import argparse import gzip import json import logging import os import struct import mxnet as mx import numpy as np def load_data(path): with gzip.open(find_file(path, "labels.gz")) as flbl: struct.unpack(">II", flbl.read(8)) labels = np.fromstring(flbl.read(), dtype=np.int8) with gzip.open(find_file(path, "images.gz")) as fimg: _, _, rows, cols = struct.unpack(">IIII", fimg.read(16)) images = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(labels), rows, cols) images = images.reshape(images.shape[0], 1, 28, 28).astype(np.float32) / 255 return labels, images def find_file(root_path, file_name): for root, dirs, files in os.walk(root_path): if file_name in files: return os.path.join(root, file_name) def build_graph(): data = mx.sym.var('data') data = mx.sym.flatten(data=data) fc1 = mx.sym.FullyConnected(data=data, num_hidden=128) act1 = mx.sym.Activation(data=fc1, act_type="relu") fc2 = mx.sym.FullyConnected(data=act1, num_hidden=64) act2 = mx.sym.Activation(data=fc2, act_type="relu") fc3 = mx.sym.FullyConnected(data=act2, num_hidden=10) return mx.sym.SoftmaxOutput(data=fc3, name='softmax') def get_training_context(num_gpus): if num_gpus: return [mx.gpu(i) for i in range(num_gpus)] else: return mx.cpu() def train(batch_size, epochs, learning_rate, num_gpus, training_channel, testing_channel, hosts, current_host, model_dir): (train_labels, train_images) = load_data(training_channel) (test_labels, test_images) = load_data(testing_channel) CHECKPOINTS_DIR = '/opt/ml/checkpoints' checkpoints_enabled = os.path.exists(CHECKPOINTS_DIR) # Data parallel training - shard the data so each host # only trains on a subset of the total data. shard_size = len(train_images) // len(hosts) for i, host in enumerate(hosts): if host == current_host: start = shard_size * i end = start + shard_size break train_iter = mx.io.NDArrayIter(train_images[start:end], train_labels[start:end], batch_size, shuffle=True) val_iter = mx.io.NDArrayIter(test_images, test_labels, batch_size) logging.getLogger().setLevel(logging.DEBUG) kvstore = 'local' if len(hosts) == 1 else 'dist_sync' mlp_model = mx.mod.Module(symbol=build_graph(), context=get_training_context(num_gpus)) checkpoint_callback = None if checkpoints_enabled: # Create a checkpoint callback that checkpoints the model params and the optimizer state after every epoch at the given path. checkpoint_callback = mx.callback.module_checkpoint(mlp_model, CHECKPOINTS_DIR + "/mnist", period=1, save_optimizer_states=True) mlp_model.fit(train_iter, eval_data=val_iter, kvstore=kvstore, optimizer='sgd', optimizer_params={'learning_rate': learning_rate}, eval_metric='acc', epoch_end_callback = checkpoint_callback, batch_end_callback=mx.callback.Speedometer(batch_size, 100), num_epoch=epochs) if current_host == hosts[0]: save(model_dir, mlp_model) def save(model_dir, model): model.symbol.save(os.path.join(model_dir, 'model-symbol.json')) model.save_params(os.path.join(model_dir, 'model-0000.params')) signature = [{'name': data_desc.name, 'shape': [dim for dim in data_desc.shape]} for data_desc in model.data_shapes] with open(os.path.join(model_dir, 'model-shapes.json'), 'w') as f: json.dump(signature, f) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--batch-size', type=int, default=100) parser.add_argument('--epochs', type=int, default=10) parser.add_argument('--learning-rate', type=float, default=0.1) parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR']) parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN']) parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST']) parser.add_argument('--current-host', type=str, default=os.environ['SM_CURRENT_HOST']) parser.add_argument('--hosts', type=list, default=json.loads(os.environ['SM_HOSTS'])) return parser.parse_args() ### NOTE: this function cannot use MXNet def neo_preprocess(payload, content_type): import logging import numpy as np import io logging.info('Invoking user-defined pre-processing function') if content_type != 'application/vnd+python.numpy+binary': raise RuntimeError('Content type must be application/vnd+python.numpy+binary') f = io.BytesIO(payload) return np.load(f) ### NOTE: this function cannot use MXNet def neo_postprocess(result): import logging import numpy as np import json logging.info('Invoking user-defined post-processing function') # Softmax (assumes batch size 1) result = np.squeeze(result) result_exp = np.exp(result - np.max(result)) result = result_exp / np.sum(result_exp) response_body = json.dumps(result.tolist()) content_type = 'application/json' return response_body, content_type if __name__ == '__main__': args = parse_args() num_gpus = int(os.environ['SM_NUM_GPUS']) train(args.batch_size, args.epochs, args.learning_rate, num_gpus, args.train, args.test, args.hosts, args.current_host, args.model_dir)