGU/lUNNo7ubRhOjeB6uvtNtjbd77J5+vu5k3VpxHUeUqGk01vJ17EZ+svZ5ftzwDwBfrb+fZxUfb7TmFd3ptweV2e6wNxX/w7E9n8Vfee4C2wvjdRTfyym8X82feuy23+2ntS3Z9XuF97rrgOrs91tJf/uKaky7kyzc+bvmZqqrccNp/+PKNj9lTspv7LrmJO8+/Rs4BFgO29Iq37fZYuxdsIuemj1h4ziuUr9xB1YYScm76iJwbP+K3458C4NdjnyTnpo/Y9MIvdnteTyJnAnfis4XrWbyhiNAgfx44/zD+7/sVFO2pIjo8mOtPPpDzn5jHmCGDyNu5j5mj01hZUMqxUzMZO2QwV7z4DcdPG8m+mgbuOHN2y2M+/tlCahqaaWg28+D5hzL35e9IiA7j4HHpHDqx6zMq2zpk/FD8fX3YtqsSgF9XbWXuiTOYOCyBS5//mmkjU8gr3sdzlx3LI5/8xY6ySoYMjnLAKyTc3efLtrE4fzehgX7cf9oUXvt9E4X7aokJDeTaY8ZxwSt/MDo5ms2lVRw4Ip5VO/ZxzIRUxqREc9VbizhuUhrltY3cdlJr0vcT366hpsFEo8nM/adN4Zp3FhMfqR0bceiYjucFdUbxoSWsLj4ymKjQQJ44ZwZ/bChhTHJ0D/cWnmre6t0s2VZFaIAv9xybwet/F7OzopHoED+uPngI/35/PaMSQskvq+eAoZGsKq7h6FFxjEkM4+rPNnHs6DjK603ccsTQlsd86rft1DRZaDRZuffYDK77PI/4iADmDI/m4MyYbkbTas7wGPx9fNi2TwuLm5URzayMaKoazDzy0zYO0v/3C2eM4oZ5edQ1WwgPkn9WvcUXa/bw9/ZqQgN8uOfoobyxpJSiykaig/25ek4KF3+4iVHxIWze08ABQyNYXVzL0VmxjE4I4Zp5WzhmVAzl9WZuOTyt5TGf/r1Iq1uzlXuOTuf6L7YQHx7A7IxIDs7sXY+cPTwKP1+F7eWtoUbvrdjdcuxEoJ8Pj56YQU2jmSazVWrWC60smUdB+d8E+oZywqh7Wbj9dSoaiggJiOawjGt4O/ciEsNHs7t2MxkxB1JUtYox8UeTFD6Gj9bMZVz8sdSZyjl6ROtuu5/zn6LRUoPJ0siJWffy8drriAiKZ0Ts7Jazg3syIm42I+JmU1y1lh2VuQT6hZEcMY7Dh1/Huyv/A8DJY/5r14lnYRxLCz5n867FBPqFcsb0+/l1w2vsqykkNCiG4yZcy0u/XkBK9GhKKjczMvFAtu9dxaS0Y0iJGcMbf17F5PTjqGks5+Ts21oec/7KJ2g01dBsbuSM6ffz1l/XEBUSz6ikOS3nBvdkdPLB+Pr4U1a9DYCYsGTOm/kEVtXKB3/fAkDhvrWEBsp1rjf64aOvyP1rGcFhIVz36B18/NLblOzYSVRMFBfeciU3/fMyMsdmsW3TFibPns6GFWs4+MQjyRw3inv/fQMH/+MoqvZWcPl9N7Q85qsPPUddTS1NDY1c99gd3H/JzcQlxTP9sIM44IjZ3Yym1fTDZ+Hn709RwY6Wn33x2octx04MSornnlcfB+CO86624ysijKLw8xXs+XsLfqEBTLjvFPJfW0B90T4CokMZde1RLL7wVSJHJ1O9eReDDhxOxapCko4eT9SYZJbNfZfkYyfQXF7H2NuOb3nMDU9+j6mmEUujiQn3nczya94nOCGS+DlZJBwyqpvRtIqfk0X8nCwq1hZRnrOdjAtmkf34mexesIlIfU7CLzQQa7OFEJlf6JSsBO5Eyb4aslLjuOw47fBoq1UlONCf75bno6oqKio3nXoQc8alEx8dylP/OZrvV+QDMGbIYC47bir1Tc1U1GoTB5t27mXZ5mJCg/xpMpnZU1VHQ7OJQycMY45+bjDAnqo6bn/rl3ZfdY3NXY7z9Flj+XDBWh74aAE1Dc2U1zQQG6GdI5gUG07JvhoHvULC3ZVU1DMqKYrLDtOaqcWqEhLgx/erirQaVuHG48Yze1QC8ZHBPHHOdH5YUwTAmJRoLj1sFPVNZirqtITZvJJKlhfsITTQjyaThT01jTQ0Wzh0TBJzRrWe67OnuoE7P1ne7quuTdrnGdOH8eolszl/Viav/Nq6YvOLFds5dVrrBJ7wLqVVTYyMD+WSmSmA3nP9ffhhwz69XlWuP2QIszKiiA8P5LGTRvDjxn0AjE7Q7lffbKGiXqu1zWV1rCisJjTAlyazlT21zTSaLBySGcOsjNaLgb21zdz97ZZ2X/XNlh7H+8KfhZw1Rav7hIhALnpvHSrIZJqXKa1qJmtwCJccoF1wWqwqwf6+/LipXL9WgOsOTmVWRiTxYQE8ekIGP24qB2B0QgiXHJhEvalt3dazoqiG0AAfmsxW9taaaDRbOTgziln6BC7odfvdtnZf3dXt9vJG6posHQLsvly7l5PGGSOnQNhXZWMpCWFZzErXJlZV1YK/bzDrd//Qcp17+PDryYydRXjgYE4d+xgbdv8IQFLEGGYN/Q/Nlnrqm7UdEbtr8theuZxA31DM1iZqmvdgsjYwMu4QMuNaJyRqm/by1Ya72n01m+vbjW3Rjjf5bP1NZMQeQFRwEjurVvPGivPIjJ3lpFdHuKuKuhKSokdx+NjLAK1uA/xCWLXj+5ZrheMn3cjopNlEBsdz3oFPsKpQ22WWEjOGw8dcSrO5nromrW5LKvIoKFtOoF8oJksT1Q17aDY3MCb5UEYntR5xVd2wh4+W3Nnuq8lU1+1YNxT/wePfnURW4izMlmYW53/EgZlnOuiVEe6srHgXGWNGcPbciwCwWCwEBQfzx/yfUVUVVLj4jquZeshM4hIGc/uLD7Fg/s8AZI4fxdlzL6Khvp6q8koAtm7MZ82SXEJCQ2hubKJ8916aGps44IjZTDt0Zsvzlpft5ckb72/31VBX32F8NjsLdlBXW9chwO63L75n8uzpdn5VhBHUl1YSkZVI5qXaB7mqxYpvcADF369pmU8YfcPRxM8aSXB8JNmPn0nJD2sBiBqdzIhLD8Fc30RzhdYvq/NK2bt8G36hgVgaTTTtqcHSaCLhkFHEzx7Z8ryNe2pYdefn7b7M+pyEzZY3/iTnxo8YdGBmy88K5+WQdsoUAGZ/ciVTnz2H4u9WY2noej7NW8kkcCeuPmkG00amcNNrP1K8r5qtuyu4/Z+ziQkP1ibTAgPw8VHw9/MhLCiQAD9fms1WAMwW7b8m/b8AqCrjhyZwy+mzeO6yY0mJi+SFy4+jpLyae9oc26Cq0GQyt/vqzuCoUB7/95HceMqBRIYEEhMeTHm11txLy2tIjAm38ysjjGLuUWOYOmwQN3+wlJKKOraV1XDriROJDgvUa9gPHx+FAF9fwoL829WwqaWGW7e2q8D4tBhuPmECz5x/ICkxoTz3rwMprajn3s9z292u0WRp99WWomjH6cSFB1HXqE18VNY1oQCRIQGOe0GEW7tydhpT0yK49avNlFQ1sW1fAzcfMZToED8sVggJ8G3puaGBvgT4+bTUqVmv03b1qsK4pDBuPCydp04ZSUpUEE+fmkVpdRMP/FDQejugyWRt99WTp3/bwcxhUYxPDmdfnYm6ZgtvnDuWjLhg1pXU2veFEW7tilnJTEkL57b5WympamJ7eSM3H5ZGdLBet/4+Wt36dqxbW72a9+uzYxNDueHQNJ78x3CSowJ56h/DKa1u5oEft7e7XZPZ2u6rO4u2VpG/t4H/W1zCvNV7Wo5/+LOgkjltJpeF9zhk2JWkR09h3vpbqWwoYW/9do4ecQsh/tFYVQsBviH4KD74+gQQ6BeGn08AZlV7E2WxmvT/tl6jqkBKxDiOzLyRM8Y9RXRwCv8c9wxVjaV8s+n+NrdTMVub2n3tb+aQC/l39nss3P46m8p+Y1LSqVw05V0Kyhc79kURbu/o8XMZPngq7y++mfK6Esqqt/GP7FsJC9TqNtBfr1vfAIL8w/DzDcBs3b9uWxcmqKikxY7nxMk3c8GsZ4gNS+HCWc9RUV/Kp8vvbfPMKiZLY7uvnoxOPphbjpvP8m1fUlyxicr63by3+Ca27VnJ9r2r7PiqCHd3/g2XMn7GZB65+i527yxlZ8EOLr/3eiJjorUJ4ZBgfHx88A/wJyQsFP+AAEzNWp2aTbb/tum3qkrWxDH8565ruet/j5KQlszd//cYZcW7eO62h9vdrrmxqd1Xd5b/8TfbN23h/ede5/sPv6S2uoaF3/9G4ZbtnHrJOQ54ZYS7y7rqcOKmDiX35k+oL6mgdvsext56PIExoagWK34hASg+PvgE+OIXGohPgB9WvVatZku7/4L2/ix6XApjbjqWqc+cQ0hKDFOfPYeG0kpW3/clbW9oaTK1+9rf8ItmM+v9y8h/bQEAzZX1oEBApLbgwTbn4B8ehNXU8wIfbyPLljrx1s8rKSgtJzjQn6jQICpqGnj+66XsKu95ZW3ezr3c98EfBPn7ER0WDEBW6iBMZgt3vfMrtY3N3HL6LJ6ctxir1crk4Ykt9x0cFcqTl3R9ztnKglJe/nY5NQ1NJMaEkZEYw7NfLaG+ycS1/5hBgJ8vw5Niuf2tX/D38yE9PmrAr4Uwprf/3ExBWTXBAX5EhgRQUdfECz+tZ1dlQ4/33VxaxQNf5BLo70t0aCAAWUlRNJut3P3ZCuoaTdx8wgSe+m4tFqvK5PTWlWSDI4J54pwZXT72ewvzWbVjH5V1zdx20kQAPl++nZOnyipgb/bushK27m0gOMCXqGA/KhpMvPRXEbtrev7kdvOeeh76cSuB/j5Eh/gDMDI+lGaLyn3fFVDbZOHGw4bwzB+FWK0qE1NaPxwbFBbAo//oOhF89c4a/rdoJ7VNZhIjAqhsNDN/3R52VTexs6KRc6Ym0my2cttX+ZTXm7hgevLAXwxhGO8u38XWfQ0EB/jodWvm5YXF7OpF3ebvaeC/P+0g0K9N3Q4OwWRRue+HbdQ1Wbnh0FSeXbATi1VlUkpYy30HhQXw6IkZXT726uJa/m9xCbVNFhLCAzhnSjznTIln8bYqtpc3Eh7kR15ZPcPjQvDx8aicC9FLfxe+w966rQT4BhPiH0W9qYI/tr5EddPuHu+7u3Yz3+U9hJ9vICEB2s6KhPCRmFUT8zfeS5OlliOH38QvBc+gqhZSI1uPlQoPHMSpYx/r8rFXlsxje8UKGs01TE89h7iQoXy54Q627PuLiMB4AH7Kf4KiylXMW38bp4x5uMvHEp5nwaa32V1VQIBfMKEBkdQ2VvDj2heorN/V431LKzfz+fIH8PcNbDmWITk6C4u1mU+W3k2jqY4TJ9/Mt6uewqpaGDpocst9I4IHc97MJ7p87O17V/HzuldoMNUQFZJIeHAsizZ/iFU1k5UwkyFx47nsUO1M1dcWXE563MSBvRDCUOa9+gE7tmwjKCSYiOhIqvZV8O5T/8fe0p777baNW3j+zkcJCAokMiYKgIzRIzCZTDx9y0PU19Rx6V3X8vojL2C1WBgzZULLfWPjB3HbCw91+dgbctbw/nOvU1ddy6DkeE7+95mc/O8zyVmwhKKCHVSXV/HQFbcz+7jDeObW/3LtI7cP+LUQxlLwzkJqC8rwDfYnIDKE5vI68l78hYZdVT3et3rzLtY88BW+gf4ERIcCEJmViNVkYfU98zDVNjHm5mPZ+PSPqBYrMZOGtNw3aHAE2Y93vXOi8PMV7F2xFXNNI0PP1QKeC+etIO3kbABMNQ3k3vopvkH+BCdE4h8RPJCXwSMpquq5QTaKoqj7Pr615xvaSWFZJe/+tqbdWcBGFfvPRzwuBdFIFEVRy145z+nPW7i3lvcX5bc7C9hIBl/2rtStCyiKopY8NKfnG9pZUUUjH6wobXcWsJEl3bFA6teJFEVRi+8/0OnPW1TRyAc5Ze3OAja65LsXS+06kaIo6uPHlDr9ecvri1i28/12ZwEb2U3fJ0rdOoGiKOqrF5W57Pn31hTy1+b3250F7CkueWOw1LCTKIqiLm/c6rTnK9m+k6/e/LjdWcBGNTVomNSpCyiKop6++3mnP29d4T62vf93u7OAjezT+LkeV79yHIQdpQ2O8ogJYOG90uLCDDsBLLxPanSQx0wAC++RGh3kURPAwnvEhKR6zASw8B5x4WkeOQEsPFtSeopHTAAL7xOaFusxE8CeSiaBO7Fw/Q7e/XW1XR9z1k2vs3xzMcV7q7n6le+49Pn57X7/4vyl7X7257rtzLzhtS4fr7HZzBF3vM0fa7YD8M6vq7jljZ947qslnd5+wdrtXPXSt1zx4jfUNDSxsqCUOTe/0XKGsfA8i/J28d7CfLs+5pwH5rNi6x5AO2vq/Jd+b3mO2z5axvXv/s0Vby7Eau24w+CdvzZz4/tLOPmpn3j7z80dfv/nplKue/dvzn/5d/7apK1wevirlTz81Uq7/hmEe1q8tZL3l9t3Zdthz60gp7Ca4spGrp+Xx1WfaGGEu6qbuPbzTVzx8UZeWVjUcvuFBRUc8uzyLh+v0WTluJdz+XNLRae/f2VhEXfMz285d/ibdXs4/521dvwTCXe0eFsVH+T0vK2zLw5/cRU5RTUUVzVxw5dbmPtZ+575yqLilp/lldVzxzdbufPbrZRWdzzzb11pLZd9ksejvxR2+XyvLCrmzm+38qB+9vA36/dy/nsbu7y9MK6CfYtZWvS+XR/zyYWHsqMiB6tq5fN1N/P5ultYsfOTDrezWE18tOZqPlw9l282PQDAxrJfeG/lpbyVeyHFVR37ZWVDMZ+vu5l3V/6HpUXvAfD838fz+bqb+X3ri4AWJvfp2ht4M+cCGkzVFFWt4qmFh7c7t1gYW17pIv7Ke8+uj3nvF3MoKFuBVbXy7qIbeW/xTSzO/6jD7cxWE2/8eRWvL7iSz5bfB8DyrV/y7qIbeO6ns9lb07G3ltcW89Zf1/LagstbfvbB37fy4NdHtnz/24bXeeCrwyir1laXbt+7ivu+PETq1kPlLFjCl298bNfHPGvKMaxdupKS7Ts574ATefiqO/jj658AePy6e3nw8tu4+8LrsVo7vt9f+P1v3HbuXG464zLyVq2nvraO+y65ifsuuYklP//V5XO+98xr3HXBdQD8Ou87rjv533b9Mwn3ULYon63v2fcs/p8Ofph9K7ZRtaGEnJs+IufGj/jt+Kc6ve2Gp35g+bXvs+TSN1EtVtY/8R0rrvuAvy9+HXNdE3VF5Sw6//9YeuU7bPuw8/kvgLyXf2XpFW8DsPvPPJZf8x7L5r6LqbaR8lWF/HToI+3OLfYWXjkJfMNrP1LT0ERNQxM3vvYjGwv38OBHC7j6le/IL9nXcrsP/ljTMslqm6B9/LOF3P3ub9z0+k9YOmmoXRmdNpipI5JJjovgucuObfe7Ndt2ERXWelZJbWMzC9buYGx6fJeP9+I3yzhuqnaWZVllHd8u24yfrw+xESGd3v6jBWt5/vJjOXPOWL5eksekjETGpg/u9fiF+7npg6XUNpqobTRx8wdL2VhcwX+/XMm17yxmS5uzej5aXMCCjdrk2uVvLATgiW/XcM9nOdzy4dK+1XFyNFOGDQLgnb/ymTOq9UzryvpmnjrvAAL9fKnr5AD382eN4IlzZjAkLoyTsod0+P3srESePu8Anv/XTObnahfU58zM7HA7YUy3frWZ2iYztU1mbvsqn02763jkp21cPy+PLXta04o/zt3VMslqm7R96rft3Pd9Abd9nY+lkw8YujIqIZTstAiSo4J46pTW1NmEiECeOTWLl/45itXF2lnvdU0W/iqoYExiWFcPx/8WFnH06LhOf9dstrK5rJ6HTsgkyM+XwvIGjh87iIggOXrf6G6dr50tXdtk4bb5BVrt/rKDG77cwpa9reesf7yyjD8LKgFaJmif/r2I+3/Yzu3fbO1b7caHkJ0aTnJkIE/+Y3i7360rrSU6uLWuXv+7lCB/H3x9FKI6qbexiWHccUTHnmvTbLaSv6eBB48bRpC/D4UVjRw/Jo7IIN9ej1e4j8/X3UKjuZZGcy3z1t/KrppNfL/5YT5Zez1ltVtabrd858ds3vsnAB+svhKAn/OfYv6m+5i3/jasau/fFCWGj2JIdDbbK5aREjmeU8c+Sv6+PzvcztfHnzPHP8dZE56nqlG7LtlWsZTjs+5m1pBL2F65osN9ooKTOXXsY5wz8RV26pPEgb6hWKwmooO0c9hnDrmQ08c9SUbMAVQ37SI1ciJJEWN6PX7heu8tvolGUy2NplreX3wzxRUb+WLFf3nrr2vZVdVat4vyP2JDsRYEZJtgnb/yCT5ddg/vL74Fq7X3dZsSM5qMwVPYsnsZQ+ImcO6Bj7OxpGPd+vn4c9HsF/j3nBepqNPqduqwf3DezCc5aMQ5lFZ2XHARE5bMBbOeafezsw94hITI1vPcDx39byakHtXyfXrcRFJjxvZ6/MK9PDL3TupqaqmrqeWRq+9iy/o8Xrr7CR649Ba2b249RmL+O5+x9Fft/ZhtMvXVh57jmVv/y6PX3I3F0vsaHj42i3HTtR2cIWGhNDU0kZSeCkB1RRV3vvwwAYEB1NfWdbjvqkUruObh2zjzqgtZvSSHP776iaP/eSL3vPo4333wRafPl7dqPRHRkS3fH3bKsYRFRvR6vMJ95Nz8MabaRky1jeTe8jFVG0tY+9/5LL/2fWq2tC5s2P7REnYv2ATQMpm64cnvWX3vF+Te+glqHxYURo5OInbKUCJHJ5H9+JmknDCRtFOndHrb0dcfzdRnziE4KRpzfRNjbjyWKU+fTezUYVTnlVKzZTcpJ0xk6tNnU7aw4+IygIq1RQREhbZ8v+OTpUx55hzSz5jGzvmriJmYRtRY78xz8cp3p8dNyeT7FfmoKhw7JRN/P1+aTRZCAv2ZvzSPaSM6L4ZNO/eybHMxUzKTqKxrpLS8hpQ4rRF+tGAta7a1/oWZMSqFE6dn9TiWZrOFDxes5b//Opw/1+0A4Nkvl3D5cVO54+1fO73PsrydpMRFtEze7SirZHBUKA/963CueulbTpwxkvDgwA73UxSF5NgIluUV9zgu4f6OmZDK96uLUFU4ekIqAX6+NJmthAT68c3KQqbqk7X7yyupZHnBHrKHxlFV30RpZQMpMVqD/HhJAWsLy1tuO334YE6Y3HHyYNueGmobTUwcEsu2PdokWmJUCP96+Q+iQwMIDw7o9LmrG5pRgajQjvVp89yP6zhn5vAufy+M6ejRcfy4cR+qCkeNjsXfV6HJYiUkwJfv1u9hSlpkp/fbXFbHisJqJqdGUNVgprS6iZSoIAA+XbmLtSW1LbedPiSS48Z2Xved+XbdHg5IjwLghT8L+c/MFO75tqDT2y7fUUVyVBCWLs7Rr6g3ERuqBXwlRQZSWt1EWowEEXiCo7Ni+HFTOaqqclRWDP6+PjSbVUL8ffhu/T6mpIV3er/NZfWsKKphckoYVY1mdlU3kxyl9b5PV5WxtqT1Tdn0IREcNya2x7E0m618snIP9x2TzsKt2od960pr+eyisawoquHT1Xs4f2pCn/58FQ1mYvVwusSIQEqrmkmLDurTYwj3MTb+aNbv/gFQGTP4KHx9/DFbmwnwDWHt7m9Jj5ra6f121+SxvXI5Q6KyaTBVUdVYSnRwCgArij9pt0p3aMx0xid03OpZ1VhKZFASAIrS9TqT7RUriAtJ18d7DB+tuQaraubsCS92evvNexfwy5anmDnkYgAumfoRiqLw7sr/MCb+KPx9g/l83c2UNxQyLVVS7I1oYtoxrNrxPSoqE9KOxtcnALO1iUD/EHK2f8PwwZ3XbUlFHgVlyxk2KJu6pioq6kuJDdPqdnH+xxTua63bzITpZKef0OExKupKiAnV3vt1V7cFZcsZHJHe8v3XuY+xoWQBlx36Rn/+yMLDzDnxSBbM/wVUlTknHIF/gD/Nzc0Eh4bw+xffM35Gdqf327oxnzVLchk3bSI1FVXsKd5FQppWj9++N49Nq9a13HbSzKkcevIxHR4jcUgy//v5Qxrq6rn/0lt4+L3nGZwcz01nXEZEdCRhER2vUw4+8Ujuu/gmLGYz97/1NN9/+CWjp4wHtDmD/Zmam5n/7ufc8MRdLP/dvitEhfMlHzOekh/WgqqSdPR4fAL8sDab8QsJZOc3q4idOqzT+1XnlbJ3+TZis9NprqynobSSkJQYALZ/spTKNTtbbhs3I4OU4yd2OYbCeTlMuP/kTn9nqm5g5e2fYm224KvPKzTtq6ViTRGZF8+huaKOJZe9xfZPljHiskM63N/abGb7R0uZ+OCplP2V1/JzRVEITo5m7/JtPb5GnswrVwLPGZ/OX+t28Oe67cwel87//bCCa06awWkHjaGhqXULToCfb8tEa2OzCVSV8UMTuOX0WTx32bEtE8AAZouVJpO55cti6d2Kn42Fe9hdUceNr/3IyoISVhaUsmbbLh7++E9WFpTw2cL1He7z57odLMvbyccL1vHGT7kkxoQRra8kDgsOoNnU9SeIJftqSIzpeqWbMI45oxJYmLeLvzaVMjsrgVd/28TVR4/h1GlDaWhurWN/P5/WOjZZUIHxaTHcfMIEnjn/wJYJYNDquNFkafnqauXawk27yN9VxSu/buSzpdvYWV5HXZOJty8/mIz4SNYWlXd6v8+XbeMfU9K7/DM9+e0aDhqZwIQhPU+GCGOZlRHNwoJKFhZUcNCwaF5fXMxVs9M4ZcJgGkytnyL7+yotdddotqKqMC4pjBsPS+epU0a2TAADmCwqTSZry5e5Dystf9m0j637Gjh/ujZhsbaklsd+3s6qnTXMW91xa//CgkqW76ji09xdvL20pMPvo0P8Ka/TVsCXVjeRENH1Bx3CWGZlRLFoaxULt1Zx0LAo3lhSylWzkjl5/KB2tRuwf+0CYxNDueHQNJ78x/CWCWAAs0WlyWxt+ept7eaV1bO7pplb529lZXEtq4trGRITRLC/D9HBftQ39X1LW3SwH+X1Wu3uqm4iIaLzD/GEMWTGzaZg3yLy9y1keOwsFm5/nUOHXcXkpFMwWVpXrvv5+GNVtWsFk6URFUiJGMeRmTdyxrinWiaAAaxWM2ZrU8tXV6uEI4MSWlb4qmrnq4OKqlaxdtc3HJl5EwB/bX+NS6Z+xPmTXmPBtlc6vc+IuDlcMeMrVpd+BbROUAT5hWO2arV76tjHmJZyDpv2dL6AQri30Ulz2FS6kI0lfzEqaTa/bXiVo8dfzfRhp9Js3r9utfozmRtRUUmLHc+Jk2/mglnPtEwAA1hUMyZLY8tXV6uEo0MTqajT/l3vqm63711Fzrb5nDjplpafnTj5Zv45/UH+3mLfLf7CmKYdOpMVfyxm2e+LmXrIgXz84ttccONlHH3mSTTWN7bczj/Av2W1b1NjI6qqkjVxDP+561ru+t+jLRPAAGaTiebGppYvcxfb1lt6YkgwqCqVe8upr63n8U9eYciIYeSt3tDhPh+98CbPf/s2j3z4Iu8/+xqDkxLYvbPrY9kK1m9m364yHpl7JxtWrGZDzpp+vU7CPcTPHknZX5vZ/Vceg2eNIP+1P8iaewRpp07B0tC6o9fH369lta+l0YSqQvS4FMbcdCxTnzmnZQIYQDVZsTSZWr7Ubo5ZaK6sBwUCIjvfxe4fEcy0F84nekIqFauLaCqvY839XzLpv6eh+Pqw/ZNljLvjROZ8ehU7Pu14lF/VplIay6rJvfljylfuoHxV67E9DSWVBCd0vvjIW3jlSmBfHx8iQgKxqip+vj4cNDqNJ+ctxs/Xh0D/1pfkgFGpPPjhAvJ27sViVclKHYTJbOGud36ltrGZhy84gqAA7fbnHjqBcw+d0ONzV9c3cd/7v7OyoIT/fbecS4+dyhvX/QPQjpyYlJHIx7ed0fL9aQeN4fc12xgUEdJyPMSNp84EtOMqkmIiSImLJMDflzvf+ZXgQH9iI0J4/uulzD1xesvznjF7LNe88h0mi5VHLjzCLq+jcC1fHx8igvyxquDn68PMEfE8/d1afH18CPJv/XzngMzBPPTlKvJKq7BYrWQlRdFstnL3ZyuoazTx0D+nEeSvbfs9Z2Zmr45gOG9WJufNymRR3i627akhOTqEZrOVmz9YSnltExfOGcFLP2/gssNG4ePT+mnyn5t28a9Z2jEm63dWUFbdwCGjtUm4z5dt4+ucHZRW1lO0r5bz9dsJz+DroxAR5KvXq8KBw6J49o8d+PooBPm11uuM9Cge+Wkbm8vqsFhVRsaH0mxRue87bUv+A8cPb6nvs6ckcvaUxK6eskVNo5kHf9jKqp01vLZ4J0eNiuOmLzdzZFYs931fwD3HZPDev8YB2hEUp0yIZ8GWcuJCA1qOh7juUG1F/Me5u0jUJ3hf/quIy2dp2+4C/HzIGBTC3d9uwc9HYYisAvYYvj4K4UG+qHrtHjA0gmcW7MTPRyGwTe1OHxLBI78UsrmsAYsVRg4OwWRRue+HbdQ1Wbn/2KEttXtWdjxnZXd95JNNTaOZB3/awcriWl77u4SLD0jif//UjjaZ+9lmJiSHcc6UBG7+uoAGk5U7j0znzy2VxIb5MyZB+4CvsKKRx34tZMueBoYPCubUCYN4ZWExlx2kvdEM8PMhIy6Yu7/bhr+vwpAYWQVsZD6KL0H+4aiqFV8fPzJiDuSXLc/g4+OHv0/rBxFDo2fw/eaH2V27GVW1kBA+ErNqYv7Ge2my1HLSqAfx99VqYVrq2UxLPbvH506Pns7Kki8oqV7P8NiDAPhj60scPOwKAEyWBt5YcT5j4o9k3vpbOGnUA2QNOpTP1t2I2drElOQzKKneQE1TGSMHHQxok8bLd36MVTWTETuTRlMNX2y4DX/fICKCEgj2j+Cn/CepN5VT31zBiaPut/MrKpzBx8eX4ICIlrodmTCTb1c9ja+PL36+rT0pM+EAvljxECWVeVhVC8nRWViszXyy9G4aTXWcNeMh/P20288acQ6zRvS8Mnx4/HSWFnxOUfk6shJnAfDj2hc4atxVADSbG3j+53OYkHo07y2+iTNnPMRfee+xqyqfuqZKjp94AzvL11PVUMaYZG1FWkNzDZ8tv49te1byy/r/4/Ax/+Hr3MfYtmcl7y++hXMOfJSlBZ+zpuhndldv5aTJtzA4QoJujczX15ewyHCsVhU/Pz+yZ0/n9UdewNfPj8DA1t476aBpvHT3E2zbmI/VYiVj9AhMJhNP3/IQ9TV13PjUPQQGabc/6cJ/ctKF/+zxuVcvXsH8dz6jqbGJI884gcjYaExNzTxy9V1U7avgtEvP5b1nXuPsqy/Cx0e7Djnw6EN46PLbaG5s4vjzT2P8jMk8cf19/PzpNxx15okAvPv0q5x33SUAZE0ay8PvvwBox1iMzh5v19dPOJfi64N/RBCqVcXHz5fBB2ay8ekfUfx88A30b7ld3AEZrPvvfKo370K1WInMSsRqsrD6nnmYapuY9NBp+AZptx96zgEMPeeAXj1/4bwVpJ3cujo+78VfGHnl4S3fr7z9M1BVzPVNDL9oNov+9Sp+4UGsffBrhl84m4SDR7Hh6R/wjwgmSp9LyHvpV0ZecRgA0eNTOeDViwDtGIuYiWkMOX0aK677AKvZwqT/njawF9DgFLWLra2eQFEUdd/H7pFifOnz8/nf3I5bkHrjua+WcNFRkwkL6v3qnIc/+ZPbzpjd7W2ufOkbnr30WPx8Oy4Ij/3nI6iq2nEviHAKRVHUslfOc/UwOrj8jYW8fNFBvbrtI1+v4tYTJ3b5+w8WbeGgkQmkxXW9Mr1wby3vL8rntpMm9eo5B1/2rtStCyiKopY8NMfVw+jgqk828sIZo/p13xf/LOSC6cmEBnZ+LmrB3npW7azh1IndT+T1ZQxJdyyQ+nUiRVHU4vsPdPUwOjX3s808f1r/Pgh76a9i/jUtoZvabWBVcS2nTuj+6JS+jCH57sVSu06kKIr6+DH2DdIciA9WX9npUQ7NlnoWbX+DQzKu6vVjLSv6kOGxBxETkjqgMX205hpOH/skvj5dr3e56ftEqVsnUBRFffWiMlcPo4PXFlzOxXNe7vDzJnM9v214jWPGX93rx1q4+QOyEg8iLjxtQGN648+5/Ougp7ut27YueWOw1LCTKIqiLm/c2vMNneiuC67jgbee7tVtX7nvaS6757peP/aO/K2sX76GY8/+x4DHMDVomNSpCyiKop6++3lXD6PF0iveZvpL/+rwc3N9M1teX0DW3P4vVKwpKKN85Q6GnNb50UFdWXb1u0x56mx8/LrOwfg0fq7H1a9XHgfhCmaLheWb+3cW79UnzejTBDDQ4wTwyoJSmpotdHLkjxBdMlusrNi6p1e37W4CGODsmcO7nQAG+GzZ1h5vI0RXTFaVnMLqft33ytlpXU6iAWTEhfQ4AfzNuj0MDpet9aLvTFaVnKKaft33illdf3gBkBEX3OME8Dfr90rtil6zWs3sqMjp8PMA35A+TQADTEs9a8ATwEVVqzBbmzo911IIG4vVTEFZxzDCQL+QPk0AAxw04uwBTwBv37sKs6UJBalb0Ttms5m1S1f26rZ9mQAGGJI5rMcJ4F/nfUdcogTNi96xmizsW9HxLF6/kIABTQADhGcM7vMEcPmqQqyNZq+8VpCVwKJTshLYtdx1JbC7k5XAruGuK4GNRlYCO5c7rwQ2GlkJ7FzuthLYqGQlsHO460pgTyArgZ3HHVcCG4WsBHYNd1sJbFSyElgIIYQQQgghhBBCCCGEoXj0SuDgAP9djSZzz8krooMgf7/dDc2mBFePw1sFB/jtajRZpHb7KMjfd3dDs1nq1smC/H13NZmtUq8DFOjns7vRZJH6dRKpW/uR2nUuf9+gXWZrk9TuAPn5BO42WRqlbh0swC94l8nSKPXqAP6+QbubzQ1Sw04QFBy0q6lR+m5/BAYF7m5skF7rbL7BAbusjSap2QHyCfLfbWlo9qj69ehJYHehaAeNlALTVFUt7OT3ZwGnqap6qtMHJ0Q3FEV5BKhXVbVD3LaiKH5AJZCsqmqVs8cmRFcURckCvlNVdVgXv/8fsE5VVdkjJdyKoihLgJtVVf2zk98dALygqmp2x3sK4TqKolyGdo17URe/z0O7zl3r3JEJ0TVFUcKAMiBKVdXmTn5/GxCnquoNTh+cEN1QFOUjtOvcdzr5XSKwDq12ZaJHuA1FUY5Gu8Y9tIvf/4h2nTvfuSPzPnIchHMko73WRV38fgUwxXnDEaLXpqDVZweqqpqB1cBkp45IiJ51Wbc66bnC7SiK4g+MA7pKeVkNjFIUJdB5oxKiV6TnCiOaiPaBcIcJYJ3UrXBX3b0/KwUagXRnDkiIXpBrBTchk8DOkQ3kdPNpXAEQqShKnBPHJES39BXsk4GOkd+tctDqWwh3ko3UrTCe0UChqqo1nf1SVdV6YAvaRLEQ7kR6rjCinuo2F5ikKIq8XxZuQ1GUKCAeyOvmZtJzhTuSawU3If+oOUe3Ba+qqhVt5Y8UvXAnQ9GOgtjdzW2kWQt31NNFxjpgmKIooU4ajxC90VPdgvRc4WYURQkCRgJrurmZ1K1wRz29P9sH7AMynTYiIXo2GVitqqqlm9tIzxXuSCaB3YRMAjtHNt0vfUf/vRS9cCdSt8JwFEXxRdvi2d0bu2ZgPTDBScMSojek5wojGgdsVlW1oZvbrATG61kCQrgL6bnCiKRuheEoijIYCEfbAd+VQsBPUZQk54zKe8kksIPpW+qn0LvVPXIGinAnvanbTUCSoiiRThiPEL0xAtijqmpFD7eTnivcjVwrCCPqsW5VVa1Gy8UY7ZQRCdEDPRQuHe0D4e5IzxXuptfXCvo8hBDuIBvI7S6sUP+d9FwnkElgx0sGFGBnD7eT5e/C3fS4NVnfiiThcMKd9GZLPUjPFW5ED4UbS9ehcDargSwJhxNuRHquMKKJwHpVVU093E7qVrib3rw/2wU0IOFwwn3ItYIbkUlgx8sGVnT3qYfOFg43yAljEqJb+ifHvW3WsuVIuJPebJMDqVvhXkYDO1RVre3uRvqW+3wkHE64D+m5woh6W7c5SDiccBOKokTTcyicjfRc4U7kWsGNyD9ojtebLRu2cLhcpOiFexgG1PYQCmcj2zaEO+lVz0XbAirhcMJd9LZuQXqucBO9DIWzkboV7qS378/Kgb1oR00J4WqTgVU9hMLZSM8V7qS317lylIkTyCSw4/V2NSXI8nfhPqRuheG0CYXL7em2bcLhJjp2VEL0ivRcYUTj0ULhGntx25XAOAmHE25Ceq4wIqlbYTh6KFwYsLUXNy8CfAEJh3MgmQR2oDZb6nuz9B1k+btwH32p201AgqIoUY4bjhC9MgLY3YtQOBvpucJdyLWCMKJe162qqjVoyd8SDidcSg+FG0LPoXA20nOFu+jLtUIOkC0rKoUbyAZyenE8qi0cTnqug8kksGOl6P8t7uXtZduGcBe93pos4XDCjfRlSz1IzxVuoE0o3Kpe3mUNWjhckMMGJUTvSM8VRjQJWNeLUDgbqVvhLvry/mwXUA8MdeiIhOiZXCu4GZkEdqxef+qhKwAiJBxOuJL+ifFk+t6s5RM74Wp92SYHUrfCPYyhF6FwNhIOJ9yI9FxhRH2t21xgooTDCVfSQ+EGA5v7cDfpucIdyLWCm5F/zByrL1s2bMvfpeiFqw0DalRVLevDfWTbhnAHfeq5aFtB0/WtoUK4Sl/rFqTnChdTFCUY7Qie3oTC2UjdCnfQ1/dn5cAeJBxOuNZkYGUvQ+FspOcKd9DX69wVyFEmDiWTwI7V16XvIMvfhetJ3QrD6UsonI2Ewwk3IT1XGNF4IK+XoXA2tnA4fweNSYjekJ4rjEjqVhiOoijxQCiwrQ9324k2T5nskEEJmQR2lDahcP1p1vKJnXCl/tRtHhAv4XDChUaihcJV9vF+0nOFq8m1gjCiPtetfuSJhMMJl1EUJRxIAzb08a7Sc4Wr9fdaYbKsqBQulA3k9uF4VNkd7wQyCew4KYCV3ofC2ci2DeFqfd6arG9NWoWEwwnX6c+WepCeK1xIUZQAtDOBV/XxrmuAkRIOJ1xIeq4woonA2j6EwtlI3QpX68/7s91AHRIOJ1xHrhXckEwCO84U+hYKZ7MVCFcUZbADxiREtwawgh1ky5Fwrf5skwOpW+FaY4DtvQ2Fs9HD4TajbckXwhWk5woj6m/d5gKT9KOnhHAqRVFigEH0LRTORnqucCW5VnBDMgnsOP2aSNMnjXORTz6Ea2QA1aqq7unHfWXbhnCl/n54sR4YIuFwwkX6W7cgPVe4iB4Klwms7cfdpW6FK/X3/VkFUIaEwwnXmAysUlXV2o/7Ss8VrjSQxWUSDucgMgnsOP1d+g6y/F24jtStMBx9Zc4E+hAKZ6NvCV2HhMMJ15CeK4xoPLCpj6FwNiuBsRIOJ1xEeq4wIqlbYTiKoiQAIfQtFM5mp/5fCYdzAJkEdgD9E4v+Ln0HWf4uXGcgdbsZLRwu2o7jEaI3soBd/QiFs5GeK1xFrhWEEfW7bvWjT3agHYUihNMMIBTORnqucJWBXivIikrhCtn073jUtuFw0nMdQCaBHSMVsAAl/by/bNsQrtLvrckSDidcaCBb6kF6rnCBAYTC2awBRkg4nHAB6bnCiCahhcKZ+3l/qVvhKgN5f1YG1ALD7DoiIXom1wpuSiaBHSMbWNGfTz10W4EwRVHi7TgmIbqlKIoP2gTuQJq1bDkSrjCQbXIgdStcYwywVVXVuv7cWd+Kn4eEwwnnk54rjGigdZsLTJRwOOFMeihcHP0LhbORnitcQa4V3JRMAjvGQLZstF3+LkUvnCkDqOpnKJyNbNsQrjCgnou2NXSIvlVUCGcZaN2C9FzhZAMMhbORuhWuMND3ZxXAbmCk3UYkRM+ygZX9DIWzkZ4rXGGg17k5wBQ5ysT+ZBLYMQa69B1kElg4n9StMJyBhMLZSDiccBHpucKIJqCFwjUN4DFWAWMkHE44mfRcYURSt8Jw9FC4IGD7AB6mGFCBFHuMSbSSSWA70z+pGOjSd5Dl78L57FG3m4FBEg4nnCgLKFFVtWqAjyM9VzibXCsIIxpw3erhcNuRcDjhJIqiRKBNJPQ3FM5Geq5wNntcK+QAk2VFpXCifofC2ej3lZ7rADIJbH9pgFlV1f6GwtnItg3hbAPemtwmHE6atXAWe2ypB+m5wonsEApnsxYtHC54wIMSonek5wojGmgonI3UrXA2e7w/KwNq0I7+E8IZ5FrBjckksP3ZY8sGwDYgRMLhhDPYKRTORrYcCWeyV8+VuhXONBYtFK5+IA8i4XDCBaTnCiOyV93mAhMkHE44g6IosUAskG+Hh5OeK5xJrhXcmEwC259dCl5f/p6LFL1wjgygUlXVvXZ4LGnWwpnsdZGxAUiTcDjhJPaqW5CeK5xEUZQQYDgDC4WzkboVzmSv92eVSDiccJ7JDDwUzkZ6rnAmu04Cy1Em9iWTwPY3hYGf22OzAln+LpxD6lYYjqIofgwwFM5GD4dbi7ZlVAhHk54rjGgCsHGAoXA2q4Cx+tEoQjia9FxhRFK3wnAURUlk4KFwNsWAFUi1w2MJnUwC21GbUDhZ3SOMxp51uxmIUxQlxk6PJ0RX7BUKZyM9VziLXCsII7Jb3erhcNuQcDjhYG1C4Tba6SGl5wpnsfe1goTDCWcYcCicjf4Y0nPtTCaB7SsNMNkhFM5GCl44iz3f2FnRVvhMtsfjCdENe14cg/Rc4QSKogQCoxl4KJzNWiBTwuGEE0jPFUY0CVhjh1A4G6lb4Sz2fH+2B6hGwuGE48m1gpuTSWD7sueWDWgNh0uw42MK0Y6dQ+FsZMuRcAZ791ypW+EMY4GCgYbC2ejhcJvQtuoL4UjSc4UR2btuc4GJEg4nHEkPhYvBPqFwNtJzhTPItYKbk0lg+7Lrpx6y/F04yXCgwk6hcDZSt8IZ7P1J8wYgVcLhhIPZu25Beq5wMD0ULgNYZ8eHlboVzmDv92eVQCnakVRCOEo29guFs5GeK5zBISuB5SgT+5FJYPuSN3bCiKRuheHooXDjgZX2ekx9q6iEwwlHk54rjMieoXA2q4AxEg4nHEx6rjAiqVthOIqiJAGBwA47PmwJYEHC4exGJoHtRP9kYgr2b9ay/F04mr23bEBrOFysnR9XCJtRQLEdQ+FspOcKR3NEz5W6FY5m97pVVbUO2Ip2RIoQdqcoSiSQjP1C4Wyk5wpHc8S1gm1FpcwBCUfJBlbYIxTORn8s6bl2JA3AfoYATXYMhbORT+yEo9n9k2Z969JKJBxOOI4jVkiA9FzhQHoo3ChgtZ0fei0wXMLhhANJzxVGZO9QOBupW+Fojnh/tgeoRMLhhOPItYIByCSw/Tiq4LcDQYqiJDrgsYWX0z8JnoQ0a2E8cpEhjMiuoXA2+hZ9CYcTjiQ9VxiRo+o2F5igH00lhF0pihIHRANbHPDw0nOFI8m1ggHIJLD9OGLLhoTDCUfLBMpVVd3ngMeWbRvCkRzSc2kNh4twwGML4ai6Bem5wkEURQnF/qFwNlK3wpEc9f6sCu2cSgmHE46QDeTaORTORnqucCRHXeeuAKZIOJx9yCSw/TjqUw+QSWDhOFK3wnAcEQpno28ZXYOEwwnHkJ4rjGgCsMHOoXA2q4DREg4nHER6rjAiqVthOHoonD9QaO/H1o9cNQFp9n5sbySTwHagfyIhzVoYkSPrNh+IlXA44QCjgJ2qqlY76PGl5wpHkWsFYUQOq1v9aBQJhxN2p4fCJaEdleMI0nOFozj6WmGyhMMJB8gGcuwZCrcf6bl2In/57SMdaFRVtdRBjy/bNoSjOGxrsr6FKRdp1sL+HLmlHqTnCgdwYCicjS0cLsRBjy+8l/RcYUSTgdUOCIWzkboVjuLI92d7gQpguCMeX3g1uVYwCJkEtg9HfloHsAMIlHA4YU9tQuFyHfg08omdcARH91ypW+EI44At9g6Fs9G36m9EwuGE/UnPFUbk6LpdCYyXcDhhT3ooXCRQ4MCnkZ4rHEGuFQxCJoHtw6EFL+FwwkEygX0OCoWzkboVjuDoi4yNQIqEwwk7c3TdgvRcYWd6KNwwHBMKZyN1KxzB0e/PJBxOOEI2sNJBoXA20nOFXTnheFT0x86WcLiBk0lg+3D00neQ5e/C/qRuheE4MhTORt86uhptK6kQ9iI9VxjRRGC9qqrNDnyOVWjhcIEOfA7hfaTnCiOSuhVGlAT44YBQOBs9HK4ZGOKo5/AWMgk8QE761APkEzthf86o2y1AtITDCTsaDRQ5MBTORnqusDe5VhBG5PC61Y9IKUDC4YSd6KFwiTguFM5Geq6wN2ddK0yScDhhR44OhbORnmsH8hd/4NKBBlVVdzn4eaTghb05442dFW3FptSusBdnXByD9FxhR/oKxywcFwpnsw7IkHA4YUfSc4UR2ULhLA5+HqlbYW/OeH+2DwmHE/Yl1woGIpPAA5eN47dsgBYOF6AoSpITnkt4uDahcM5o1iuQZi3sx1k9V+pW2NM4IF9V1QZHPokeDrcBCYcT9iM9VxiRs+o2FwmHE3aiKMogHB8KZyM9V9iTXCsYiEwCD9wUnDCRJuFwws5GAHtVVS13wnPlIOdOCftxSs9F20KarG8pFWKgnFW3ID1X2EmbULj1Tng6qVthT856f1YNFAOjHP1cwitkA7kODoWzkZ4r7EI/HtVZ17k5wBQJhxsYmQQeOGctfQeZBBb2I3UrDEdfaTMOB4bC2ejhcGvQVswLMVDSc4URTcTxoXA2q4FREg4n7ER6rjAiqVthREmAL1Dk6CdSVbUUaELC4QZEJoEHwImhcDay/F3Yi7O2bEBrOFyck55PeK7RQKGqqjVOej7pucJenNlzpW6FvTitbvVwuC1IOJwYIEVRooAEHB8KZyM9V9iLM68VJBxO2Es2sMIJoXA20nMHSP7SD8xQoN4JoXA2sm1D2IvTtibrW5pykWYtBs6ZW+pBeq6wA0VRgtBC4dY46Slt4XChTno+4bmk5wojclYonI3UrbAXZ74/2weUA5nOeD7h0eRawWBkEnhgnLkKGKAQ8JdwODEQ+ie+E9EmZp1FthwJe3B2z5W6FfbglFA4G33rvoTDCXuQniuMyNl1uxIJhxMDpIfCReCcUDgb6bnCHuRawWBkEnhgnLllwxYOJ8vfxUCNAPY4KRTORupW2INTey7aVtIkCYcTA+TsugXpuWKAFEUJA9JxTiicjdStsAdnvz+rRjsLU8LhxEBkAzlO3FIP0nPFALU5HtWZ17k5QLaEw/WfTAIPjLOXvoMsfxcDJ3UrDEdRFH+cFApno4fDrUbbWipEf0nPFUY0EeeFwtlIOJywB+m5woikboURJaPNKe501hPq4XCNaB9Ui36QSeB+0j95mIxrmrV8YicGwtlbNkDb2hQp4XBiAGyhcLVOfl7puWKgXNFzpW7FQDm9bvUjU7agfeAnRJ/poXDxQJ6Tn1p6rhgoV1wr5CLhcGJgXLGCHaTnDoj8he+/oUCdqqq7nfy8K5Dl72JgnL41WcLhhB24Yks9yFY5MQB6KNxInBcKZ7MOGCbhcGIApOcKI5oMrHJiKJyN1K0YKFe8P9sH7EXC4UT/ybWCAckkcP+5YssGaGdO+QESDif6TFEUX2ASzg2Fs5EtR2IgXNVzpW7FQIwHNjsrFM5G38K/Hm1LvxD9IT1XGJGr6lbC4US/KYoyGAgHtrrg6aXnioGQawUDkkng/nPFlg1bOJwsfxf9NQIoU1W1wgXPLXUrBsIlPRctHC5RwuFEP7mqbkF6rugnPRRuCM4NhbORuhUD4ar3ZzVoC3VGO/u5hUfIBnJdsKUepOeKfmoTCueqSWDZHd9PMgncf65a+g6y/F30n9StMBw9FG4sTgyFs9G3lK5CwuFE/0jPFUY0EVinqqrJBc+9GsjSj1IRoq+k5wojkroVRpSs/9dpoXA2qqruAuqRcLh+kUngfnDxpx4gy99F/7lqywa0hsMNctHzC+MaA+xwQSicjfRc0V+u7LlSt6K/XFa3+tEp+Ug4nOgjRVGi0ULhNrtoCNJzRX+58lpBwuFEf03BNaFwNtJz+0n+svfPMKBWVdUyFz2/LH8X/eWyDy/0fyAkHE70hys/dAPZKif6QV/JOALnh8LZrAeGSjic6AfpucKIXBUKZyN1K/rLle/PytHC4Ua44vmFocm1gkHJJHD/uHLLBmhnTvkg4XCiD/RQuIm4JhTORrYcif5wdc+VuhX9MR7IU1W10RVProfDrUPC4UTfSc8VRuTqul0JjNOPsBKiVxRFiQfCcE0onI30XNEfru65Urf9JJPA/ePKLRttw+Fk+bvoi5HAbheFwtlI3Yr+cGnPBfKABEVRolw4BmE8rq5bkJ4r+khRlHC0ULgNLhyG1K3oD1e/P6sBCpFwONE32bh2Sz1IzxV9pO9Id/V1ruyO7yeZBO4fVy99B1n+LvpO6lYYjr6iZgxaOJtL6FtLVyPhcKJvpOcKI5qI60LhbNYAIyUcTvSR9FxhRFK3wohSABUodtUAVFXdjRYON9RVYzAqmQTuI/2Thsm4vlnL8nfRV67esgFaOFy4oiiDXTwOYRxjgO0uDIWzkZ4r+sodeq7Uregrl9etHg63GQmHE72kh8INwnWhcDbSc0Vfubznos1rTNSPDhSiN7KBFS5ewQ7Sc/tFJoH7LgOocWEonE0OMEWWv4s+cPWWDQmHE/3h8rrVyVY50WuKogSjhaysdfFQ1gPpiqKEuXgcwjik5wojysa1oXA2Ureir1zec/WjAvcg4XCi91xetzrpuf0gk8B95w5bNgB2AgqQ7OqBCPenf7I7AdeGwtnIliPRF+7Sc6VuRV+4NBTORt/Svx4JhxO9Jz1XGJG71O1KYKyEw4ne0EPhQoBtrh4L0nNF37hLz5W67QeZBO47d9iyYVtRKcvfRW+NBHapqlrp6oEgdSv6xi16Llo4XLy+5VSInrhL3YL0XNFLeihcGq4NhbORuhV94RY9Vz+6agcSDid6xx1C4Wyk54pe0Xeiu0XPRcLh+kUmgfvOXZa+gyx/F70ndSsMR1GUAGAsLgyFs9G3mK5CwuFE70jPFUY0CVjr4lA4GwmHE30hPVcYkdStMKJUwAqUuHogejhcLTDM1WMxEpkE7gM3CoWzkeXvorfcZcsGwFYgTMLhRC+MAbapqlrn6oHopOeK3nKnnit1K3rLbepWP0plM9rRKkJ0SVGUGCAO14fC2UjPFb3lNj0X7chACYcTveFOK9hBem6fySRw32QAVaqq7nH1QHQrkOXvonfcZcuG7SgTadaiN9ymbnWyVU70SA+Fy0RbyegO1gNDJBxO9IL0XGFEk4GVqqpaXT0QndSt6C236bl6ONxuJBxO9Mxt6lYnPbePZBK4b9xpywZAsf7fFJeOQrg1/RPdibhHKJyNbDkSveFuPVfqVvTGBGCTqqpNrh4ItITDrUPb6i9Ed6TnCiNyt7pdhYTDiR4oipIABAPbXTyUtqTnit5wt54rddtHMgncN+60ZUNWVIreygJKVVWtcvVA2pC6Fb3hVj0XbavpYAmHEz1wt7oF6bmiB3ooXCruEQpnI3UresOtem6bcLgxrh6LcGvZQK4bbakH6bmiB21C4dym56KNZbLsju89mQTuG3db+g6y/F30TOpWGI4eCjcGNwiFs9HD4VYi4XCie9JzhRFNAtaoqmp29UDaWAOM0I9YEaIr0nOFEUndCiNKBcy4QSicjaqqZUANEg7XazIJ3EuKovjgfp96gCx/Fz1zty0bANuAUEVR4l09EOG2xgJb3SgUzkZ6ruiJO/ZcqVvRE7erWz0cLg8JhxNdUBQlFi0ULt/VY9mP9FzRE7fruUg4nOjZFNwrFM5Gem4fyCRw72UAlaqq7nX1QPaTg4TDie653YcX+j8cucinzaJrble3OtkqJ7qkr1gcDqx19Vj2swFI07f8C9EZ6bnCiNwtFM5G6lb0xO16rqqqlWjhcCNdPBThvtyubnXSc/tAJoF7zx23bIAWDmdFwuFEJxRF8UMLKXKnUDgb2XIkuuOuPVfqVnRnArDRXULhbPRwuLVoIaFCdEZ6rjAid63bVcAY/WgrIdpRFCURCMK9QuFspOeK7rhrz5W67QOZBO49d9yy0TYcTpa/i85kASVuFgpnI3UruuOWPRctHG6Qoigxrh6IcEvuWrcgPVd0QVGUCLRz/ja6eiydkLoV3XHLnquHw21HwuFE57Jxzy31ID1XdEHfee6WPRfZHd8nMgnce+669B1k+bvomtStMBx95cxo3CgUzkbfcroKCYcTnZOeK4zIHUPhbNYCmRIOJ7ogPVcYkdStMKI0wKSqqtuEwtmoqroHqEY7wlX0QCaBe0EPhZuM+zZrWf4uuuKuWzZAC4cLURQlwdUDEW5nLFCgqmq9qwfSBem5oivu3HOlbkVX3LZu9XC4TUg4nNiPHgoXg/uFwtlIzxVdcduei3aE4AQJhxOdcOe6Bem5vSaTwL0zHKhww1A4mxxgiix/F51w1y0bbY8ykWYt9ue2dauTrXKiA0VRQtCuF9a5eixdkHA40RXpucKIsnHPUDgbqVvRFbftuXo43C60IwWFaMtt61YnPbeXZBK4d9x5ywZACWBBO89NCKAlFG48sNLVY+mGTAKLzrh7z5W6FZ1xy1A4G32r/1q0rf9CtCU9VxiRu9ftKiQcTuxHD4ULBHa4eizdkJ4rOuPuPVfqtpdkErh33Lrg9RWVK5BPPkR77hwKZyN1Kzrj1j0XLRwuTsLhxH7cvW5Beq7Yjx4Kl4x7hsLZSN2Kzrh1z1VVtQ7YinbElRA27hwKZyM9V7Sj7zh3656LNrbJ+lGuohvyAvXOFNz7/BOQTz5ER1K3wnAURQnETUPhbPStpyuR2hXtSc8VRjQZ9w2Fs1kLDJdwOLEf6bnCiKRuhRENAZrdMRTORg+Hq0LC4Xokk8A90D9JmIR7f+oB0qxFR+7+aR3AdiBIwuFEG+4eCmcjPVfszwg9V+pW7M/t61Y/YmUT2pErQthC4aKBLa4eSw+k54r9uX3PRcLhREdGqFuQntsrMgncM1so3D5XD6QHK4BsCYcTbbh9s5ZwONEJt69bnSTQihZ6KFwG7hsKZ7MBSNGPABACpOcKY3L3UDgbqVuxP7fvufpRgiVIOJxo5fZ1q5Oe2wsyCdwzI2zZQF+abwbSXD0W4Xp6KNwEtE9y3Z0keYq2DNFzkboV7U0ENrhrKJyNhMOJTkjPFUZklLpdhYTDCZ2iKElAAO4dCmcjPVe0ZZSeK3XbCzIJ3DOjfOoBsqJStBoF7FRVtdrVA+kFqVvRllF6bj4Qq29JFcIodQvSc4VOUZRIIAntqAV3J3Ur2jJEz9WPtpJwOGFjhFA4G+m5AjBMKJyNhMP1grw4PTNKwYMsfxetpG6F4eihcKOA1a4eS0/0Lai5aKFKQkjPFUY0CfcPhbOxhcOFuHogwi1IzxVGJHUrjGgI0KSqaqmrB9ITVVX3AhVIOFy3ZBK4GwYKhbOR5e/CJhtjbNkAbUtUkKIoia4eiHC5scAWA4TC2UjPFTZG6rlSt8LGMHWrH7WyEQmH83qKosRhjFA4G+m5wsYwPRdYiRYO5+fqgQiXM1LdgvTcHskkcPcygXIDhMLZ5CDhcEIzBYN8eCHhcKINw9StTupWoChKKMYIhbPZiITDCY30XGFE2UCuAULhbKRuhY1heq6Ew4k2DFO3Oum5PZBJ4O4ZacuGLRzOhITDeTX9E9vxaJ/gGoU0awEG67lI3QrNBLRQuGZXD6Q39K3/a5BwOCE9VxiT0ep2FTBaP/JKeCk9FM4fKHT1WPpAeq4A4/VcqdseyCRw94y29B208cryd+82CigySCicjdStAOP13HwgRsLhvJ7R6hak53o9g4XC2UjdCjBYz9WPuCpAwuG8XTawwiChcDbSc72cwULhbCQcrgfywnTPaEvfQT75EFK3woCMFApno29FXYnUrreTniuMaDKw2iChcDbrgAwJh/N60nOFEUndCiNKBxqNEApn0yYcbrirx+KuZBK4C21C4XJdPZY+kmYtjPZpHWjhcIESDufVxqGFwjW4eiB9JD1XGLHnSt0Kw9WthMMJPRQuEm1lrZFIzxWG67loCx3GSzicVzNi3YL03G7JJHDXMoG9BgqFs5FwOGGobXLQEg63AmnW3sxwdauTuvVieijcMIwTCmezEUiWcDivJj1XGJHRQuFspG69WJst9YbquXo4XDESDufNDFe3Oum53ZBJ4K4ZccuGLRyuGRji6rEI5zNoKJxNDnLulDczZM9F6tbbTQTWGyUUzqZNONxkV49FuIz0XGFERq3b1Ug4nDdLAvyAIlcPpB+k53o3o/ZcqdtuyCRw14y69B1k+bs3G40WClfj6oH0g9StdzNqz90CREs4nNcyat2C9FyvpYfCJWKsUDgbqVvvZsieK+FwXi8byDFYKJyN9FwvZdBQOJscYJKEw3VOXpSuGXXpO8jyd28mdSsMR1GUILStZoYJhbPRt6TmIrXrraTnCiOaDKxSVdXi6oH0g4TDeTfpucKIpG6FEaUD9aqq7nL1QPpKP9K1HAmH65RMAnfCwKFwNrL83XsZdcsGQCEQoChKkqsHIpxuHJBvwFA4G+m53svIPVfq1nsZtm71cLgNaEexCC+iKMogjBkKZyM913sZtueiHTE4QcLhvJKR6xak53ZJJoE7NwItFK7c1QPpJwmH815G3bJhC4eTLUfeybB1q5O69UJ6KNxQYL2rx9JPm4Ak/WgA4V2k5wojsoXCGXFLPUjdeiWDb6lHVdVqYCcwytVjEU5n2LrVSc/tgkwCd87IWzZQVbUUaETC4byKoij+aCsqjRgKZyNbjryToXsuUrfeaiKwzmihcDZ6ONxqtJ1PwrtIzxVGZPS6XQ2MknA4r5OENudixFA4G+m53snoPVfqtgsyCdw5oy99B1n+7o1GA4UGDYWzkbr1TkbvuQVAlKIoca4eiHAqo9ctSM/1OoqiRAEJQJ6LhzIQUrfeydA9Vw+H24K2YEN4jykYNxTORnqulzH6CnZdLjBZwuE6khekc0YveJDl795I6lYYjh4KNxJY4+qx9JceDrcSqV1vIz1XGNFkYLVBQ+Fs1gHD9CNZhPeQniuMSOpWGNFQtFC43a4eSH/p4XD7gExXj8XdyCTwfhRF8UXb4mn0Zi3L372P0bdsgBYO5yfhcF5lHLDZwKFwNtJzvY8n9FypW+9j+LrVj2BZD0xw9ViEcyiKMhgIx7ihcDbSc72P4Xsu2kKH8RIO51U8oW5Bem6nZBK4oxHAHlVVK1w9kAHKAaZIOJxXMfQ2OWgXDidbjryH4etWJ3XrRRRFCQPSMW4onI2Ew3kf6bnCiIweCmcjdetF9Pfhhu+5ejhcEdrRg8I7GL5uddJzOyGTwB15wpYNVFXdBTSgvUkVHk4PhRuLsUPhbGTLkXfxiJ6L1K23mQisV1XV5OqBDIR+JMBqtCMChHeQniuMyFPqdjWQJeFwXiMZUICdrh6IHUjP9S6e0nOlbjshk8AdeUrBgyx/9ya2ULhaVw/EDqRuvYun9NwCIFJRlEGuHohwCk+pW5Ce6zUURYkG4jF2KJyN1K138Yieqx99lY+Ew3mLbIwfCmcjPddLeEgonE0OMEnC4dqTF6OjKXjG+Scgy9+9icfVrRxl4vk8IRTORg+Hy0UukL2Fx/VcVw9COMVkYJXBQ+Fs1iPhcN5Eeq4wIqlbYUTDgFojh8LZqKpaDuxFO/JV6GQSuI02oXC5Lh6Kvcjyd+/hKZ/WgXbmlC8g4XCebzyeEQpnIz3Xe3hSz5W69R4eU7dtwuEmungowsH0ULgwYKurx2In0nO9h8f0XLQjB8dJOJxX8KS6Bem5HcgkcHsjgDIPCIWzyQGyZUWlV/CYZq1vmZItR97BY+pWJ3XrBfRQuCEYPxTOZhOQoChKlKsHIhxOeq4wIk8JhbORuvUCHralHlVVa4BCJBzOG3hM3eqk5+5HJoHby8ZztmzYwuHqgaGuHotwHA8LhbORLUfewaN6LlK33mIisM7ooXA2Eg7nVaTnCiPytLpdgxYOF+TqgQiHStb/6wmhcDbSc72Dp/Vcqdv9yCRwe1PwrE89QJa/e4MxwA4PCYWzkbr1Dp7WcwuACAmH83ieVrcgPdfjtQmF2+zqsdiR1K138KieK+FwXmMKnhMKZyM918N52gp2XS4wUcLhWskL0Z6nFTzI8ndv4LF1K0eZeC59BcwIPCAUzka/0JcLZM/nsT3X1YMQDuVJoXA264F0/YgW4bmk5wojkroVRmQLhStz9UDsRQ+H24OEw7WQSWCdB4bC2cjyd8/naVs2QNs65UPrVirhecYDeaqqNrp6IHYmPdfzeWLPlbr1fB5XtxIO5/kURYnHs0LhbKTnej6P67m0hsP5u3ogwmE8sW5Bem47MgncaiSw24NC4WxygMmyotKjedQ2OZAVlV7C4+pWJ3XrwRRFCUcLhdvg6rHYWR4QL+FwHk16rjCibDxvSz1I3Xo0/X23x/Vc/ehBCYfzbB5XtzrpuW3IJHArT9yygaqqu4E6JBzOI+mfxI4BVrl4KI4gW448m0f2XKRuPd1EPCgUzkY/ImAVEg7nyaTnCiPy1LpdA4yUcDiPlQKoQLGrB+IA0nM9m6f2XKnbNmQSuJWnLn0HWf7uycYA2z0sFM5G6tazeWrP3QqEK4oy2NUDEQ7hqXUL0nM9lh4KNwjPCoWzkbr1bB7Zc/VwuM1oR2MJz5MNrPDAFewgPddj6SvYJ+OZk8C5wCT9CFivJ5PArTx16TvI8ndP5vF1K0eZeB5FUYLRDudf6+qx2Jt+wZ+L9FxP5fE919WDEA6RjeeFwtmsB4ZIOJzHkp4rjEjqVhhRBlDjSaFwNvqRr2VIOBwgk8BASyjcBDwvFM5Glr97Lk/dsgFaOBxIOJwn8tRQOBvpuZ7Lk3uu1K3n8ti61Y9mWYeEw3kcPRQuBNjm6rE4iPRcz+WxPRctHG6shMN5JE+uW5Ce20ImgTUjgV2qqla6eiAOIisqPZdHbpODduFwsuXI83hs3eqkbj2QHgqXhueFwtlsRguHi3b1QITdSc8VRuSpoXA2UrceSH+/7bE9Vz+CcAfakYTCs3hs3eqk5+pkEljjyVs20Jf01wLDXD0WYT+KogQAY/HMUDgb2XLkmTy65yJ166kmAWs9LRTORsLhPJr0XGFEnl63a4AREg7ncVIBK1Di6oE4kPRcz+TpPVfqVieTwBpPX/oOsvzdE40BtqmqWufqgTiQ1K1n8vSeuxUI07eyCs/h6XUL0nM9jqIoMUAcnhkKZyN165k8uufqR2LlIeFwnsbTV7CD9FyP4+GhcDa5wEQJh5NJYBtPX/oOsvzdE3lN3cpRJp5DD4XLRFsB45HaHGUiF8iexWt6rqsHIexqMrBSVVWrqwfiQBvQwuHCXT0QYVfSc4URSd0KI8oAqlRV3ePqgTiKHg63G+0oWK/m9ZPA+icBE/HcUDgbmZDwPJ6+ZQOgGFCBFFcPRNjNBGCTqqpNrh6Ig0nP9Tze0HOlbj2Px9ethMN5HkVREoBgYLuLh+Jo0nM9j8f3XLSjo8ZIOJxH8Ya6Bem5gEwCA2QBpaqqVrl6IA6WA0yWFZUexaO3yUHLikrZcuRZPL5udVK3HkRfYZiK54bC2WwGBkk4nEeRniuMKBvI9fAt9SB161HahMJ5dM/Vw+G2I+FwnsTj61YnPReZBAbv2LJhC4erQVvqLwxOD4Ubg2eHwtnIliPP4hU9F6lbTzMJWKOqqtnVA3GkNuFwXn+B7EGk5woj8pa6XYsWDhfs6oEIu0gFzHh2KJyN9FzP4i09V+oWmQQG71n6DrL83ZOMBbZ6eCicjdStZ/GWnrsNCJFwOI/hLXUL0nM9hqIosWihcPmuHosTSN16Fq/ouRIO53Gm4PmhcDbScz2Eoig+eM9K4FxggreHw8kksPcUPMjyd0/idXUrR5kYn77SZTjayhePJuFwHsfreq6rByHswhtC4Ww2AGkSDucxpOcKI5K6FUaUAVSqqrrX1QNxNFVVK4FdeHk4nFdPAiuK4ocWUuTpoXA2svzdc3jLlg3QtlRZ0bZYCWObAGz0glA4G+m5nsObeq7UrefwmrrVw+HWoh3dIgxMUZREIAjPD4WzkZ7rObym56IdHTVWP6JQGJs31S1Iz/XuSWC0ULgSLwiFs5FwOM/hFdvkQFZUehivqVud1K0HUBQlAu1DqI2uHouTbAbiFEWJcfVAxIBJzxVGlI33bKkHqVuPoL+/9pqeqx9JuA0Jh/MEXlO3Oq/vud4+CexNWzZQVXUPUIWEwxma/onraLwjFM5Gthx5Bq/quUjdegqvCIWz0Y8OWIl2lIAwNum5woi8rW7XAJkSDmd4aYBJVVVvCIWzkZ7rGbyt53p93coksHcVPMjyd09gC4Wrd/VAnEjq1jN4W8/dDgQripLg6oGIAfG2ugXpuYanh8LF4h2hcDZSt57Bq3qufkTWJrQjs4RxeVXd6qTnGpweCjcZ76rdXGCiN4fDySSwd51/ArL83RN4bd3KUSbGpShKCF4SCmejb2XNRXqu0Xltz3X1IMSATAZyvSQUzmYDkCrhcIYnPVcYkdStMKIMoMIbQuFs9KNgS9GOhvVKXjsJ3CYUbqWrx+JkXr/83QN427k9oIXDmZFwOCPztlA4G+m5xueNPVfq1vi8rm71I1vWIOFwhtUmFG6Hq8fiZNJzjc/rei7a0YRjJBzO0LyxbsHLe67XTgLjfaFwNrYVld78/73Red12ozbhcLLlyLi8rm51UrcGpofCpeA9oXA2+WjhcLGuHojoN+m5woi8LRTORurWwPSdil7Xc/VwuK1oRxUKY/K6utV5dc/15olAb9yygb7UvxIJhzMkRVEC8b5QOBvZcmRsXtlzkbo1uknAam8JhbORcDiPID1XGJG31u1aYLiEwxlWGtDsZaFwNtJzjc1be65X1603TwJ769J38PLl7wY3FijwslA4G6lbY/PWnrsdCNK3uArj8da6Bem5hqWv4I4Btrh6LC4gdWtsXtlz9aOyNiLhcEbllXWrk55rUF4aCmeTC0zQj4j1Ot48CeytS9/By5e/G5zX162EwxmPHgqXAaxz9Vicrc1RJnKBbExe33NdPQjRL9nASi8LhbPZiBYOF+HqgYh+kZ4rjEjqVhjRcLRQuH2uHoiz6UfCluCl4XBeOQmsz/iPR/sEwBvJhIRxeeuWDfQtVia0LVfCWCYAG7wwFM5Geq5xeW3PRerWyLy2biUczrgURUkCAvC+UDgb6bnG5bU9F+2IwtESDmdI3ly34MU91ysngYFRQLGqqtWuHoiL5ACTJRzOkLx5uxHIliOjkrqVujUcRVEigWRgk6vH4iL5QIyEwxmS9FzpuUbkraFwNlK3BqTvUPTanqsfUViAhMMZkdfWrc5re663TgJ685YNWzhcBdoWAGEQeijcKGC1q8fiQrLlyJi8uucidWtUk4A13hYKZ9MmHM4rL5ANTnqu9Fwj8va6XYcWDhfi6oGIPhkCNKmqWurqgbiQ9Fxj8vae67V1682TwN689B28ePm7gY0FtnhpKJyN1K0xeXvP3QEESjic4Xh73YL0XMNRFCUOiMY7Q+FspG6Nyat7roTDGZZX161Oeq7B6DvCJ+Hdk8ArgfHeGA7nrZPA3r70Hbx4+buBSd3qFxkSDmcciqKE4qWhcDb61lbpucYjPVfq1oiygVwvDYWz2QgkSzic4UjPlZ5rRFK3UrdGlAmUe2MonI0eDleMF4bDed0kcJtQuJWuHouLee3ydwPz9i0btnC4ZrStV8IYbKFwza4eiItJzzUer++5SN0akdfXbZtwuMmuHovoHT0Uzh8odPVYXEx6rvF4fc9FO6pwtH50oTAGqVuNV/Zcr5sERjtTtciLQ+FscoBJEg5nKLLdSCNbjoxF6lYjdWsgeihcEt4bCmezBYiWcDhDkZ6rkZ5rLNnACi8OhbORujUQfWei10+mSTicIcm1gsYre643TgDKlg1AX/pfjoTDGYKEwrUjW46MRXquRurWWCYDq701FM5GP1IgF6ldI5Geq5GeayxSt5p1QIaEwxlGOtDo5aFwNtJzjUV6rsYr69YbJ4G9/tO6Nrxy+btBjUMLhWtw9UDcgNStsUjP1RQCAfqWV+H+pG5bSc81CD0ULhJtRZa3k7o1Fum5tITDbQAmungoonekbltJzzWINqFwua4eixtYCUzwtnA4b50ElqXvGq9c/m5QUretJBzOIPRQuGF4cSicjb7FVXqucUjPbSV1axwSCtdqE5CkH+0i3FibLfXSczXSc41D6raV1K1xZAJ7vTkUzkY/InYn2o5rr+FVk8ASCteBVy5/NyjZsqHTt1w1IuFwRjARWC+hcC2k5xqH9NxWUrfGIXWr049yWY222km4tyTADyhy9UDchPRc45Ce22o1MErC4QxB6rY9r+u5XjUJDIxGC4WrcfVA3EQuMFnC4QxBthu1J1uOjEHqtj2pWwPQVw4mIqFwNgVAlH7UgHBv0nPbk55rDNlAjoTCtZC6NQAJhWtPD4fbgnaEoXBvUrfteV3P9bbJP9my0Ya+BWAf2pYA4aYURQkCspBQuLZky5ExSM9tT+rWGCYDq1RVtbh6IO5AP1pgJVK7RiA9tz3pucYgddveOmCYfqSWcF/pQL2qqrtcPRA3Ij3XGKTntud1dettk8Cy9L0jr1v+bkDjgHwJhWtH6tYYpOe2Vwj4STic25O67Uh6rptTFGUQEgq3P6lbY5Ce24Z+hNZ6YIKrxyK6JXXbkfRcNyehcJ1aCYz3pnA4b5sElqXvHXnd8ncDkrrtKAeYIuFw7ktfwTIU7Y2MoF04nPRc9yY9tyOpW/dnC4WTLfWtJBzOzcmW+i5Jz3V/UrcdSd26vxFooXDlrh6Iu9DD4YrQjo71Cl4zCazP7I9DQuH253XL3w1ILjL2o2+9akDbiiXc00QkFK4z0nPdn/TcjqRu3Z/U7X70I11Wox3xItxTEuCLhMLtT3qu+5Oe29FqIEvC4dya1G3nvKrnes0kMNrMfqGEwnWQA0yScDi3Juf2dE62HLk3qdvOSd26MUVRooAEJBRufwVApH7kgHBP0nM7Jz3XvWUDK2QFewdSt25MVrB3Tj+6MB8Jh3Nncq3QOa/qud408Sfn9nRC3wqwF21rgHAzbULh1rh6LG5Ithy5N+m5nZOjTNzbZGC1hMK1p4fD5eJFF8gGJD23c3Kt4N6kbju3HgmHc2dDkVC4rkjPdW/SczvnVXXrTZPA8mld17xq+bvBSChc16Ru3Zv03M4VoW19lXA49yR12zXpuW5KX6EdgYTCdUbq1r1Jz+1Em3C4iS4eiuic1G3XpOe6KX3n90QkFK4zK4Fx3hIO522TwLL0vXNetfzdYKRuu5YDZMuKSvejKEoY2nnNEgq3H33Lq/Rc9yU9t2tSt+4rG8iRLfWd2gQk6Ee9CDfSZku99NzOSc91X1K3XZO6dV8jgD0SCteRfmRsIV4SDucVk8CKovgjoXDd8arl7wYjWza6oG/BqkfbkiXcy0QkFK470nPdl/Tcrkndui+p2y5IOJxbS0Z7L7rT1QNxU9Jz3Zf03K6tQQuHC3L1QEQHUrfd85qe6xWTwLSGwtW6eiBuKheYKOFwbkm2G3VPthy5J6nb7knduiF9pWA8kOfiobirAiBCwuHckvTc7knPdU+ygr17UrduSF/BPhnpuZ2ScDi3JtcK3fOanustk36yZaMbEg7nnvRPUEcioXDd8ZpmbTDSc7snR5m4p8nAKgmF65w+USPhcO5Jem735FrBPUnddm89MFQ/Yku4j6FAnaqqu109EDcmPdc9Sc/tntfUrbdMAsvS956twEuWvxvIeGCzhMJ1S+rWPUnP7V4R2r+/ya4eiGhH6rZn0nPdjKIog4FwYKurx+LGpG7dk/TcbuhHaq1DwuHcjdRtz6TnuhlFUXyBSUgoXHds4XD+rh6Io3nLJLAsfe+Z13zyYSBStz3LASbLikr3oa9YGYKEwnVJX1EpPdf9SM/tmdSt+8kGcmVLfbfygHgJh3MfbULhpOd2T3qu+5G67ZnUrfsZAZSpqlrh6oG4K28Kh/P4SWB9Jn8sEgrXE2nW7ke2bPRA34ol4XDuZSKwTlVVk6sH4uak57of6bk9k7p1P1K3PZBwOLdk2wkjoXDdk57rfqTn9mwNMFLC4dyK1G3veEXP9fhJYGAMsENC4XqUA0zStwoI9yDbjXpHthy5F6nb3pG6dSOKokSjhcJtdvVY3FwBEK4fQSDcg/Tc3pGe616mIKFwvSF160ZkBXvv6EcZbkY72lC4B7lW6B2v6LneMAksjboX9K0BZUg4nFvQPzkdgYTC9YZXfGJnINJze0fC4dyLhML1goTDuSXpub0j1wruReq2d9YDQyQczm0MA2pVVS1z9UAMQHque5Ge2zteUbfeMgksS997xyuK3iDGA3mqqja6eiAGIHXrXqTn9s5OQEHC4dyF1G3vSc91E4qixANhSChcb0jduhfpub2gH621HgmHcxdSt70nPddN6Du9JyKhcL2xEhjr6eFw3jAJLEvfe28F0qzdhdRt78mKSjehKEo4WijcBlePxd3pKyql57oP6bm9J3XrPrKRLfW9ZQuHi3b1QLydfr0mPbf3pOe6D6nb3pO6dR8jgd0SCtcz/QjZHXh4OJxHTwLrM/hjgFUuHopR5OAFZ6AYhGzZ6CU9HK4WbYuWcK2JSChcX0jPdR/Sc3tP6tZ9SN32kn7UyyokHM4dpAD/z955hkdVdAH43WxJNr33AimU0HvvKkgRBPVTsXelKIpgBbGDgqhYsGBHQBGQ3qT33tN77z3b7/djw4aYBAgkJMF5n+c+sLtz586enD33zpkz50hAamMPpJkgbG7TQdjcq0cUh2s6CL2tGze9zb2pncCYHcAJoijcVXMc6CyKwzUJxHajuiG2HDUNhN7WDaG3TYCKyEAPRFG4qyUOsBfF4ZoEwubWDWFzmwbdgKMigv2qEXrbBKiIYO+KcKZdFRUpDUVxuKaBeFaoGze9zb3ZncBiy0YdqNgikIkoDteoyGQyNea/wZnGHkszQmw5ahoIm1s3jiJSmTQFuiGKwl01FY6bm/4BuZkgbG7dEM8KTQOht3VDFIdrGoQAxaIoXJ0QNrdpIGxu3bjp9fZmdwKL0Pe6c9OHvzcDRFG4uiP0tmkgbG7duLgV1r9RRyEQelt3hM1tZCqKwtkC8Y09lmaE0NumgbC5daAixdZZoEtjj+U/jtDbuiNsbiNTscO7E6IoXF04yU1eHO6/4AQWoe91Q0T3ND5Cb+vOMaCriKhsPCqKwgUiisJdNSKisskgbG7dEXrb+IiicHUnCvAUxeEaj4rnNGFz646wuY2P0Nu6I/S28WkNZEiSVNDYA2kuXFIcrl1jj6WhuGmdwDKZTAW0RxSFqys3ffh7M0Bs2agjFVuzihHF4RqTLsAZURSuzgib2/gIm1t3hN42PkJv60hFypcTiOJwjUkAYALSGnsgzQxhcxsfYXPrzmmgVUWqQ0HjIPT22ripbe5N6wTG7LmPlySptLEH0swQxeEaH7Hd6NoQW44aF6G314bQ20ZEJpO5Au6IonB1JR6wq0hJIGgchM29NoTNbVxEBPu1IfS2ERFF4a6NitSGkYjicI2JeFa4Nm5qm3szO4GFwl8DFVsFMjFvHRDcYCpWSsMQReGuBbHlqHERNvfaOIYoDteYdMVcFM7U2ANpTlQ4cI4jbG5jImzutSGeFRoXobfXxnkgsCL1luDGEwIUSZKU3dgDaYYIm9u4CJt7bdzUenuzO4FF3p5r46YOf2/idAQiRFG4a0LobeMibO61kYp5a6woDtc4CL29doTNbSRkMpk3oijctSL0tnERNvcaqEi1dQbo3MhD+a8i9PbaETa3kRBF4a6Lk0C7ihSzNx03nRNYJpOpZDKZByL/yfVwDOguk8n8Gnsg/yVkMpkvQm+vh4sRlU4ymcy+sQfzX0Emk7nIZDJPRFG4a+KS4nDC5t5AZDKZlUwm80HY3Ovhot76iBRSN46KZwWxpf7aiQI8ZDKZb0U6GMENQCaT2clkMmeEzb0exLNCIyDmZ9fNRb31kMlk1o09mP8KFem62iGKwl0TFcXhEoAOFQvvNxU3nRMY6AGswqz0A2UyWatGHk+zQiaTjQEUmOV4XiaTKRt5SP8ldgKDgWyZTPZE4w6leVExsXgRKAK+A+5q1AH9t3gO+Ag4C8wTzqC6IZPJXsIczXcn8FsjD+e/hA9wGLMzzU8mk/Vr5PE0K2QyWS+gJWb57cNc7ElwY/gJuBuIkclkMxp7MM2JirQ7H2MuVvQ+MLVxR/SfYhzwPWAEnpXJZG6NO5zmhUwmexTIAwYCext5OP8ZKp5pzwM9K17f2bgjal7IZLJg4FbMqQ7/APo07oj+U7yL+R53RiaTvd/Yg2luyGSydzDPbZ8DPmzk4dQ7N6MT+DjmKvX5wBNAVuMOp9mRDLyEOU/i2YrtR4Ibwz5gAPAY5rzMgqunBOhf8e8wzLIU3Bj2Yl68sAMCK6qvC66eEmA05omd0NsbRxrmNBw+mO95KY07nGZHKuaFNxdADSQ27nD+U+zFbC9GAGWNPJZmRUXktA/gjPm+JWzujWMf5uezgop/ixp1NM2PdOApzM+6+xt5LP8ZKp5pT2B2Ak/DPE8WXD3ZwMNADmYZHmnc4fynuDg/CwduypQGDYwCcyqNm3J+dtM5gSVJKsccuu0FTBDh73VDkqSTwHTAGvNNT3Dj2IlZb3+SJGltI4+lWSFJkgG4B3M0mhUQ07gj+k9xAPAF3DAvYAjqxjeYI1KDgC2NPJb/DBXOoLOADfCwJEnCiVkHJElKASZidgCfFWkJbihbMUdhnwa+aOSxNEeexOwE9kdEVN4wJElKwBwF7A/cLYJM6oYkSZuAxYA7sLuRh/Nf4zjmZ4XXJEkSeYHrgCRJxcAEzItvKZIklTbykP5LbMNc0FALvNrIY2mOvIk5UCcU83PXTYWisQfQQPwMKCocmoI6IknSjzKZbCSworHH8h9jC7ADeK2xB9IckSQpXSaTPQkMFg6JG4ckSTqZTPYX8IUkSSKyp45IkiTJZLJHMDvSDzbycP5r/AIkVUyuBXVEkqTtMpnsc0TBkRvNYcxRKfeLe13dkSSpRCaT3QXMqAgcEdw4lgKHKxaRBHXnLaAvIO5ZN5Y/MC+8fdvYA2mOSJJ0ViaTvY45wExwg5AkKVUmk20DnhaLbnVHkiRDRfqXnyoWMW8qZOL5USAQCAQCgUAgEAgEAoFAIBAIbl5uunQQAoFAIBAIBAKBQCAQCAQCgUAgqEQ4gQUCgUAgEAgEAoFAIBAIBAKB4CbmunMCq61VGRqd3qs+BnOzYKNSZpZrdd7Xer5apcjQ6I1CplfARinPLNcZrlnOl/SToTWY/rPytlZYZWr0xuuWY00IXa4/Pb2kv/+0vtZEQ+qwlY0yQ9Ia/jPyllkrMk0afYPI0kZplaE1SP8ZWV4Ja4UsU6M31aus/+v2oT5tgVKuzjCYNP9ZWV4NCiubTL2x/JrlrZTbZBhMWiHjS1BYWWfqjZrr1mGVUp2hNwj9vRSlwiZTp792fa2xTyubDIP039Vhhcw6U2+6fn29FLVanaHRCN29iI2NTWZ5eT3rrVqVYdD8t/03Chtlpr782v01F5HbKDNM/6F5wrVgZa3INF7H3EKpts4waHRCxpegsFFl6su11yzT684JLJPJpMLtX19XHzcbTsOeQZIk2bWeL5PJpJwfn6vPId2UuD/y5XXJ+SIymUxKn3tbfQypWeIzc0u9yLEmZDKZlP3DMw3RdbPB49Gv61W+MplMSnt3YH11d1Pg+8buBtXhPqlzGqLrJskBv9kNKsvUOX0aoutmid/sA/Uua5lMJqW9N6g+u2xW+L6+q95kKpPJpE/GZtRHVzct09Z4X/fz7vtD0upzSM2e13b41tuz7bIZufUxpJuGe+e5NYjNndMntT67bFbMPuDXIDLVmHT12WWzxsZK1SAynpG7rD67bHbMc7u33mztyPSP62NINy0bfKZf97PCnLxV9TmkZs9s1zuvS6bXHQl8vTz5/hK+fe0xy2tJkpDJGmT+iclk4sVPf0cmk9GjbUvuH97Hcs3nP/kNK5kMX3dnZjw4inNxqXy6fAuSJPHWk3diNJmYuWg5DrZqBnZpzQMj+jbIGOuTZxZv5eunb7W8bljZSrz88y5kMhndQ7y4t38by2ezlu2jVKNnX0Qav0y9nVWHY0jNK6G4TMfnTw5l84kEdp9PIauwjDfv7k1bf7cGGWN9M2nZGb64t4PldUPL95XVF5DJoFugE/d087N8tmBbLCn5Gsr1Rhbd24F1ZzLZG5NHepGGD8a2JTm/nNWnMijRGpAk+Or+jg0yxvrk2cXb+erpYZbXDS3bGb/sMcs22It7+7e2fDb/72Mk5RRTWKZl0RND2XIygR92nGf6Hd0Y1M6f5JxiXvttHw5qJf3b+nH/gDaXuVLTYPIfESy6u3KcDS3bV9fGIJNBV38H7ulauWD50fYE1pzOZufU7ijkMjKKtCzanYxJgod6+qA3SizanUywmw0zb23ZIONraKKnrCTs8wmW1w0pa8lkIv7V9SAD+64BeN7T2fJZ9spTFB9OQpIkgj8cjczq5sgENWVlNJ9PCLO8bnBdXh+PDOgaYM89nT0tn608lc3hpGIkSeLD0cFYWTXMGBqKySsusOietpbXDS7Hv6PNNiHAsapN2JbAmtNZ7Hy+Bwq5jG/3pXAhsxSllYzZI0OIzSmrsAnqZmUTfj02iQe6fWF53aDylUz8efoVZECQSzd6Bv6vyudHklZwLOUvnum7jMLyDLZHf46Eib4tHsLLoRUbL8xFYygmzH0AHX1HNsgY65MV5ydzT/giy+uGlu3fUa8CMgIdu9LV5x4AjCY9f0VOB0nCXuXB7aFvcjpzDbEF+yjSpHNHq/dJKjpGbP5eSnRZ3Bb8Gt72Tf9ZYdG6p5k8erHldUPLdsmWl0EGYb7dGdT+Pstnv+yYhVZXyvnkvbx05y9kFiSw++xyjCYd4/u+TJBHO5bvfZ9ybTHtgwbSs9XoBhljQ7IyegoTwj63vG5oWa+PN+txgH1XOnveY/nsVPZKkooPI0kSo4M/xErW/J4VHnnwYX785SfL64aUZXJyMu++9Q5anbbKNQHenj2HFcuWc/LcaRQKBZ8v/IyzZ86iVCqZt+AjrK2teevN2RQXFTNk2BDG3jmuQcbYUKx7ehGjF0+2vG7o59stLy9BBvh2D6P9fZUL3Ttm/YKuVEvy3vPc+ctLxP9ziuzzSVgpFQx950GUttYNMqaG4OSkpXT+4n7L64aW6dlX/kImk+HcLRD/e3pU+TxlxVHS/jpOz2VPkfTLQQrPpFAam43v2M4ETOxF1NxNGEo0uPUPw3tkh1qu0nRY+fQnTFg8zfK6of2N66cvBpmMgO6t6HzfUMtnOz9aQUFSFprCUu78cirRW44Rt+cMRWm5jProKQqSsjj71x60JRokk4m7v3upQcYIDewETkjP4cuV2wHo0ioIf08Xvlm9k25tWqA3GrlzYDcuJKTx0a8b6NUuhMWrd9C3Qyjd2rTgl437MRpNvHj/CI6cj2P/mRiCvN0I8nZHqZRja61iRJ+OPPXBD3zz6qNXNZ6DZ2Pp3CqQR0YN4KkPfrA4gfOLSlHK5cx//j5e//pPUrLy+HbNTj554X6y8ov4af1eerYLZuzArowf3J3JH//S6E7gxOwivt58CoDOLT3wc3Xg++1n6BLshcFg5I6eoUSk5DH/76P0DPPhu22n6d3Kl67Bnvy2+wJGk8QLo7pyNDaTg1FpBLg7EujhgEohR61SMLxzC55dvI2vnr7lqsZzKDqdTi08eWhwOM8u3lbFCfz2vf0wmSQe/3IzYb4uzBhnNjRfbz5FZGoe43uHMb53GGcSc9h6OqlJOIGT8sr4Zk8SAB39HfF3tmHJ/iS6BDihN0mM6eBFZEYJn2yPo2cLZ77fl0Svli50CXDk9yOpGE0SU4YEczypgEPxBfi72BDoqkYlt0KtknNrWw8mLzvDonuvznAeTiygo58jD/TyZ/KyM1WcwC/eEgLA2+sjKdMZGdvJm7GdvNlwNpOorBKGtfGgb4grvx5Kwcep8W+GidlFfL3lNACdW3jg72bPd9vP0bWlB3qjibE9QriQmsf8v4/RK8yb77adpXcrb7oEe/Lb7giz7o7uUqG7GQS6OxDo7oBSYYWtSsltnYN47pvtfPnUsCuMxMyhmAw6tXDnwUHhPPfN9ipO4Jj0Ar56ehgfrT5KSm4x43uHoTUYLZ9Hpxcwpkcw43qG8MKSnY3uBE7KK+eb/eaIlE5+Dvg5WfPDoTQ6+ztgMEqMbu9ORGYpC3ck0iPIiSUHU+kV5ERnfwd+P5aBySQxeVAgx5OLOJRQSICLDYEuNijlVqiVVtzaxo0pf0Tw+d1X9z2PJBXR0deeiT18mPJHRBWHz8vDWpBaoLW8/nZ/KmqlnBKdAXc7Je72Kt4Y3pKlR9PrV0j1hCYpn/RvDwBg39EXlZ8TGT8cxr6LH5LeiNvodpRFZJGycBcOPQLJ+OEQDj0Dse/iT9bvx8Fowm/KAIqPpVB0OBEbf2esA12QKeXI1Upcbm1dzYl8OYqPJGPX0Qevid2JnrKyihO4YGcMYZ9PIGvZcYoOJOLUr+k70JLyNXx7wPy37+hrj5+Tih8OZ9DFzx69UWJ0OzcisspYuCuFHoEO/HAog56BDnTxt+f341kYTTBlgB/HUoo5nFiEv7MNgS7WKOUy1Eo5t7Z2qeZEvhxHkovp6GPHxO5eTFkZXcUJvDOmgM8nhLHseBYHEovo19KpQWRyLVS1Cfb4Odnww8HUSpvQweMSm+DIkgNp9GpRYROOZmCS/mUTnG0IdLWplGMbN6b8cYHP7257hZGYOZJUSEc/hwqbcKGqTbilBakFGsvrY8lFfH1vOFsu5LDxfA4TOnvxxvDgJmUTcksT2RX7DQABzp1wsfVjT9wSAl26YDIZ6OQ3hvSiCLZEfkJL1x7siV9CsFsvAp27cChpKSbJyC1hU0nMP0Zc7iFcbQNwtQ1EbqVEJVfTzvs2fj02mQe6LbrCSMzE5x0mwKkjfVo8wK/HJldxAheUp1GkzcLe2vyMtSvuG5RyNVpDCfbW7pxN30SxNhu5lRInmwbJCFMn8sqT2Jdslq2fYyecrf04kPoDAQ6dMUoGOniOJrM0gn8SFhLk1IMDKUto4dyLAIfOHE3/HRMmBgVOJrnoOAmFh3CxCcDFpkK2VmrauN/KivNTuCf88yuMxExi4RH8HDrSw3ciK85PsTiB5VZK7m77KQDLzpl38XX0GktHr7Gcy95IVlk0nbzG0clrHGnFZ4nK3d7oTuCsgkQ2HP0KgGDvzrg5+rP5+HeE+nTFaNLTq/VYknMi+Gv/x7T268Wm49/Sxr8PoT5d2XHmV0wmI2N7v0B02lEiUg7i4RSIp1MgCrkKlUJNt9DhLFr3DJNHX91O0ciUQ7T07sSwTg+xaN0zVZzADw55G5NkYuGax/Bza8Xus8t4YMjbZBUkEJV6mOzCRApLs1HIlbjYN77e/pt8TRIH0r8FwNe+I04qPw5n/ICffReMkp52bqPJKotgV8pCAh16cCjjBwIdeuJv34XjWb9jwsgAvymkFB8jsegwzjb+uFgHIpcpUcrVtHa5tZoT+XIkFx/Bx64j3b0msjJ6ShUncEzBTiaEfc7xrGUkFh2gpVO/BpHJtRIfH8/nn3wGQNfuXQkIDOTrL76ke48e6PV6Jtw9gfNnz/HBu+/Tp19fvlr0Bf3696d7zx78+P0PGE1GZrwyg0MHD7Nvz16CWgTRomULVCoVtra2jBw9ikcfeoQffv7xqsYTEBDA4u+/4ZEHH6722aw5s0lKSrK8PnzoEL/8/hvr165j9V+rsLW1JSszC5VKhY+vb73Ip74oSMzi6FcbAPDuHIyjvxvHv9uMT9dQTHojrcf2Iicimf0f/4Vfr9Yc/3YT/n3a4NM1lDO/7sBkNNH7hbGkHY0m5WAEToEeOAV6IlcpUKhVhA7vxrpnFjH668lXGImZlEOReHdqSaeHhrHumUVVnMBD3n4QyWRizWMLcWvlx755f3LHd88Ts+kYUesO0+6eAQ0io7pSlpRL/Dd7AHDq6I/a35nEJftw6hKIpDfiPaYTxZEZxHyyDZeeLUj4fi+uvYJx6hJAyu+HkYwmQqYMo+B4InmH4lH7u2Ab6IqVSo6VWoXXreGcnLyUzovuv8JIzOQfTsCpoz+BD/Tm5OSlVZzA5WkFaLOLUbnZAxD4YG8ATr+4Ap87OpG56RzanBKslHJsvB3rWVJ1Jz8xkwNfrQXAt3MITv4eHP52A37dwjDqDbQb25esC0ns+vgPAnu14dC36wnsHY5/1zCO/7oNk8nEgBcmkHI0isQD53EO9MQlyBO5UonSVkXr4T1Y+cxCJnz9wlWNJ/lQBD6dQuj+8G2sfGZhFSdwbkwqExZPY8fc5RQmZ9N+fH/aj+/PhXUHyYlMJuzWbrTs356jP23B0bdh/WENusT3/d+7UFurcHGw5Vy8eRLSr2MYL9w7nJjkTEIDvGjbwpeXHxiJTAZ92ocy6a5b+HHdXhZOm8i7z0zg+793AXBbr/bMeHAU/xw7zx0DurDhwGmORcTTrU2LKtd874e/eeWLFZbjTGyK5bO0nAL8PVzNX/wS77+rkz1BPm68+uUKEtKySc8poFyrw05tjb+nK6nZ+XQOC2TploPc/doi7h5adbWkMfjhn7OoVQqc7aw5n5wHQJ/Wvkwd2YWYjAJCvZ1p4+/KS3d0Rwb0CvPh2eGd+HnneeY/PIg5/+vLDzvOAnBLxyCmj+3OzrPJjO4WzKYTCRyPy6RrsGeVa37w12Fe/22v5TiblGP5LC2/FD9Xs7GoKQpq57lkBob7W17nFpdzKiGbTi08AHN00PfbzzChV2i9yula+elgCmqVFc62CiIyigHoHezCpMEtic0uJcTDjtbe9kwbFowM6NnCmacHBPHroRTmjQ9n1qjW/HQwGYChbdx58ZYQdkXnMrK9J5vPZ3EiuZAuAVUdBfO2xPDm3xGW41xaseWz9EINvs42APxbvEXleqYsP0NagRa10vyT/nhrDF/vTqS9b6Vx3hmVw+BW7vUtqjrz445zqFUKXOysuZBSobutfJgysguxGYWEeDvT1s+Vl+7ohkwGvVp588zwTvy88wLzHx7InP/14Yd/zgFwS8dAXrqjGzvPpZh196RZd7v8S3c/XHWE15fusxyX6m56Xgm+Fbr771XBbiFe3L9wA6cTcwj1dq72XToGubN8XyT3f7KB8b2vzpnUkPx0OB21Uo6zWsGFzFIAerVwYtKAAGJzyghxt6WNlx0vDAky622QE0/18+e3I+nMGxvGrNuD+fmweWvusNauTBsSxK6YfEaGu7MlIpcTKUV09neocs152xKYtT7WcpxLL7F8llaoxbdi4eFKwZEXMkt5uJcPT/X1Z/G+pr+1MvPnI1iplSic1ZRGZALg2DsIv+f6Ux6bizrEHds2nvi/MAhk4NAjEN+n+pL161GC544haNZwMn4+AoDL0Fb4TxtMwa5Y3Ea2JW9rJMUnUrDv4lflmkkf/UP8rI2Wo/Rc5VZ1XXoRKl+zTZH9W9gVeq3ydUKXXtRAEqlffj6SiVpphbNaQUSFLvcOcuS5/n7E5pYT4q6mjactLwzyRwb0CHTgqb6+/Ho0i7ljgpk1PIifj5jlM7SVC9MG+7MrtoCRbd3YGpnHiZRiuvjZV7nmR/8kMWtjvOU4l1Fq+Sy9SIevkwqo+vwAFvHi66QivahpbWH96XCaRY4XMi6xCQMDic0p/5dNkNEzyLHSJoyrsAmHKmxCK1emDQ1iV3Q+I8M92HIhlxPJRXT2rzoJmLctnlnrYyxHVZugu8QmXN4oTOjsxat/R7M7toC0Qu1l2zYW+xJ+QilXY6tyJr34AgAhbn0YFjaZrJIYPO1D8HFsw22tpyGTyQh27cngkKc5kPgL93T6iLHtZrMvwRxB1tZrGLe1fpHIrJ109BnF2YwtJOYfJ9Clc5Vrbrwwl1Vn3rQcqYXnLJ8VlqfjrDY7FP59P9sR8zWDgp+0vE4vukD/lo8wKORpdsYsJqskjhC3Pozv8D674hbT2BxKNctWrXQms8Qs25bOvRgYNImcsljcbUPwsmvD0BYvIENGC6ee9A94isPpvzGu9TxuD5nFobSfAWjtOoyhLaYRk7eLdu4juZCzheSiE/g7dq5yza1x81gXPctypJdUyrZIm4aT9UXZVp8+JRUexU3dwvJ6W/zH7En6Ch/7doA5AvNg6o909BpXj1K6Nrae/AGVUo2djQtJ2WbZtg3owx29ppKWF4OvaygB7m0Y33c6yGS08e/NqB7Psv3UTzxx2wIeGPI2W0/+AECX4FuY0Hc6pxN20LPVaI7FbCIm/RihPl2rXHPFng/4aftrliMx66zls7ziNNwczPe7mqJPzyTspEOQ2fHTPWwkX214jhV7P6Bb6O2k58USHtCXR2+Zy4ajTS894ZHMn1FaqVErnMksjQAgyLE3/f2eI7c8Fnd1CJ62bRjk/wIgI9ChB319n+Jo1q+MCZ7L8KBZHMkw63Erl6EM9p9GbMEu2rqNJDJvKynFJ/Cz71Llmv8kfcTG+FmWI6P0Ej3WpeOkqlmPZZhthpPKlyJd01lsu8i3Xy3G1laNi6sL586Yv1P/AQN4acZ0oqKiCGvVivD27Xj1jdeQyWT07dePqdOe5/tvv+OLxV/y4Udz+eYr88LSiJEjeO3N19m2dRvjxt/Jur/XceTwEXr0qDrHnzPrLaa/8JLlOH3q1DWN/b6J9/P8pKls37qd1JRUoqOiGTBoAJ98vpDPF356fYKpZ07+sBWlWoWNix3ZF8yO7IA+bek19Q7yYtJwDfXFvU0AfaePRyYD/95t6PHsKE79tJ3bFjzBkLcf4OQPWwEIvqULfadPIGHHaVqN7knMpmOkH4vBp2vV+f6eD1aw/bWfLEfW2UTLZ8VpeTj4mR1iNe1kS9h5hqBB5qCq8Lv7s/XlJSTsPENxWl6DyOdaSPrpAHK1EqWzmuII82/LtXcwIZOGUBqbjX2IBw6tvQmddgvIwKVnS1o+PZDkXw/Sft5dtJk1hqSf9gPgMbQNYS/eSs6uKLxGdiBr8zkKTiTh3CWwyjWj5m3i/JtrLEfRucrUS5r0QtS+zkD1OUP817to8URV57m+qBwkCaWzLaVx2bj2Dib8vXEWx3ZjcmTJJpRqFWpnezLPm/UmqG84/afeSW5MGu6hfni2DWTQ9LtBJiOwV1v6PncHR3/ewphPnmX4249wZMkmAFrd2o3BL99D7I5TtB3Tm8iNR0g5FoVf16pz/H/eX8rGV7+3HBln4y2fFaXl4uRn9rf8W7b+3Vvz273vkn46Frcw8z1vx4fL2LdoDd4dKgN0Yv85SejQzvUuq0tp0EhgCXhwRF9CA8x5nPecjERtbZ5EmUzmXMSXPqQ62NpU6+Pi5/qK6Du9wYhCLifQy42Pf9vI1zOrRgFr9QY0Or3ltclksvzfx92ZmGTzZN30r1zIU+8x54R9fsFvBHm7o7ZWUabRkZVfhK+7M0u3HGD24+Po1qYFj7/3Pbf2al93gdQjkgT3D2prcUztvZCKWmX+c178bhdv5gAOalW1Pi5+rjeaLP8q5FYEujuwYO0xvnyyaiSlzmBEozdYXl8qQx8XO2IzCszvm6rnmV51KIb37jevKOeVaHhr+QE+fGAAcisrTCaJN3/fx+PDOuDn5lDt3MZAkiTu7eFPiIcdAPtj81Ar5QBc/HqX/qwdbKr/lC5+bqiQr8EooZBbEeCi5tN/4vjsnqo6pDOY0Boq9fVS+Xo7WhOXU1bl+hdxVCv5/H8d+HJXPKdTi+ga6Mz0W0O5pU0hfxxPY/LglkRllhDiYYe8CWxTliR4YGAbQip0d1/EJbprsQuV7e1tatDdigaGf+lugLsDn6w9wRdPDqnSXqc3otVXRvBeKkNvFztiMworxlZVuAei0lj6wkhWH45hy6lERnatGkG5fF8kb0zoRZdgT57+ehu3dKx6A77RSMC93bwIcbcFYH9cgWVhoCa9tbeWV+uj0i5Iln8VchkBzjZ8ujOZz+5qXaW9zvhvva38zMdRRWxuebX3a8LbQYWzWoHeKFGqM16+cRNAkiS8/tcVdYj5Rl+4Px4rtfLih9Xayx1qisI3y1qquL9JBiMyhRxrf2dSP9tN6Kfjq15TZ0DSGi55o/I6Km8HyuPM+R+lfwu7op0uvQhrv6YTpXo5JEnif129CHFXA7A/vtCiyzWVMnCoQZcvKruhQpcNFbrs72zNZ7tT+XR81UmIziChNVR2ful1vB1UxFl0ueoALr5ML9Lh1wR2W1yKJMG93b3/ZRMu3stqsLfWNdzLKj7XV+iV3mQy2wQXaz7dmcRn/9oZoDNIaPU138t8HFXE5tQsx39zaxs3bm3jxp8nMi1/+6aHRK+g+/C0N+/IicnZh0qhrvjk4verFLCNsvozzkWbazSZf9tGyYDcSoGrbQDboj7l/q5VI/wMJh16U6VTXJIqZe1k4012aVzF+5XyLdJkkVeWyF9n3yQp/wQRWTtwsvFGrXTGKOnRGUvxdmyNWumE3EqBrGFjRK4Sie4+9+Jua5ZtXP5+lFYXZXvxO1fK1lph/+8OKmUr6S3/yq0UuNgEsDPxU+5u+1mV9kZJh6EW2Tpa+5BTFlvtfYCUolOczV7P7SGzLO/d0nI6bdxu4UTGHwwIfI4NMW/R2+8RnG2qLu41BpIkMaTjA/i6mm3guaS9WCtsKz6rLlu16ir01mjWWw+nAFYdWMCkUV9Vaa83atEbKmVrukSGrg4+pOfFVnv/Ivsv/MXDw94HYOOxb3jtnpWUlOez+uAntPTuhJ11hd42wfQFkiTR1et/uKvNehxfeKkeV7eB1vKaZG3GKF1iI2QKnK392Z36GeNDqzoRDZIOg3SJHl9yHQeVN7nlF21EVVlfbFekS8fJuvH19N9IEjz82COEtWoFwK6du1DbmvX24ny/il/BsXqUosWvoNdb/lUoFAS1CGLu+x/w/U8/VGmv02rRaCp3qFzqV6gLI0ePYuToUfz2y6/Y2tpSVlaGs7MzCoWiyaXokiSJjg8MwTXUvFiQtPccioq0ClINkwmVg7p6JxVyNlU83xoNRqwUcpwCPDiwYBWjvppUpblRq8egrfTfSJfI2cHHlbzY9GrvX+TCX/sZ9r45Gjt0eDdCh3fj3PLdKNRN53lMkiQC7u2FfYg5+C13fwzyCt9MTTJVOlT3iV2U6cU5g6lCpuoAV2I+3U6nz+6t0tykM2CsItNKO2Dj7UhpXE6197VZRZQl5XH+zdUUnEwie0ckHkNak7bqBD5jO1ec64TCyQYrhfzKET43AEmS6DrxFtxDzTYrfu9ZlOqL+lqhL5fYBWsH22p9XLQLxgo/l1FvQK6Q4xzoye4FfzL+q+ertDfoDBi0lUEfl8rQwceV3Ji0au8DJO4/x8Rlb3B21T6iNh+l7aheDHnlXlrd1o2Ty3cy4PnxZEcm4xbmi5W8hnlNPdKgTuCnxg3m3SV/4+HiQJC3G21bVN/u4GhnwxuLV3Jrz3aW9x4Z3Z8XPvkNk8nEtPvM6SC2HDrLgTMx3NrT7DgbN7AriRk5ONlXNTxvP1V10nwpfdqH8Mf2w5yJTWZgF7Mj49m5P/LVzEeY891qcotKaB3ojaerI4/fMYiXPl2K0STx5mNjKSotZ96v63Gyt6VdcOPfGJ+4pQPvrzyEh5OaQHdH2vi5VmvjaKti9rL9DLvEMfXQ4HCm/7QLo0ni+Yp0EFtPJXIwKt3iwBrTI4TE7CIc/5VHZ/Y9tRf06R3mw8oDUZxNymFAuFk+k7/dzqInh5FfosFKhqW/p77agoNaxdt/HODxYR3YfDKB4/GZaPQGBrcLYEyPkOuWz/XyaN9A5m6OwcNeRYCrmjZe1ScXjjYK3l4fydDWldG1D/TyZ+ZfFzBKEpMHt+R4UgHbInI4lFDAkIp2ozt4kZRXjuNFh1EFb4xsVet4erVwYdXJDM6lXaB/iPlv/fyKs3x6T3veWBOBhESp1sijfQNZsj+JmKxSCsr1TBtmluXyY2lM7Nn4egvw+LD2fPDXYTwcbQlwd6Ctv0u1Ng5qFW8tP8CwDpfqblum/7wHo8nE86O6WHT3QFQ6wzoEAHBH92CSatDdWff0rnU8vcN8+OtgDGeTcujftkJ3v/uHRU8MJcjdkek/7SanqJz3J/bjnzPJLN8XhZ21Ege1kiHtA5i/9hhOttaEBzR+GpPHevkyd1sC7vYqAlysaeNpV62Ng42CtzfFMTSsUu4Te/gwc000JgkmDQzgeHIR2yPzOJRYyNBWZn0b1d6dpHwNjv9a8HhjeHCt4+kZ5MSq09mcS4+hX7AzAC+sjGThhNZ8fyCVo8lFvLY2mteHB/NUP3/eWBeL0STx3IAAkvLKmbstgZicckI9bJnQuWkVhfV5tBdJc7ej9LDHOsAZ29ae1drIHW1IeGczLkMqV5A9H+hO3CtrwSjhN7k/xcdSyN8WRdGhREs7t1HhaJPzUThWfQgMer32ApYOPQPJWXWGuHMZOPU3/01iXlhF6MI7cR4YQtxr65AMJjzu6lQfX7/BebSXD3O3J+FhryTA2ZrWntUf2hxt5LyzOYEhl+jyA909eWVtHEYJJvc3p4PYFpXPocQiS7tR4W4k52ur6fLrtwXVOp6egQ6sOpPDuYw4+gebHekvrIph4Z2hDAxx5rV1cRhMEnd18qiPr19vPNbbj7nb4s02wdmGNl412ARrBW9vjLX81uESm2CSmFSRDmJ7ZC6HEi61CR4124QRV7AJp7I4l15Cv2Dz3+OFPyNYeFebajZh04UcTiYXIyHx3piwSpuQXdZkbEL/lo+x4cJcHKzdcbUNwMex+jZ/tdKBv8/Noa1n5cJ6n6AH+ePUDEySkWFhU0jMP8b5zG3E5R6krad562An39HklSWhVlZ1ZIxp92at42np1otjqatILTxLmLt54X3p8anc3/UzHu9ljjj+9dgk2ngOwcnGm1VnXscoGRkaNgk320BWnXmDC5nbCPe6ulRgDUlv/8fYGjcXe5U7LjYBeNlVl62NwoGNMW/Tyq1yu2VPn4msjpqJJJkYGDiJ5KLjROZuJ6HwkKVde89R5GmSsFFUle2IkDdqHU+QU09OZa4iPeocIS5m2f554QXGtvqAn888RFu321gT9Qqjw97mSNpvZJfFUG4oZEjQC+xOXERK0QkMJi2hLgNp7zmqPkR0zQzv+gTL97yHk50nHk4BBLhXT+dia+3Irztm0zm4Um+HdXqY77a8hEkyMrbX80SnHeV47BYiUg5Y2vVqfQfZhUnYWleV7cTBb9U6ntb+vdl3fiUJWWdoH2SOQPtywySeG/kFJeX5yGRWlv66BN/CN5teQG/QMqjDfbT268WP21/lRNxWugbfWus1GotePo+yPWku9koPnK0D8LRtXa2NjdyRzQnvEOZSGcDQ3fMB1sa9goSR/n6TSSk+RlT+NhKLDlnahbuNIl+bXE2Pbwt6vdbxBDr05EzOKjLizhHs1B+AVTEvcGfoQkKcB7Iu7jVMkoFOHnfVx9evV56Z/CxvvTkbL08vgloEEd6+XbU2To5OvPryK9x2+3DLe48/+QSTn5mE0WTk5Zkvc+jgYTZu2Mi+PfsYPsLcbvxd40mIT8DJqepC+XtzP6h1PEVFRbw241WOHj7Cok8/Z/LzU3ji0cf57ofv+fLzLzh04CDPT5rKe3Pf5+/Vf3P08BEkSWLhok/RaDS8OHUamzZs4vaRt9eThOqHrk8MZ897y7HzdMIpwAP3tgHV2lg72rJj9q8ED+tsea/Tw8PY8tJ3SEYTvZ43p4OI3XKclAMRlnat7+hFYVI21o5Vn+kGvzWx1vH4927N+ZX7yDqTQNAAsx9ow6QvGfnFc5TnlyCzkln6O7N0J+nHY0GSuGXeY7X2eaNp8Wg/IuduwtrDAXWACw5tqqeuUTracOHttXgMrbzXBTzQm7MzV5rTQUweSsHxRLK2XSDvUDweQ8ztvEd3pDwpD6VjVZ9Ymzdqz4/u0qslqatOUHQuFbf+5sXAU88vo9On99L9R3OA5clJS/EYYrZXObuj6fqteS7tNao9599YQ/b2CDyHXV0qsIak15Mj2f7eUuw9nHEO9MSzbfWALBtHWzbP+pGwWyp3qHR/6DbWvvg1kslE/+fHk3I0iqitx0g8eN7SLvyOPuQnZmLjWPXZ+ba3Hqp1PIG923Lmz91knI0neIA5Qn3VpM+484upOAd5sfbFryjNKeT2D57g0LcbyIlOobyg1BypDJxY+g/dHmr4e5ns35Fvde5AJpMKtzfs9pvfNu3H18OFId3MipaSlcdb363i5YkjaR3k06DXvhachj1z3RUQc358rj6HVCu/74nA19WOQe3MBj41t5i3/zjIS3d0o5VvdcdyU8L9kS/rrapn+tzanSvXw/Kjqfg42TAwzOwgTC3Q8N7GKF4YGkyrGhzLjYHPzC31XnX2IjKZTMr+4ZmG6Jrf90bg62LPoHbmNCOpuSW88+dBXhzTjVa+1R3LjYXHo1/Xq3xlMpmU9u7A+uquRpYfz8DH0ZqBoWY5phZoeH9LPC8MDiKsBmdcY+P7xu4G1eE+qXMaomsAspafQOXjiPNA84KNNrWQpA+24vf8IGzDbrxD8YDf7AaVZeqc2hcTG4LlJ7LwcVQxMMQZgNRCLR9sTeL5QX6EeTSuLvvNPtAgFb/T3ht05YZ1pHabEEhYDYtNjYXv67vqTaYymUz6ZGzGlRvWA4eTluFk40trT7Ntzy9PZd3597it1Qt4OdS+QNzYTFvjfd3Pu+8PSbtyw+vgWPpynKx9CHU1y7ZAk8rmuPcZEvQCnnaNn8bp37y2w7fenm2XzcitjyHVys4zS3Fz8KVDi8EA5BSl8vuutxnf90X83Ko7Oxube+e5NYjNndOn4VNYnchajqPKhxBnsx4XalPZmvQBg/yex8O28fR49gG/BpGpxtRwqZV+/vFn/Pz9GHaLeeEiOTmZN159nVdff5U2bRvfqfVvbKxUDSLjGbnL6rPLapxZuhMHXzdaDDY7wopSc9j19u/0fXE8bq0bPzBpntu99WZrR6Z/XB9DuiIpy49g4+OE+0Dzc0F5agGR760n9IVbsG/V+AvjtbHBZ/p1PyvMyVtVn0Oqxoml/+Do60bIYHOwTGFKDlvf/oVBL92FR+vqCyGNzWzXO69Pps3BCdzcaE5O4OZMc3ACNweaqxO4udAcncDNjebsBG5q3GxO4KZMc3ICNxeaqxO4udIcnMDNjebkBG5uNGcncFOlOTqBmxvN1Qnc1GmOTuDmSnNwAjc3rtcJ3LSS0NSRJ99fUm99FZdpeO3LP5j+2e/sOx1NYkYOA595nxc++Y11e0/W23WaOs8s3lpvfe08m8y9C9bxy67zAOw+n8LzS3bw4Kcb2X3eXLBvxDsreenHnXy24US9XbepM2nZmXrra1dULhOXHOe3w5UFED/fEc/ray6w9JL3/is8u3h7vfaXXVROj5lLicssJDW3hOeX7Kz3azR1Jv8RUW997YrJ54Gfz/DbUXNurz2x+by0KopHfzvH3th8tAYTM9dEM3NNNL0+PkSxxnCFHm8+oqesrLe+CnbHcuHBX8lceqze+mxOTFkZXW997Y4t4MFfL7D0mLmuQGqhlpdWx1S5xqyN8Tz/VwyvrYurt+s2dSavuFBvfe2OyWfm6ige+vkMJ1PMBQwlSeKRX87y25GmV6Soofj12KQrN7pK9sR9z/KTL/HdoYco1GQSlb2HZSde5PtDjxCdvZfC8gx+P/48vxx9lh0xX125w2bOivNXV43+aojO28WPpx7gSNpvAOSXJ7PoyHBWR87kfPZGdMYylp+fxOrIVziY+lO9Xbeps2jd0/XW177zK/li/bMs3vg8+SUZlGmLmL/qIb7eOJVVB+bX23WaEyujp9RbX7EFu1kbN5PfLjxEaslJAPakLmJ9/Bscy/y93q7T1HnkwYfrra9tW7cxdtQdLPnO7KMwmUxMfmYSU56dzC8//Wxpt3D+J/V63abOuqcX1VtfCTvPsPml7/jzvrmkH49FW1TGqofms3Hq1xyY/99xFJ6ctLTe+kpYspczL/3B0YeXoMksQl+s4dhjP3L6xRXELNwGwP7Rn3Nmxp/EfrGj3q7b1Fn59Cf11teZlXv469lPWTP1C4oz8jCZTKx98SvWvvQ1J3//p96uc7U0aE7gmvhj+2H2norGXm3Ne8/exeJVO0jKyMXF0Y7pE29n4uyvaR/sR0RiOv07teJEZCKj+nWifYg/z3z4I2MGdCG3sIQ3Hxtr6XPuz+spKitHo9Xz/rN38dxHP+Pt5sSQbm25pUf1fEE18dP6vUhIGIwmvF3NuZUcbK3RaPUE+bhf4ezG5c8DUeyPTMPOWsk79/Xj262nScopxtXehmljuvHw5xsJ93cjKi2ffm38OBGfxe1dW9I+wI3nvt3O6G7B5JVoeG1CL0ufH605QnG5Do3OyDv39WPK9//g7WzL4HYBDO1QPddKTQxuH4BCbkV8lrno1sBwfwaG+1NYquXdlQcZGO6PnY0SvdGEv2vTSI1QG3+dSOdAXD521nLeGt2a7/clkZxfjoutkueHBvPYzycJ97EnKrOUviEunEwuYkQ7T9r5ODBlxRlGtvMir0zHK8Mrt2wt2BZLscaAxmDirdGtmfbHWbwcrBkY5mbJH3wlBrVyQymXEZ9rLhp3OrWIUymFeDla41FjIaqmx8oD0Wb9tVHy9r19+XbbGZJzinGxt2Ha6K488vlmwgNciUzLp18bX07EZzOySwvaBbox6dsdjOrWkrxiDa9N6Gnp8+M1Ryku11OuN/DOvX2Z+v0OvJ3tGNTOn6Edrn5Lx1ebTjG6m7kYnJ+bPZ8+NrhZOIH/OpXFwfgC7KzlzL49hO8PpJJSoMFFrWTq4EAeX3qOtl52RGeX0aelMydTihkR7kY7b3um/hnByHbu5JXqmXlrZSG8Bf8kUqw1ojEYeev2EKb9FYmXgzWDQp0ZHHZ1qWMGhbqgtJIRn2cuDDUgxIUBIS4Ulhv4cGs8/UNcmDs2jGKNAa3BVGPBxaZI9qrTFB1IQG6nosXsEaQvOYg2uQCFiy3+UwcS+cQybNt6UR6VjWOfFpScSsV1RFtsw72IeX4Vbre3RZ9XRuDMytyLyZ/sxFisxaTR02L2CGJeXI3KywHngSE4Dw69zGgqcR4YgkxhhSah6VRIvhKrTmdzIKEIO5Wc2SNasORgOskFWlxsFUwd6M8TyyJp62VLVHY5fVo4ciq1hBFtXQn3suX5VTHc3taNvDI9M4dV3qc+2Zls1l29idkjWvDi6hi8HMwpIgaHOl/VuAaGOKOwkpGQZy4Q4+dkzfxxoVWcwG/fbv69zPg7tv4E0gD8dSqTg/GFZhmPrLAP+RqzjAcH8fhv52jrbUd0Vhl9WjpxMrWYEW3daedTYR/C3c0yrmIfEiwyfmtkCNNWRuLlqGJQqMtV24eBoS4MDHXhTFoxx5OL6ezvyK9H0i0pKJoyx1L+IjbnANYKW8a2n8PuuO/IL0vGVuXKra2eZ8nhx/B1bEtGcRSh7n1Jzj9Je5/b8XMK57fjU+noM5JSXR4j275i6XNz5Hw0+mL0Rg3j2s/h9xMv4GjjRWvPQbTxHHKZ0VQyIPhxAM6kbyQu9yBd/MbSymMA5fpC1p9/n7s6zeW+ruaiUj8fbZq7dk5m/kV8wUGs5XaMDJ3N/pTvKdCkYKtwYXCLqfx65nG87duSVRpNsEsfUopOEu4+Ah/7dvxxYSrtPEZSqs/jtuCZlj63xy9AayxGb9IwKvQt/rwwDUdrL0JdBtHKbfBVjSvMdRBymZLc8sqq4NYKe/QmDS7qQLLLYvCxb8fAwOdYcX4KPXzuR26lvEyPjcfe839yIXk/Nko7Hhz6DpuOfUN2YTL2ahfu7PMi81c9RKBHO1JzIwkP7Eds+gl6hI0k0LM9X65/jp6tRlNcnsv/BlTmol257yPKdMXoDeU8OORdvto4BRd7bzq2GEynlkMvM5pKjsduYdKoL0nJjWTH6V/p3XosLb06Mr7vdBauaTr5Pq/E6exVJBQdQCW3Y0SL2RxMX0KBNhlbhQsD/aeyLPIJvGzbkl0eRQvHPqSWnKKt6wi8bMNZFfM8bd1up0yfx7DASh3emfyJRYdHtJjN6pgXcVB5EeI8kFDnwVc1rhDngYQ4DyS99CzJxceQISet5BT2Ki/sVU177rts6e/s2bUHe3t75s6fx5eff0FiQiKubq7MfO0V/jfhbtp36EDEhQsMHDSIo0ePcsfYO+jQqSOPP/wY4+4cR05ODnPefdvS53tvv0txUTHl5eXMW/ARTz72BL4+vgy7dRi3Dr+6HaO33HoLSqWS2Bjzc8D+ffvp0q0rjz/5OI8+9AgPPvwQJ0+cwMW1aadcBDj/516S919AaWfD0Hce5Ng3myhMzkbtYk+fF+9k1UPz8WgXSG5kKoH9wkk/EUvYyB54tg9k/XNf0mp0T8pzixnw+v8sfe77aCW64jIM5XqGvPsgG6d8hb23Cy0Gd6Tl0KurWdFicAdaDO5A5ul40o5Go3JQ49WxJX2nj2fNYwsbSBr1Q+pfx8k7EIfCTkXbt+4g4fu9lCfnoXSxI/T5YRx77Eccwn0oicrErW8IBSeT8R7RHod2vpya8jveIzugyyul9SuVeaSjF2zBUKzFqNHT9q07OD1tOTZejrgPbGXJ6XslWjxmzg+esfEs+YficAj3xamDP6HTbuH4U+bFC7mdCklvRO3nXO9yqU9O/7mbhH3nUNnZMOLdRzn4zXoKkrKwdXVg4It3seyhD/EKb0F2ZDIt+rcn9XgMbUf1xKt9S1Y9+yltR/emLK+IYa9X5qneOW852uJy9BotI959jNWTP8fB25WQwZ0IHdblqsYVufko47+aSnZkCsd/3U6Lfu3w6RRC94dvY+UzC+l839XdF+uLGx4JnJqdT3hLX567yzzZNZpMqG1UrN930lzJWJKY+eAoBndti7ebEwunTWTD/tMAtA/x57kJwyjTaMkrKgUgIiGNQ+djsVdbo9HpycovRqPVcUuPdgzpWpnXJzu/iFe+WFHlKC2vrJwak5LJ6P5dePup8Sz4fTOBXm6sX/AS85+/j/lLN95ACdWdtPxS2vq58uxws/E0miRsVQo2HI9HkiQkCV4e24OB7fzxcrZl/iOD2HTC/NDaPsCdZ4Z3olSrJ7/EPLmNTM3jSHQGdtZKtHoD2UVlaHQGhnUItORfBcguKuP13/ZWOUovqUJZG5+uP87Egea/zZ/Tx/DZ40NZfyyOcl3TjfpLL9TQxtuep/qbCwcZTRJqpZxN57LMMgZeHBbCgDA3PB2smTc+nM3nswBo5+PAUwOCKNMZyS8zyycys4QjiWYnnVZvIrtYS7nexJDW7pb8wQA5JVre/DuiylF2GTnFZZcS7uPAe2Pbsvxo89ielpZfQht/V565rSNQIVuVgo0X9ReJ6Xd0Z1C4P15Odsx/eCAbTyQA0C7AjWdu60iZrqr+Ho7JxM5GgVZvNOuv3sDQDgEMaleZgyq7qJzXl+6rclyqv6sOxTC0QwBqVfNwRF5KepGW1l52PNnX/Hs1SRX6eiHXYhNeHBLEgBAXvBxUzBsbxuYL5m2j4T72PNnXnzK9yaKvUVmlHE0uwk5lZdbXEh0avYkhYWYn7kVySnTMWh9b5SjTGa843kW7k7mvW2WRhNWnsxjboWkV2LocuvQibNt44vNkRaoDo4SVWkne5ogKeUv4TxuE04BglF4OBM8dQ95mc4S1XbgXPk/2wVSmQ59vXswpi8qi+GgycjsVJq0BfU4JJo0e58GhOA2oLLqlzykhftbGKoexrHlvoUwv0tHG05Yn+5jz/RslUCut2ByRZ5HltEH+DAh2wstBydwxwWyOMDu5w73seLKPD2W6S3W3jKPJxdip5GgNJnJK9Gj0JgaHOjMguLIATE6Jnlkb46scV6O7l5KUr+HJ5ZHYKJr2Jqv0wgr70K/CPpgk1EorNp3PtcjYbB+c8XKwZt7YVpX2wdt83qX3s6isUo4mFVlkbLYPRoaEudZgH2KqHP+W8Q8HU5mxOpq+LZ1IyC2nRGussZhdU6OgPA1vx9YMCjFHQUqSCaXclrPpGy3Ptre1folWHgNxtPbi7s4fcTZjEwC+juEMCnkKraGMUl0+ABlFkSTkHcVaYYfBpKVYm43eqKGN51BaeVSmAyrWZrPqzJtVDq2htMrYdMZyTqWtq1KYblvU5/QKut/y+lTaOkLcmmaqliJNOl52renn/yRQIVsrNedzNplli8TQFi8S6joAB5UX41rP40LOZgC87cPpF/AkemMZZXqzbDNLo0gqOopKbpZtiS4bg0lDK9chhLoOsFy3RJfDuuhZVQ6dsazWcTrb+PNkl5WMbfUBOxM/w8e+PRpDEeuj36JYl2m5flMkrziNAPc2jOxhXggwSSZUSjVHozdYZDyh38u0DxqEs50XTw5fwNEY89woyLMdI7s/g0ZXRkm5+Tum5EQQlXYYG6UdOoOWwrJs9IZyOrccSoegynQ1haXZ/LT9tSqHRlepvyO6PcGSbTM4ELGavOJ03Bz9iMs4ydw/76N9UPNJe1OkS8fTtg19fCp0GCNKKzUReZstNneQ/zSCnQbgoPRiTPBcIvLMOuxlF04fnyfRmSp1OKssiuTiS3RYn4PepCHUeTDBTpfosD6HjfGzqhz/1uFDGT/yd+wMWjr2JVcTh5dtOKNavsvJrBU3SDrXRmpKKu3at2PKtKkAGI1G1LZq1q752yLT12e9wZBhw/D28eaLr79k7Zq1AHTs2JEpL0ylrLSMvDzz88OF8+c5eOAgdvZ2aDQaMjMz0ZSXc+uI2xh6S6XtzMrKYvoLL1U5SktLqw/QMs4UAgLM91orKyt0Oh2//PgLDz1Se2GppkJxWh7ubQLo8cxIACSTCaVaRfSGoxX3Nej38gSCBrXHzsuZ4QueJGbjUQA82wXR/ZmR6Mo0lOeXAJATkULa4SiUdjYYtDrKsgsxlOtpObQzQYM6WK5bml3I9td+qnLoSjVVxnb8u81snvYtgf3a4ejnRsbJOP68by5Bg9rfIOlcG5r0QhzaeNPiKfN9XDKakKtVZG46a5Fp2Iu34j6gFdaejnSYdxeZm88B4NjOl5ZPDcRYpkNXMV8ojswg/0iiZb6gyy7GVK7HY0hr3AdWBp5pc4o5/+aaKoehTFtlbMZyPRnrTuMxtA1qX2cKTyVz5MHvcR9gzj/cc9lTdPzkf2RsOIOx/Mr+nsaiKC0Xz7aB9Hl2DGCWsVJtTcSGQ5Y58KAZ9xA8qBMOXi6M+eQZIjYcBsCrfQv6PDsGXamWsvxiALIikkk+HInKzgaDRk9JdgF6jY7QYV0IHtzRct2S7AI2vvp9leNSve315EjWz/iWs6v2UZSWQ1FaLk5+5sU2mVWDZOG7LDd8pvLCvcPp2S6YFxcuJTU7n7jULN549A5cHe0xmkzY2lhjZWWFSiHHXm2DSqlApzc7vfQGY5V/ASSgU2ggrz48hi9efogAL1e+mPEwadn5vLm4clutJIFGp69yXIqvuzPO9rbY2VijNxiRycx/DFsbFdebN7mhmTqyCz3CvJn+0y7S8kqIzyrk1Qm9cLW3MTuErRVYWclQyeXY2yhRKeToLsrSaP7XYDRZ+pOAji08mHlnTz59fCj+bg58/vhQ0vJKmb38QGU7CTR6Q5XjSny85igDwv3o3MITwCJnB7Wqyt+1qTFpcEu6BznzyurzpBVoSMgtY+bwUFxslRVOd3mFjGXYWytQKazQGc16o6/412C8RI8k6ODnyPRbQ1lwdzv8XdQsvLsd6YUa3l4fVdlMAq3BVOW4HN5ONjipzZEmqibuiLjIlJFd6Bnqzcs/7zHrb2Yhr47victF/VUpsbKSoVRYWfRXXyGHi3qrN/xLf4PcmTGuB58+Nhh/Nwc+e3wIafklvLX8YGU7SUKrN1Y5LuVobCarD8ey5VQSP/xzruEFUY9MGhBAj0BHXvk7mrRCLfG5Gmbc0gIXWwVGExZ9Vcpl2KnkqBRW1fRUf4m+ShJ08LFn+rAWLBjfGn9nGz4Z35r0Ii3vbKrc+i5RN30F+GRHIv2Cnejo52B5b3dsAYOaQfTfRfye649D90DiX12HNq2Q8oQ8AmcMQ+miBqMJua0KmZUVMqUcuZ0KK5UCqULfJL1ZRqZLZSWBfXsfAl4aQuj8cVj7ORO6YBy69CIS39lS2UwCSWuocjR3nuvvR/dAB15dF09aoZaEvHJmDAvERa28ou7qTRU6bKpqD9r72PPSkADmjwvFz9maBeNCSS/S8c6WxEvaSWgNVY+6Euhiw7f/a43BJJFd0nSd8ZMGBprtw5qoCvtQzoxbW1a3Dwor7Kwvyviiza3FPvj+yz5MaFNhHyqjoiVAqzdVOf7No739+PXh9nx/IJV9cQVEZ5exeF8Kf53KbNLpYYaFTaalaw/+ODWTgvI0ckrjGdl2JrYqF0ySEZXCFiuZFQorJdYKexRWKowm83OoUTJ/L5NU+VwqIeHv1IERbV7m3i6f4GLrz31dF1KoSePvc5WRa0igN2mrHJeiM5bz1+nXGdX2VWyU5h1XWyIXEObRnwBnc+DAuYytZJfE069l09yaPDBoEkFOPVgT9QqFmjRyy+O5NXgGtsoK2crNspXLlFjL7cyyrZClqUK2RunSZ34JX/sO3NJyOhPaLMDZxp8JbT6hUJvOxph3LmklYTBpqxyX4+LzrNJKjSSBlcyK24JfYVTYW9goHLFTuV32/Mbkjl5TaeXXk++3vExucSoZ+XH8b8Br2KtdMUlGrJUV+itXolbZo5CrMBjNNs5orJCx6VL9hRZeHbm7/0yeuf0z3B39eeb2ReQWp/HrztmXtJPQG7RVjksJ8+3BE7fNp2OLIXi7BHMibhv9w+9m5l2/cz5pb8MLpp7o7/ccgQ7dWRf/KoXaNPLKExgWOAO10gUTVXVYVU2HK/41XWr/JHzs2zMk4CXGhc7H2dqPcaELKNKlsyXxnUuaSRgkbZXj3/TyfoQH2v7CwYzvcVR5Y6MwL47KZaoGk0d98NKM6fTu24epz00mJSWF2JhY3npnDq5ubhiNRmzt7Mz+BJUKewcHVCoVOr1ZZ/V6fZV/wTwn6NylM2++NYvF339DYGAg3yz5jtSUVF59+ZUq7TQaTZXjcvj6+ZGSYg7KMZlMnDt7joyMdKY8O5mjh49w7GjTTdfVa+od+PVsxZaXv6c4NZf8uAwGvPY/1K72ZsearTUyKyvkSgUqezVylQJjRaCSsWJOb6oyt5Lw6tiC/jPv5vbPnsHR353bFz1DcVouO2f/ekkzCYNWX+X4N12fGM5dy1/h2Dcbidt2gvC7+3PX7zNJ2nu+IUVy3YRMGoJL9xace2Ul5WkFlCXk0GrmCFQutmaHcMV8wUolR2FvjZVKgUlXVZbSv/wlTh38aDV9OB0X3IPa34WOC/+HJr2QC2+vq2wkgVGrr3JcirFcz7k3VtH61dtR2NuQ9c8FfCd0pccvj5O7Pwa45B7noMZ0FT6fxqL/1DsJ7NmGddMXU5iaQ158OsNevx+1iwMmowmVrdnXKFeZ9VahUmKs+D4Xv5fJcMn3kyR8OgUz5JV7Gff5ZJz9PRi3aApFablsmXVJqicJDFpdleNSAnq0Zsz8Zwgd2hnXYF8cfFwpSjMHWEimG+9rvOEhbkvW7iY2JQu1jQpne1vyikr5dPkWMnILrnhuZGI6s79dhbVKiaujOTKkbQtfdAYDr3/1J8XlGl57eAwf/boBo8lEtzYtLOd6ujqycNrEWnqGB2/vx9vfr0YmkzFxRB8Ono3h100H0Or03DW0x/V+7Qblxx3niM0oQG2twMnOmrwSDZ9vOEFGQe0rkxeJTMvn7RUHsFbKcbG3AaCNnys6g5E3f99HiUbPzDt7sODvYxhNJroGV1ae9HSyZf4jg2vt+0R8Fl9tPkVxuQ4fFzsKSrWsORJDen4JSTnFjO8Vxoyfd2OjUuDtYoejbdNNX/DzwWTicspQK+U42yrIL9Pz5a54MosvPykAiMoq4b2NUVgrrHCxNTtoW3vbozeYeGtdJCVaAy/fGsrCf+IwmiS6BFRGp3lURBXXxsmUQhbvSaRYa8Db0Zqhrd1ZcyqDN/6OoKOf4/V/8RvATzvOE5tZgFpl1t/8Ui2LNp4ks6D2iJuLRKbl8/YfB7FRKqror95gYtay/ZRo9MwY150Fa49jMkl0aelpOdfTyZaPH669wNp79/cDYN7qI9zVpxXF5TrmrDjI8fgsFm85zdO3daz13Mbml8NpxOWWm/VVXaGve5LJLL6yYyoqq5T3NsdX1VcvO3RGiTkbYynRGpk+LIiFO5MwmaCzf6Xz1sNexdyxtVepPpVazOL9KZRojPg4WlNQbmDt2WwyinSkFGh5oIcPkZmlhLqrsWqEVdFrJfOXI5TH5WKlVqJwVmPILyP1q73oMoqveG5ZdDaJ72/FylqB0sUWANvWnpj0RhLmbMJYqiPgpSGkfLoLjBL2XSqj2VUe9gTPHVNr3yWnUkn/5gDGEi0qb0dchjZeBfGr5ZcjmRW6a1Whuwa+2ptKxlXobnR2Ge9vTayqu5626I0m5mxKoFRn5KUhAXy6KwWjBF38KtMQedirmDsmuLauOZVawjcH0inRGvF2VNEjwIF3tyZxIrWE7w6k878uHry/LQkZIJOBu13T3PYNFfYhpxy1qsI+lNfBPmSX8d7mOKyVNdiHDf+2D1J1+zCuVa19/3Uqk6OJRZRojUzs4U2vFs5M7OHD/rgC4nPLm3R6mP0JP5NdEotKrkatdKJUl88/0V9QpMm84rmZxVGsPfcuCitr7FTmxS8fxzYYTDrWnJ2NxlDKiDYvszXyE0yYCHLubDnXwcaDezrNq7XvVWfepKA8ja3Rn9HVbyyFmkxOpv5NgSaDvLJk2ngOYsXJ6bTzGc6as28xtv1b1yuKeudQ6i/klsehlKtRK50p0+ezO+lLirRXlm1WaRSbYt9DYWWNrdIsWy+71hglHRti5qA1lDCs5XR2JC5Ekkz4O3a2nOug8mBc67m19p1SdIq9yYvRGktwtPbBRm7PsYzlGExaOnmNA2BV5AyMJh3tPUZhJZNflxwakm0nfyQ9LxaVQo2dtTMl5fmsPfQ5+SVXLoyYkhvJ0l1zUCpssFebZRzg3gaDUc8v/7xJua6Eu/vPZNWB+ZhMJkJ8ulrOdbbz5Inhtef2PRaziRNxW9EZNDwy7AO0+jJ+2PYKZxN342LvXet5TY0jmRU6bKVGrXCmzJDP3tSvKNZdWb7ZZdFsTXy/ig572rbGaNKzKWEOOmMpQwJeYlfKp0gY8bOv3Jpsr/JgTHDtOnw6exXJxUfRGovp5jWRQIeenMlZw4b4WfjYd6j1vKbAt4u/JSYqGltbW1xcXMjNy2XBR/NJT7tyockLFy7wxiuvYWNjg2tFWobwdu3Q6/TMfGkGxcXFvDlnFh+++wFGo5HuPSv9AF5eXiz6+ota+z529BiffbKQoqJi/Px8uXX4bSxfuozTJ08xeMgQunTtwm/LzfmWH3nwYbp173adkmg4Tv64jbzYdBRqFdbOdpTnl3Do87WUZFx5V0NuZAq75ixFYaNE7WJ+1nJvE4BRb+CfN39BV1JO/5l3c2D+KkwmEz5dQyzn2nk6M3z+E7X2ff7PvaQejkJXXE7Hh4bi0tKbba/8QOLus9h7N+0AkqSfD1Aal41crULprEaXX0bclzvQZBZd8dySqEwi3luPlbUSVcV8waG1Nya9kQtv/Y2hREvYy8OJWbgNyWjCuUtlWjRrDwc6zLur1r7Pv7kaTWoBMZ9tx3dcZ1x6tOT866vI2RONjZcj+mIN5179C7mNEmtvR5SO6usXRgNx5MfN5MakoVRbo3a2pyyvmL2fraL4KvQ2OzKFrXN+RmGtwtbF/Pzq2TYQo87Apjd+QFdSzpBX7mXX/D+QjCb8ulbOq+w9nRmz4Nla+47cdISorccwaHTc/sETqOxtOPPnbjLOxhM84MbbW9n1RrnKZDKpcPvX9TSc2knMyOHnDfuq5AJuqjgNe+a6KyDm/PhcfQ6pRpKyi/h194UquYCbE+6PfFlvVT3T515drqe6kpxXzm9HUqrkAm5q+MzcUu9VZy8ik8mk7B8aJs9gUk4Rv+6KqJILuCni8ejX9SpfmUwmpb1bu/P6ekjO17D0aHqVXJ/NAd83djeoDvdJndMQXaNJzidr6fEquYAbmwN+sxtUlqlzGmbLeXK+hqXHs6rkAm7q+M0+0CAVv9Pea5ht0s3BPvi+vqveZCqTyaRPxl7ZSXM95JUlcTBxaZVcwM2JaWu8r/t59/0hV3baXAv55ckcSV9aJRdwc+C1Hb719my7bEZufQypVrIKk9hx+pcquYCbMvfOc2sQmzunT8OkX8vXJHM8a2mVXMBNjdkH/BpEphpTw+ymSUhI4IfvllTJBdzUsbFSNYiMZ+Quq88uLRQmZXH6lx1VcgE3Rea53VtvtnZk+sf1MaRaKUvOI/m3Q1VyATcnNvhMv+5nhTl5DVv0Lz8pi+O/bK2SC7gpM9v1zuuSafPYLw4Eebs3CwdwcyLQw7HZOoCbCwGu6ibtAG7OBLo7NnkHcHMjwMWmSTt4bjZsAlyalAO4ORPgYtOsHMDNEWEf6h9X28Bm6wBu6rioA5qdA7i54ekU2GwcwM0RF5uAJu0Abo60aNGiWTmAmyNOgZ5N3gHc3LANcG22DuDmgkugZ7NxANcHzcYJLBAIBAKBQCAQCAQCgUAgEAgEgrpzQxOs7TkZSVxqNg+P6l9vffZ94h0+fXEiPcKDkSSJ+2d9xYjeHS3X+HzFVk7HJPPta49VO/fDn9eRkpVPUWk5X814mJiUTD5ZtpkQP89ao44/X7GVpMxcbFRK3nl6Aqt3HWPp5oOseH9SvX2nurD3QirxWYU8OKj2vLF1ZeAby1jwyGB8XOyYt/oIWoORr5++FYAvNp4kOacYG5Wct/7Xl93nU/hjfxQmSeLDBwbgoK5aSOCvg9HsPp9CVmEZb97dm7b+bvSc+RsD2vrRpaUnD9Qw7n/3GZNRwLQlO9j21t0o5I27brE/No/43DIm9vSvtz6HfrKfj8aH4+1kw/ytsWiNJr6415wbZvQXhwj3cSDIVc2kwdUjsC6kF/PFrgQk4PURYfg621T5PLVAU63PDzdHAzS5COV9EanEZRbx4KC29dbnoDdXMP+RQfg42/HJuuPkl2oY3M6fBweF8/rSfRSUarGzUTLvwQHVzv1553lOJ+YQk1HAnT1DeXhIVV1NzS1h3pqj6PRGvnraHM35/kpzddGmEqG8P66A+LxyJnb3qbc+h31+jHnjwvB2UDH/n0R0RolFd7cho0jLh1sT0BlNdPR14Jn+5t/I3th83lwfy46p3av1dSathN+OppNRpGNid29ubVO9cM7Xe1NILtBgo7DizRHBrDubzYoTmfz8YNOqAFy4Px5NQh5e99dffrdTt3xJ8Nwx2HfxI/7V9SAD+64BeN7TuVrb5I//IWf1WTrvnIRMUT33pC6jiMT3tgLg+0w/VD4OxE7/G+9HeuI8MKRa+8Zkf3whCXka7u/mdeXGV8ktX55i7phgvB1VLNiRjM4o8fkEsw18fX0cJ1JK2PC0Oc/3j4cyOJdRSk6pnk/Hh+L4r1y0pVojb2yIB2BcB3cGhTpXu97X+9JIKdBio7TijduCWHculxUns/h5Yv3Zt+vlYq7diT3q0T58dpR541rh7ajis51JFJQbGBjqwsQePsxaH0NhuQFblZwP7qh+/1l1KoufD6cxbUgQA2soDGkySbz6dzQyGXQNcOSert7M3Wr+OzRmhHJMzj5yShPoHVR/ESTzdgzhnk4fE+jShT9Pv4IMCHLpRs/AqtFVRpOeZSdfBEnCwcaTO9rNYlPExxSUp6ExFHFfl0+xVthVOScqew/HU1ZRqstjYPAThHn0Z0fMV+SVJaOU23BHu1lEZe/hWPKfmDAxocMHZJXEsPzkS7w4aDNyq8bJzRyXv5/c8nh6+NafnD87PIxxrefh79iFv6NeBWQEOnalq8891drGFxzkTNbfyGRyhge/ikpuW+Xz6Lxd7Ev+lnYet9PDdyL55cn8dvYJ/B0708p1MOEet7MuehblhkJUclvGtvqAM1nrOJ6xgoc7/lxv3+laOJe0l8z8eIZ2erDe+pzxwwCeHL6AEJ9uLNnyMsggzLc7g9rfV6Wdwajnm03PIyHhbOfFxMFvsf/CKs4l7SGvOI1Hb52Hp1PVXR5J2efZcvx7JCSScy7w9sSNvPnrcII82uPpHMQdvaZyMPJvdp35nZl3/V5v3+l6iC/cT54mgW5e99dbn1+euoUxwXPxs+/C+niz/gbYd6WzZ3X9PZW9kqTiw0iSxOjgD7GSVZ1PxRbs5nzeeoq06QwOeBE/+87sSV1EkS4Db9t2dPO6j+1J5vzCTSU6edfOXcTGxPLYE9Xn+NdK905d+WLxV/Tq3QtJkrj7zgmMHD2ae++/l2efegZHB0c6dOzAU88+Xe3cd956m+joaBwdHHlzzizS09L4eO5HhISGXjb6eOH8Tzh58iQ//vITf/25kl9++oVVa1fX23e6XpL2niM/PpNODw6ttz5/GDCD4QueROVgw765f2LtbEf4hH4E9m9XpZ1Rb2DT89+AJGHn5czgtyZy9OsNZJ9PwkqpYOg7D6L8V00hyWRiy8tLkAG+3cNof98g9ry3HKDRI5Rz98dQFp9LwMT624m9Z+h82n90F3JbFYk/7AMJSiIz6PP35CrtTHojZ15aARJYezrQ5s3RaDIKiV20A0wmAh/qQ3FEBrl7YtBmF9H6tZE4tKn+fHjutb8oOJ5Ev00vAFAcmUHST/tBJiNk8lA0mUWcmf4H/TY9j1UN85GGJn7vWfLi0un20K311ueX/V9gzCfP4tctjPXTF4NMRkD3VnS+r/pvImH/Oc6t3ofMyopbZj2IprCUvZ/+hWQy0f2R4XiFB1VpH7frNGdW7qEsr4heT40ieKB5LrJv0RoyzsQxYfE0zq3Zz8nf/2Hisjfq7TvVq0dt2sKlFJdpKC7T8OKnSzkfn8rb369m0kc/E51cmVftt0372XHsAgBPvr8EgLk/r+f1r//kpU9/x2i8ckX5i7QL9qNHuLmYyw/r9jCkW+UE61R0Ei6OdrWdyisPjWbR9Afp3T6EiMQ0OoUFMufJO2ttr9MbiEhM56Mp96K2VpGQnsO4Qd1wsm+45NjTf9pFcbmO4nIdL/+8iwspubz350Ge//4fotMrE1z/vieCXeeSAXhmsXmi/9GaI8xato8ZP+/GaLp6mYYHuNE91Bs/Nwc+fbxSuXUGI1FpeXz44ABsVAoSs4tYtjeCzx4fwv/6tWbt0dhqfY3vHcbCx4bw6vhebD2dBICdjRKN3kigR82Fy/7dZ5eWnrQPdL/q8V8PM1edp0RroERr4JVV54nIKOaDTdG8+Mc5YrIrC+0tP5rK7mhzrrVJy84AsGBbLHPWRfLq6gsY61Dlsa2PA92CnPFztmHB3VVvfnYqOXqjCb9/OXcv8sOBZOaNb8uMW0P47XBKtc9r6nNij/pzYNeFl3/eTUm5jpJyHTN+3s2FlDzeW3mI55fsJCa9wNLu970R7Dpn/i7PLt4OwMdrjjJ72QFm/LKnbrrs70b3EC/83Oz5+OGBfPvMrZxOzAHMhd++eHIohlrszUODw/n44YEEeTgytmd1J5mfmz2fPja4ynsPDGpz1WOrD175O9qir6/+HU1EZikfbo3nxb8iicmuLKy3/HgGu2PM9mLyHxEALPgnkTkb43h1bXTd9NXbjm4BjmbdGt/a8r63ozULJ7Tmy3vacirVXBCtVGtkT2wB7Xzsa+yrg689H94RxsIJrTiUWFjtc53BZC5UNzoUG6UVSXnljG7vUc0pdyOIe2UtxhItxhItca+uoywik6QPtxHz0mrKY3Is7bKWn6Bgt9kWRk9ZCUDyJztJeHszca+tQ6rD/c22rRcO3QIoPpKMXUcfgj8cQ+Ge6nYWIGD6UBy6B9TaV9bvx/GfNpjgeXeQ8dNhlK52uA6/sfp6kVfWxlGiNVKiNfLqujgiMsv4cFsSL62OISan3NJu+YksdscWADBlpXnx6pOdyby9OYHX1sXVTW+9bOkW4ICfkzXzx4VW+ey9UcGEuFfexx/p5c1HY0Po08KxxmJpGyPyuLOjO5/cGcqfp7Krfa4zmIjOLuPdUS2xUViRlK9hdDs3nG6w3r6yJqrSPqypsA9brmAfVpifzRb8k8CcjbG8+vc12IdAs32YO64VX/2vLWfSzPbg7VGhfHpXGwzGmvu7s5Mn93arvdjTkaRCOvo58OHYVuyJNY/3/npc4KqNP07NQKMvQaMv4c9TM0kvusD68x+w7MQ0sopjLO0OJy0jMms3AL8eMwcGbI6cz5qzb/HnqVcwScYa+68JX8dwWrh2Iz7vMAFOHbm70zyisvdUaye3UjKx6+dM7LaIwvJ0AEa0mc69XRbQ0rUnGcWR1c5p5TGAe7ss4P6un3IqbS0Gk47M4igmdHwfpdyG3NJEjiQt594uC+kZ8D9Opa0l0KUzfk7tqvVVn6yOfAWtoQStoYQ1ka+SURLBlrgPWRnxItlllXI+lr6cmDyznFecN09yt8cvYEPMHNZEvVonOXvbtyXQqRuJhUfwc+jIuNYfEpNfXc4AB1N/RC5TYi23Q2FV/ZkszHUQAwOr1vOwVtijN2lwUZudmKPD3ubutp9iMpkrj3fwHI1a0fBFfL/b8hLl2mLKtcV8v2U6ydkXWLb7Xb7eOJW03GhLu51nlnImYScAi9aZnVwr933ELztmsWTry5hMVy/bQI9wwnx7EJlyiJbenXjitvmcSdhVrZ1CruS5UV8yadRX5Bab80P3bXsnTw5fwJCOD5CaG1Vj308Mn0+v1mPoH24udmSjtMNg0uHuaH7G7d36DuxsblyB5LVxr6A1lqA1lrAu7lUyyyLYlvQhq2NeIqe8Un9PZC0ntsCsvyujpwCwM/kTNie8zbq41+qkv162bQlw6EZy8RF87DoyJvhDYgtr1t+Ygp2MCZ6Lv0NXEosOVPs8xHkgY4LnMjRwBqklp0grOUNaySkA7FXmOVhXz/pzYF8NU56dTHFxMcXFxUx9bgrnzp5l1utv8vTjTxEVWWnbfv7xZ7ZvM88XHnnwYQDee/tdXpk+k+cnTcVovHqZtu/YgV69zQ667775jmG33AJAxIUIOnXqxOdfLeLAgQPo9fpq5yqVSlQqFWq1GmdnZzp36cK7H75/2eudPHECl4ridADj75qAk7PTZc6of7a89B3a4nK0xeVsmf492ReS2f3uMjZO/Zrc6Mqc7WeW7iRhp3nOu+7pRQDs+2glO2b9wtaXl2Cqw/OtR3ggvj3CiNt+ip5T7mD4/Cc4+dP2au3kSgWjvnyOUV9NojjNPO9OOxrN7Z89Q8itXYhad7jaOSmHIvHu1JLb5j9Bwi7zeDs+OOTqBXIdnJ25EkOJBkOJhrOvrKQ4Ip3IDzZy+sUVlMRkVY5x+RFydptt28lJSwGIXrCFC3PWcvbVv+o0V3Bo64NLtyAc2/rQYd5deI/uiO/4LtXaWSnldPrsPjp9fh/l6eY5V8K3e5CrlUgSqNzt8R3XhQ7z76bVjBFkbY+o8Xrt3h+PXUhlofWEb/dgZaNEJrdC6aTGuXMAju18r3r8dWXtS19b9HXd9MVknk9k27u/snrKInKiK/Ozn1j6D7E7zTZs5dOfALBz3nI2v/kj615ejKkOdsGrXRABPVqTfCgCn04hjJn/DLG7TtfY9sj3m7BSKFDZ26CwUXLw67Uo1SokScLOo/pvO3hQR8Z+NolxX0zl/N9m25x+Og5bl8q5c7uxfbFxqt2neS3U64xkVL9ObNh3CgmJkX07oVIo0OoN2KmtWbP7BL3a1Vx5OyIhjUPnY+nRtiUFxWWk5RQQ4GU2iL9vOcip6CRL2z4dQhk7sGu1PuLSsikp19ClVRBxqdno9AaWbj7Ah5PuYdfxmpUYILewhJNRSTw97srGIa+oFHdnc6VAXw9n0rLzaeHTsM7JkV1bsvFEPEhwe5eWKBVytAYjttZK1h2No0dozROmyNQ8jkRn0C3Ei8JSLen5pfi7mce+fF8EpxMqnRa9W/kwpseVI8HySjS4OZgnyr4u9qTllQAgk8nwc7XncHTNBVRMJonvt5/h5bHmSMB/3robo0ni0UWbGRhes0PySn02FCPCPdl0LgsJGB7uiVJuhc5gwlYlZ/2ZTHoEOdd4XmRmCUcSC+gW6ERhuYH0Qg3+LmZZrTiWxpnUyqqfvVq6MLrD1UW4LXuiGzKZjKd+PcXwdp6olVVX1Mr1RmxVCnydrUgv1F7Td75R3N6lJRtPmKOWR3RpiUphhU5vwtZawdpjcfQMrVkmkal5HI7JpHuIJwVl/9blSItTFyp0uXvNdmbnuWQ+XnOMJ281R0QnZhfx1oqD+Djb1tgeoKhMiyRJONtZ19qmMRnR1o3NF3KRJBje1g2lXIbWIGGrkrPhXA7dA2ueAEVllXI0uYiu/g4UlutJL9LiX7HQ8MeJTM6klVja9mrhyKh2Hlc9pvXnsunT0nyTW7Q7iaf6+TF7Q1yt7decyWLx3lRm317975ZfrsfNzry7wNfRmvQiHYGujVOR1nVEW/I2R4AErsPbIFPKMemMyG1V5G44X6sDtiwqi+KjyTh09cdQWI4uowhrP2cAsv84ScmZdEtbx15BuI2qvjtCl16EytcsU5nVtdUA0KYXYe3riJWNEpPGcE191Bcj2rqyOSLPbGfbuKKUy9AZzXZ2w/lcugc41HheVFYZR5OLK/TWQEaRDj9n82/zj5PZnEm/RG+DHBkVXj2y/GqZuTaO5Pyao5HTC3V09jU/nMlq+HPklxtws1MC4OOoMuutS80LeQ3JiHD3SvsQXmEfLsr5XDbdA2ueaEZllXI0qYiuAY7m+1kV+5BR1T4EOTGqfc32YVdMHp/8k8jjfcz3+aS8ct7ZFIe347XZ07RCHb5O5nOtahJ8A9HB53bOZmxCQqK9zwjkVioMJi0quS2n0tfT0rX6LgeAjKJIEvKOEuTSlXJ9IYXl6bjYmmVxJGkFKYVnLG2D3XrRyXd0tT4Ky9NxVpsnU7LLfOeEvKO427WwvC7R5pJccJoBwY/Xes62qM/pFXQ/pbp87FTm34qzjS8FmnTL9ZzVvsTnVZ9kNwTh7iM4n7MZkGjrPhyFldIsZytbzmVtINCpZjlnlkaRVHSUAMeulBsKKdKm42xjlvPxjD9IK66UcwunXrT3HFWtjyJtGk7WF+Vcc3xMZmkk/wv/gmPpy4jJ20Urt8vPG5xt/Hmyy0p0xjJWRkzjvnaLyStPYmPsOzha177Y0RD0CBvF0ZiNSEh0DxuJXK5Eb9Rho7TlUNRaWvnVvHspJSeCqLTDhPp0p1RTQF5JusXJuvvsMuIzKyfBbfx706v1HdX6yCtOw83BD6Ba9OmlRKUewdu5MqL/j71zOZO4k2ljf6j1nP0X/uLBIe8C8No9K5HJZCxc8xjdQ29HpbyxzwptXUcQkWfW3zauw5HLlBhNOlRyW87nbiDAoWb9zSqLIrn4KP4OFfqry8DZ2iyvk9l/kF5Sqb9Bjr0Id6tBf3XpOKkur78yzPbDSeVLkS69xjaHMn7kZNYKxod+SkbZebxswxkcMI3lkU/S2qX+ouquljvG3cHaNX8jSRJjxo5BpVKh0+qws7Nj1cpV9O5bc6HZC+fPc/DAQXr26kl+fj6pqakEBpoXYn79+RdOHj9padtvQD/unDC+Wh+xsbGUFBfTtXs3YmNi6dylM6v/WsWMF18mIz2D3NxcvL2r/o5nvvYKMpmM1X+t4vfffueRxx657PfT6XT88uMvfLxwPjv++aduwqlHwkb1IGbjUZAkwkZ2R66UY9TpUdraELX2EH49W9V4Xk5ECmmHo/DpHoqmoJSS9Dwc/c1+kbPLdpN5Ot7S1r93G1rfUT36td3d/dn/0V9ErT2Erri82ucXST0ShXNLs7zD7+7P1peXIJNbYe9dfddQcVoeDn7me5rM6sbuIPYa0Z7MTedAAq/h7ZEpFZh0BuS2KjLWn8GlR1CN5xVHZpB/JBHnboHoC8vRpBei9jd/t5QVRyk6U+ncdOnVEp/RHWsdQ/rqE7R9q7otvkj+0QTsWpjlU3Q+nQ4f3YVJbyR+8W7avD4KyWQi8Yf9hL54db/5orOp9PrrWQqOJpLyx1GCHu57VeddK21H9iJi4yGQoM3tPZGrFBi1BlR2Npxfe4CAnjUHuGRFJJN8OBL/7q0oLyihKD0PZ3/z8+vJZTtIP1U5Vw3qE074HdXtS1FaLk5+Zh2vbT6WdSGRCd+8wInf/iH2n5NknktkzMJnMeoMHPjyb26d/VCN5+1duJKuD9yCQafnxNJ/uP2Dx4nbXbOjuT6o11/GkK5t2X0ykl3HIxjctQ1fr/qHF+8bwT3DelKurYymUSkVlmjfcp0eCegUGsirD4/hi5cfsjiAAfQGIxqd3nLUFrW3+0QEkYkZfPHndlZsP8SRC/Fk5BUybeFSjkUkcDwysdo5eYUlvLl4JfOm/A/5VaQZcHW0I7fQPPlJzynAx925DtK5Nga182fvhVR2n09hYLg/3249zfOjunJXn1aU6yon8kqFlSW6RqMzIgEdW3gw886efPr4UIvTDEBvMKHRGyyH4SojK13tbcgt0QCQnl+Cj0vlikRafmmV1xcxmSTe/H0fjw/rgF/FGGQyGQq5FcoryLy2PhuSgWFu7IvNY29MHgNCXfl+XxKTh7RkfBdvyvWVK0ZKuRWGiugojd4IEnTwc2T6raEsuLudxQEMYDCa0Boqj7pEVV2c9DnYKNAbqv+d1Eo5ZToj6YUavJ2apqPyIoPa+bHHost+fLP1DFNHdeau3mGUayt1WSWXW3SyXG8w63KQOzPG9eDTxwZX1WWjCa3eaDlqsw8Ag9sFsO61caw+bI6kDPJw5IdJt2EwSWQVltV4zsqDMdzZK7TGz5oCA0Jc2BtXwN64AvoHu/D9gTQmDwxgfCfPavpqtOirCUmCDj72TB/WggXjW1scPFAh00v01VAHfd0WmUtcTjkP9TRPRs6klzBvWyInU4r561RWjeeM7eDJ30915odD1SvEu6iV5JWZoy3Si7R4O6qqtblROA0IpnBfPIV743Dq35L0JYfwm9wf9zs7YiqvjAiRqeSWFXyTRg8S2Lf3IeClIYTOH2dxAAOYDEYkraHyqOE3DqDydkCXbl5Ikurw96jSh48j2vQiTBo9Vo0QSX0pA4Kd2BdfyN64Qvq3dGLJoXQm9/fjzo7ulOsrZaCSy6rqLdDex56XhgQwf1yoxQEMF+2sZDnqorc1MXdMMPd182J7dH61z7wdVaQV1b7o5qJWkFdmtmkZxTq8HRpHbweEuLA3toC9sflm+7A/lckDAyvsQ6WclZfK2VBhH3xrsw8SWr3JclxOzoNCXVn9VBf+PmP+7Qe6qvn2/nYYTBLZJXWv/O7jqCKtYrHTJF3f37cutPIYSHTOXqKz9xDmPoA9cd8xLGwK3fwnoDdWTlrlVipMkvnvrjdqkJDwd+rAiDYvc2+XTywOYACjZEBv0lqOi+f9GycbbwornLJSLd85Kf8kp9LWMqLNDABKdXmsPfc2Ezq+h5Ws5q2YWyIXEObRnwDnTtipXCjV5QFQqEnHyaYyurqgPA0nmxvjsAx1HUBc/l5i8/cS4tKf/SnfMyhwMp29xqMzXSpnpSVaUm/SABK+9h24peV0JrRZYHEAA5hMegwmreWoTc6O1j4Uas33IEmq2Q572rbCSiZHrXRBayytsc2lXHx+U1qpufinc1UHMrH9t5gkA8W66rsIGooOQYM4l7SHs4m7aR80kE3HvmFsr+fpF34XOkOlbBVyFcaKaF+dQYMEtPDqyN39Z/LM7Z9ZHMAABpMBvUFrOYy1RAm7OviQVxHha6pFtrHpJzgU+Td3968sknh3/5k8PPQ9dp9bXuM5JZoCQIadTcUCaYW8ba0dMZiqR2k2NMFOA4gv3Edc4V5aOvXnUPoS+vtNpqP7negv1V+Zqpr++ti3Z0jAS4wLnW9xAAMYTQYMktZy1Ka/Dipvi2O3Nv2VMCthkS4dB1XNv+le3o/wQNtfOJjxPY4qb2wUTpYxNwZDbxnGzn92suOfHQwZNpQvPvuC6a+8zL0T76OsrPK5XaVSYjSYZaMpL0eSJDp36cybb81i8fffWBzAAHq9AY1GYzkMhppluvOfnURciOCzTxby+29LKSkp4e333mHego9wcnLEw6P64udFHfTw9KSkuPiK3+/c2XNkZKQz5dnJHD18hGNHj9VJPvVF0KAOJO05R+LuswQNbM+xbzbR6/mxhN/VD0N55b1arlJYoicNGh0g4dWxBf1n3s3tnz1jcQADmAwGDFq95agt6tLO05lbP3qMPtPHY+1Uc1BO+olYIv8+RP9X7gYgdHg3bv3oMXy6BOMSXF2XHXxcKU4z39OkOuwerQ/cB4aRuy+GnL3RuA0IJfH7PYRMHorf+C4YL5GlTCm3PPMbNWZ75dTBj1bTh9NxwT0WBzCAZDBi1Ootx+WihPUFZSCToXSqeRGs4GQyGetOE/bycABsfJxQOqtROttiLNUimUxcmL2WoEf7or5kvnI5bFu4I1erzH2U1f3Zrq4ED+5I/O4zxO0+TctBHTn0zXr6vzCejncNRF9e+WwuVykwGSpsbbkOJAmfTsEMeeVexn0+2eIABjDqjRi0Ostx8bx/4+DjSlFFRHpt8zGP1gFYyeWoXezRlWpw8HFF7WRveV0TOz9aQcsBHfHtHELWhSRKMvNZ99LXpB6PJvVETI3nXC/1OhOUy61wtLPBZJJQyOX079SKj37dgFxuhY1KaWnXt2MYb3+/mojEdExGE21b+KIzGHj9qz8pLtcwb/L/LO0fGtmPh0b2u+K1Hxk1gEdGDbDkHe7XMYx+Hc055558fwldWwfx+YqtTLprGFYVq0KPvfc9DrY2vPXtKp4cOxg7tTXv/rCGqKRMWgV4879be/HZii1Mvec2wOy8Dgvw4pUvVqBQyGnpe/XRcdeK3MoKh4oQcoXcin5t/Fjw9zHkchk2yso/X9/Wvrz750Ei0/IwmiTa+LmiMxh58/d9lGj0fDCxPzYqc/sHBoXXmIv33xSX63hr+X6Ox2WxeMspnr6tE6Hezrz+214UcitaeDpxT9/WPL9kBwajiQ8fGMDOs8m4O6ot6Rs+XX+c4/GZaPQGBrcLIDzAjYXrjiOTQf9w84PO5xtOMGVk5baFf/d5I5FbyXCwUWCSQCG3om+wCwu3x6GwkmGtrHRa927pwgebo4nKLMFokmjtbY/eYOKtdZGUaA28e0cbbCqidu/v6c/9V5Eitlhj4J0NUZxMLuTbvYnc292PV1dfwEZphbejNY5qJV/vTuCp/kFYVaw+Pdw7wJJ+4pXhoZxPLyarWMvgVu419vlk/5pXIG8EcisrHG1VFfbBin5tfFmw9jgKKyusL4lw7tPah/dWHiYqLR9ThS7rDSZmLdtPiUbP+xP7WXT/gYFteWDglXNsnozPYuneSIxGE/3b+FJcruOdPw6CzBwb4eGo5stNp3jmto4W2QLsOp/Cw4PNv/9zyblkFZYxpL054rO4XMecFQc5Hp/F4i2nefq22ldlGwq5lQxHGwUmSUIhl9G3pROf7kxCbiXDRlH5PXq3cOLDrfFEZZdhlCRae9mhM0rM2RhLidbIO6PM6RbAvL36/poDVqpQrDHw7uZ4TqYU893+VIa3dePl1dHc1saNORvjmH17ML8+ZI66nvxHBOM7ebIrJh93O6UlPcTO6Dy2RORRrjcyup1ZZ7/am8yz/c0yVimsCHFXM2t9LAq5jKBGigIGkMmtUDhYI0kSMoUcpz4tSFm4G5nCCivrSlvs2CuIpA+3Ux6VjWSUsG3tiUlvJGHOJoylOlq+fTtWNub7m9d93eC+K+cQdugZSM6qM8Sdy8CpvzliOvWrvfg9W5lfP33JQYqPJRP32nqCXr+V/G1ROA0IRuVpXjTx/F8Xkj7cjkwGPk/WHD1zo5BbyXCwVlTc12T0aeHEwt0pZjurqLSzvYIc+XB7ElHZ5Wa99bRFbzQxZ1MCpTojb9/e0qK393XzuhpRmvV2axInUkv47kA6T/TxYf6OZE6klvDaujjeHx3Mgh3J5JUZKCg38NaIFuyOLcDNTkk7b/Oi5O1tXXlzQzx/n83lzg5mvf16XxrP9DMvfqgUVoS42TBrYzxKKxlBrjc+Chgu2gd5xf1MRt9gZz7dmVhhHy65n7Vw5sMt8URllZrvZxftw4YK+zD63/bhyikYTqUUs+x4BkaTRN9gZ4o1Bt7fHA8ykAHudkq+3pvMU339LTZ3Z3QefxzPwFYlx8FajrXSiqxiHYPDzIEBPYOcWHUqi3PpJfQLrh7901BYyeTYKByRMCG3UhDi3petUQuxkslRyiv/tiFuvVl//n0yi6MwSUZ8HNtgMOlYc3Y2GkMp4zu8a2nfO+h+egddeWt1S7deHEtdRWrhWcLczc/C/0R/wdAwc7oJnbGc7w49SDvv4fxxeibj27/Dz0efxUZhz9rz79G/5aMgSRRps2jjORiAYyl/cTL1bwo0GeSVJdO3xYN42oew6sybyK0UuNsF0T3gbpadeBGjpGdCh8tvZ64vLsrZVCHnls592ZH4KVYyeZX0Cy2derMl7kOySs1y9rJrjVHSsSFmDlpDCaPD3rHIubvv/XTnynIOcurJqcxVpEedI8TFLOfdSV9WSe8Q7jGcv6NeQ2soYWzrDzmRsZJQlwE4WJu3xaYUnWJv8mK0xhIcrX2wkdtzLGM5BpOWTl7j0BiK2Rz7fsVvQIa98sakOQOwspKjVlXqcHhgf1YdmI+VlQKVonIxrW1AH5btfpfU3EhMJiMB7m0wGPX88s+blOtKeOSWD1ApzLId2vEBhnZ84IrXbu3fm33nV5KQdYb2QeZn+rWHPmdML3MqBJ2+nHl/3U+3kBF8v2U6Dw97n+2nfyYtN5pSTSHj+75EYtY5Ckqz6NSyMvp63/k/6dfWHMFZpi1iydYZqBRqXOy9sbW+cWkgLmIlk2OtcECSJOQyBS2c+rA7ZSFWMgUKq0oZBzn2YnvSh2SXRyFJRjxtW2M06dmUMAedsZTbW76NskLfu3ndRzfuq+2SFgIdenImZxUZcecIdjI/F+xN/Yr+fs9a2oQ4D6xIN2Ggk8ddnMpeSbDTABxUZv09nb2K5OKjaI3FdPOaWNHnGjbEz8LHvkN9iuqqkcvlODk5YTKZUCgUDBw8kA/f/QCFQoG1TaVM+w8cwKzX3+TC+QsYjUbC27VDr9Mz86UZFBcXs+CzT7CxMcv00ccf5dHHH73itR9/8nEef/JxS95hR0dHJj39HDq9jjsnjEcul7Nw/idMnfa8xa/w8dyPSExIJD8/j4WLPiM+Pp633pxNVEQkrdu05v4HJvLJxwuYNv1FALp07cJvy805qx958GG6da+/mhJ1wUpuhcpRDSYJK4WcwP7hHJi/CiuFFQrrygWAgD5t2f3uMnIjUzEZTbi3CcCoN/DPm7+gKynnlg8eQWFjbt/xgaF0fODKOYTz4zM49Onf6Ms09H5hHACHPl9LryljALPz7q/75xEyohtbpn/PsPcf5sLKfaQfjwVJ4pZ5j5F1LpHSrAJaDukEgH/v1pxfuY+sMwkEDbix9UPMcwUbiyxd+4YQs3BbtbmCa+9goj7YSHFUJhhNOLT2xqQ3cuGtvzGUaAl/dxzyirlCwP29CLj/6nIIp646ge+4zpbXcV/uIPg5s900lus5+tASvG4L5+zMlYS/M46WTw3g3BurkQwmgicNIfbzHRScTMKo1eM+sBU+ozsS99VOgp8dbOkz6uPNFJxM4uyrf9H+g/EEPNCLs9P/xFiuo82s6jua6hsruRxrRzskkwm5Qk6Lfu3Z/fEfWCnkKGwq/Y1BfcLZ/u5vZEcmI5lMeLYNxKgzsOmNH9CVlHP7h0+grNDXbg/eQrcHb7nitQN7t+XMn7vJOBtP8ACzXdz72Sr6T61MJ9tmVC/Wz/gGbXE5o+c/g3uYHxte+Q6T0Uj/qXeScS6BkswCQod2BuD0n7s5t3ofxem5FCRl0f2R27jnh5cBcxoLvy4NE4wmqy2y4Ko7kMmkwu1f19Nw6s6T7y+psehbTbz3w9+8/mjt4fH/JiY5k2MRCfzv1sv/8P49BqdhzyBJ0jXvVZTJZFLOj89duWED8czirZZCcHXlsw0neGxoe+wv+RFeiQ/+Osyr4y/vJZ387XYWPjakSmE490e+vC45X0Qmk0npc2+73m6umUnLzliKtl2JeVtimHFb7cbg9yOp9A9xJeAyzrLkvHJ+O5JiKQznM3NLvcixJmQymZT9wzMN0fVV8ezi7ZaibVfiw1VHeOXOHrV+/tvuCAaE+xLoXvvkIimniF93RVQpDOfx6Nf1Kl+ZTCalvTuwvrqrM5P/iGDR3deWS/aLPck80tMXO+uao9Nic8o4mVLMhM6XT5fy7zH4vrG7QXW4T+qchuj6ikRPWUnY5xOqvW8s15Gx5BB+k2pfJEuevwP/aYMuuxUua/kJVD6OVQrDHfCb3aCyTJ3TOA7oKSujLYXg6sqXe1N5uIf3ZfS2nJOpJUzodPmF4X+PwW/2gXqXtUwmk9LeG1SfXdaJySsusOieqyt+N29bPDNuqb2g2+9H0+kf4kLAZVJpJOdrWHo03VIYzvf1XfUmU5lMJn0y9sampLrIr8cm8UC3L6q9rzOUsSf+e4aFTbnqvg4lLiXMoz+utoFXbnwZlh6fyv86L6hSGG7aGu/rft59f0j1XSA3ihXnJ3NP+KJq7+uMZRxIWcKgoMk1nGVmW/zHDG3x4mVTHFzLGF7b4Vtvz7bLZuRebzfXzKJ1TzN59OJq72v1ZWw6/i1jez1/1X3tOP0b7YIGVCsQV9cx3DvPrUFs7pw+qVdu2ACsjJ7ChLDPq72vM5ZzKGMJA/xqL1q+I3k+g/yn1Ul/8zXJHM9aWqUw3OwDfg0iU42p4SMKa+KRBx/mx19+uqq2c2a9xey337rqvqOjojhy+Aj3P3D54pb/HoONlapBZDwjd1l9dlkn1j29iNGLq9tXfZmW49+aI5GvltO/7SBoQDucAj1rbVOYlMXpX3ZUKQw3z+3eerO1I9M/vt5urpmTk5bS+Yvqi53GMh0JS/YSMvnaC/qVxGZTeCIJv7vqtkBx6vlldJh/t6Uw3Aaf6df9rDAnb9W1nn7drHz6EyYsnlbtfV2ZlkPfrmfA89VTytTG8V+30XJgR1wuo69XM4bZrndel0xvbKKUBkBvNHLkfO35Ji+lLg5ggNAArys6gFfvOoaX241N4N7Q6I0mjsZc28Rn6sgudXIAA1d0AJ+Iz0KjN9aYe/FmwGA0cSyx4KraXs4BDHBfD7/LOoAB/jyRTqBL40VU3kj0RhNHYzOvqu3lHMAAEwe2uawDGOCP/dEEetScz/RmQW+UOJZcdOWGNTBpQECtjjSAEHfbKzqA153NxrORttffaCS9keJjydXel6tVl3UAAwS8NOSyDmB9Xiklx1NQOP9XbIHEseQrb8+sief6+11Bb9VXdACvO5eLp33d7o3NEb1J4ljS1dmHyzmAAe7r7nNZBzDAypOZV2zTHDGa9CTkVd8arFLY1skBDNAr6P7rdgAn5Z/EYNJeNi9xc8Qo6UkqrEHOctvLOoABbmk5/bodwGey1lkiMW82DEYD0WlHqr1vrbStkwMYYEjHiXV2AB+M/Btnuxube/lGY5T0JBfXpL/qyzqAAYYEvFRn/T2dsxJn6+uzJU0dg17PoYOHrqptXRzAAGGtWl3RAfzXnyvx8W74gqeNjdFgIO1IdLX3lbbWdXIAA3ScOOSyDmCAcyv24hTU8Du4GwPJYCT/WPW0p3Jb1XU5gAHsQzzq7AAuOJmMSWu4qZ4XjHojyUeqF9pV2VrXyQEM0PWBW+rsAD63Zj/2XvW7A67ZRwI3RZp7JHBz4WaJBG5sbuZI4KbAzRYJ3BS5WSOBG4ObNRK4KXIzRgI3NjdLJHBzoblHAjdFbpZI4KbIzRYJ3BS42SKBmyI3YyRwU+BmiQRuDjT3SOCmyPVGAl+3E1htrcrQ6PSXD936j2GjUmaWa3XXvPysVikyNHqjkOkVsFHKM8t1hute5rdRyjO0BtN/Vt7WCqtMjd7YIOESQpfrT08v6e8/ra810ZA6bGWjzJC0hv+MvGXWikyTRt8gsrRRWmVoDdJ/RpZXwlohy9ToTfUq6/+6fahPW6CUqzMMJs1/VpZXg8LKJlNvLL9meSvlNhkGk1bI+BIUVtaZeqPmunVYpVRn6A1Cfy9FqbDJ1OmvXV9r7NPKJsMg/Xd1WCGzztSbrl9fL0WtVmdoNEJ3L2JjY5NZXl7PeqtWZRg0/23/jcJGmakvv3Z/zUXkNsoM039onnAtWFkrMo3XMbdQqq0zDBqdkPElKGxUmfpy7TXL9LqdwAKBQCAQCAQCgUAgEAgEAoFAIGi6NPucwAKBQCAQCAQCgUAgEAgEAoFAIKgd4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIKbGOEEFggEAoFAIBAIBAKBQCAQCASCmxjhBBYIBAKBQCAQCAQCgUAgEAgEgpsY4QQWCAQCgUAgEAgEAoFAIBAIBIL/t2MHMgAAAACD/K3v8RVGYxIYAAAAAGBMAgMAAAAAjElgAAAAAIAxCQwAAAAAMCaBAQAAAADGJDAAAAAAwJgEBgAAAAAYk8AAAAAAAGMSGAAAAABgTAIDAAAAAIxJYAAAAACAMQkMAAAAADAmgQEAAAAAxiQwAAAAAMCYBAYAAAAAGJPAAAAAAABjEhgAAAAAYEwCAwAAAACMSWAAAAAAgDEJDAAAAAAwJoEBAAAAAMYkMAAAAADAmAQGAAAAABiTwAAAAAAAYxIYAAAAAGBMAgMAAAAAjElgAAAAAIAxCQwAAAAAMCaBAQAAAADGJDAAAAAAwJgEBgAAAAAYk8AAAAAAAGMSGAAAAABgTAIDAAAAAIxJYAAAAACAMQkMAAAAADAmgQEAAAAAxiQwAAAAAMCYBAYAAAAAGJPAAAAAAABjEhgAAAAAYEwCAwAAAACMSWAAAAAAgDEJDAAAAAAwJoEBAAAAAMYkMAAAAADAmAQGAAAAABiTwAAAAAAAYxIYAAAAAGBMAgMAAAAAjElgAAAAAIAxCQwAAAAAMCaBAQAAAADGJDAAAAAAwJgEBgAAAAAYk8AAAAAAAGMSGAAAAABgTAIDAAAAAIViG10AAABaSURBVIxJYAAAAACAMQkMAAAAADAmgQEAAAAAxiQwAAAAAMCYBAYAAAAAGJPAAAAAAABjEhgAAAAAYEwCAwAAAACMSWAAAAAAgDEJDAAAAAAwJoEBAAAAAMYCzxoVeCXQfcYAAAAASUVORK5CYII=\n"}, "metadata": {"needs_background": "light"}}]}, {"metadata": {"button": false, "new_sheet": false, "run_control": {"read_only": false}, "id": "620efd8a7922445481dfcb85e45a9ec8"}, "cell_type": "markdown", "source": "

Want to learn more?

\n\nThe AutoAI graphical tool in Watson Studio analyzes your data and discovers data transformations, algorithms, and parameter settings that work best for your predictive modeling problem. AutoAI displays the results as model candidate pipelines ranked on a leaderboard for you to choose from.\n\nAlso, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio\n\n

Thanks for completing this Lab!

\n\n

Author: Manoj Jahgirdar & Sharath Kumar RK

\n\n"}], "metadata": {"anaconda-cloud": {}, "kernelspec": {"name": "python3", "display_name": "Python 3.8", "language": "python"}, "language_info": {"name": "python", "version": "3.8.11", "mimetype": "text/x-python", "codemirror_mode": {"name": "ipython", "version": 3}, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py"}, "widgets": {"state": {}, "version": "1.1.2"}}, "nbformat": 4, "nbformat_minor": 4}