import argparse import os import logging import sys import imp from rl_coach.core_types import EnvironmentEpisodes from rl_coach.base_parameters import TaskParameters from rl_coach.utils import short_dynamic_import from markov.s3_boto_data_store import S3BotoDataStoreParameters, S3BotoDataStore import markov.environments from markov import utils CUSTOM_FILES_PATH="robomaker" PRESET_LOCAL_PATH = os.path.join(CUSTOM_FILES_PATH, "presets/") ENVIRONMENT_LOCAL_PATH = os.path.join(CUSTOM_FILES_PATH, "environments/") if not os.path.exists(CUSTOM_FILES_PATH): os.makedirs(CUSTOM_FILES_PATH) os.makedirs(PRESET_LOCAL_PATH) os.makedirs(ENVIRONMENT_LOCAL_PATH) logger = logging.getLogger(__name__) def evaluation_worker(graph_manager, number_of_trials, local_model_directory): # Initialize the graph task_parameters = TaskParameters() task_parameters.__dict__['checkpoint_restore_dir'] = local_model_directory graph_manager.create_graph(task_parameters) graph_manager.evaluate(EnvironmentEpisodes(number_of_trials)) def main(): parser = argparse.ArgumentParser() parser.add_argument('--markov-preset-file', help="(string) Name of a preset file to run in Markov's preset directory.", type=str, default=os.environ.get("MARKOV_PRESET_FILE", "training_grounds.py")) parser.add_argument('--model-s3-bucket', help='(string) S3 bucket where trained models are stored. It contains model checkpoints.', type=str, default=os.environ.get("MODEL_S3_BUCKET")) parser.add_argument('--model-s3-prefix', help='(string) S3 prefix where trained models are stored. It contains model checkpoints.', type=str, default=os.environ.get("MODEL_S3_PREFIX")) parser.add_argument('--aws-region', help='(string) AWS region', type=str, default=os.environ.get("ROS_AWS_REGION", "us-west-2")) parser.add_argument('--number-of-trials', help='(integer) Number of trials', type=int, default=os.environ.get("NUMBER_OF_TRIALS", sys.maxsize)) parser.add_argument('-c', '--local-model-directory', help='(string) Path to a folder containing a checkpoint to restore the model from.', type=str, default='./checkpoint') args = parser.parse_args() data_store_params_instance = S3BotoDataStoreParameters(bucket_name=args.model_s3_bucket, s3_folder=args.model_s3_prefix, checkpoint_dir=args.local_model_directory, aws_region=args.aws_region) data_store = S3BotoDataStore(data_store_params_instance) utils.wait_for_checkpoint(args.local_model_directory, data_store) preset_file_success = data_store.download_presets_if_present(PRESET_LOCAL_PATH) if preset_file_success: environment_file_success = data_store.download_environments_if_present(ENVIRONMENT_LOCAL_PATH) path_and_module = PRESET_LOCAL_PATH + args.markov_preset_file + ":graph_manager" graph_manager = short_dynamic_import(path_and_module, ignore_module_case=True) if environment_file_success: import robomaker.environments print("Using custom preset file!") elif args.markov_preset_file: markov_path = imp.find_module("markov")[1] preset_location = os.path.join(markov_path, "presets", args.markov_preset_file) path_and_module = preset_location + ":graph_manager" graph_manager = short_dynamic_import(path_and_module, ignore_module_case=True) print("Using custom preset file from Markov presets directory!") else: raise ValueError("Unable to determine preset file") graph_manager.data_store = data_store evaluation_worker( graph_manager=graph_manager, number_of_trials=args.number_of_trials, local_model_directory=args.local_model_directory ) if __name__ == '__main__': main()