ARG version=0.23-1 ARG platform=arm64 ARG repo=sagemaker-scikit-learn-container FROM preprod-sklearn-extension:${version}-${platform}-cpu-py37 ARG version ARG platform ARG repo ENV SAGEMAKER_SKLEARN_VERSION=${version}-${platform} ## CUSTOM CODE FOR EACH IMPLEMENTATION OF FETCH AND RUN ENV PATH="/opt/ml/code:${PATH}" ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code RUN python -m pip install --upgrade pip COPY ${repo}/docker/${version}-${platform}/aws-batch-extension/requirements.txt . RUN python -m pip --no-cache-dir install --upgrade -r requirements.txt && rm requirements.txt # this environment variable is used by the SageMaker PyTorch container to determine our user code directory. ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code ENV SAGEMAKER_PROCESS_DIRECTORY /opt/ml/processing RUN mkdir -p /opt/ml/code/bin RUN mkdir -p /opt/ml/processing RUN echo "version=${version}, platform=${platform}, repo=${repo}" COPY ${repo}/docker/${version}-${platform}/aws-batch-extension/sagemaker_on_aws_batch.sh /opt/ml/code/bin/sagemaker_on_aws_batch.sh RUN chmod u+x /opt/ml/code/bin/sagemaker_on_aws_batch.sh WORKDIR /opt/ml/code ENTRYPOINT ["bash","/opt/ml/code/bin/sagemaker_on_aws_batch.sh"]