{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install --upgrade boto3 sagemaker" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "# Define IAM role\n", "import boto3\n", "import re\n", "import requests\n", "import base64\n", "import json\n", "import os\n", "import numpy as np\n", "import pandas as pd\n", "from sagemaker import get_execution_role\n", "import cv2\n", "import base64\n", "\n", "role = get_execution_role()\n", "print(role)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sagemaker as sage\n", "from time import gmtime, strftime\n", "\n", "sess = sage.Session()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "account = sess.boto_session.client('sts').get_caller_identity()['Account']\n", "region = sess.boto_session.region_name\n", "image = '{}.dkr.ecr.{}.amazonaws.com/inference/mytriton:latest'.format(account, region)\n", "print(image)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#for triron\n", "container = {\n", " \"Image\": image,\n", " \"Environment\": {\"SAGEMAKER_TRITON_DEFAULT_MODEL_NAME\": \"resnet\"},\n", "}\n", "\n", "model = sess.create_model(\n", " name='mytriton', role=role, container_defs=container\n", ")\n", "print(model)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "endpoint_cfg=sess.create_endpoint_config(\n", " name=\"MYTRITONCFG\",\n", " model_name=\"mytriton\",\n", " initial_instance_count=1,\n", " instance_type=\"ml.g4dn.2xlarge\"\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "endpoint=sess.create_endpoint(\n", " endpoint_name=\"MyTritonEndpoint\", config_name=\"MYTRITONCFG\")\n", "print(endpoint)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from IPython.display import Image\n", "Image(url= \"dog.jpg\",width=100, height=100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img = cv2.imread('dog.jpg')\n", "string_img = base64.b64encode(cv2.imencode('.jpg', img)[1]).decode()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## restnet client\n", "runtime = boto3.Session().client('runtime.sagemaker')\n", "\n", "payload = json.dumps({\"modelname\": \"resnet\",\"payload\": {\"img\":string_img}})\n", "\n", "endpoint=\"MyTritonEndpoint\"\n", "response = runtime.invoke_endpoint(EndpointName=endpoint,ContentType=\"application/json\",Body=payload,Accept='application/json')\n", "\n", "out=response['Body'].read()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res=eval(out)\n", "print(res)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# yolov5 client\n", "payload = json.dumps({\"modelname\": \"yolov5\",\"payload\": {\"img\":string_img}})\n", "\n", "endpoint=\"MyTritonEndpoint\"\n", "response = runtime.invoke_endpoint(EndpointName=endpoint,ContentType=\"application/json\",Body=payload,Accept='application/json')\n", "\n", "out=response['Body'].read()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "res=eval(out)\n", "print(str(out))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# bert client\n", "text=\"The capital of China is [MASK].\"\n", "text=\"The biggest city of China is [MASK].\"\n", "text=\"The world has [MASK] people.\"\n", "\n", "payload = json.dumps({\"modelname\": \"bert_base\",\"payload\": {\"text\":text}})\n", "\n", "endpoint=\"MyTritonEndpoint\"\n", "response = runtime.invoke_endpoint(EndpointName=endpoint,ContentType=\"application/json\",Body=payload,Accept='application/json')\n", "\n", "out=response['Body'].read()\n", "res=eval(out)\n", "print(res)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Delete the endpoint\n", "boto3.client('sagemaker').delete_endpoint(EndpointName=endpoint)" ] } ], "metadata": { "kernelspec": { "display_name": "conda_python3", "language": "python", "name": "conda_python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.13" } }, "nbformat": 4, "nbformat_minor": 2 }