import json import numpy as np import copy import torch import torch._six from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO import pycocotools.mask as mask_util from collections import defaultdict import utils class CocoEvaluator(object): def __init__(self, coco_gt, iou_types): assert isinstance(iou_types, (list, tuple)) coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) coco_dt = loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] coco_eval.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) img_ids, eval_imgs = evaluate(coco_eval) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]) def accumulate(self): for coco_eval in self.coco_eval.values(): coco_eval.accumulate() def summarize(self): for iou_type, coco_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) coco_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_coco_detection(predictions) elif iou_type == "segm": return self.prepare_for_coco_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_coco_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_coco_detection(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return coco_results def prepare_for_coco_segmentation(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return coco_results def prepare_for_coco_keypoint(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() keypoints = prediction["keypoints"] keypoints = keypoints.flatten(start_dim=1).tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], 'keypoints': keypoint, "score": scores[k], } for k, keypoint in enumerate(keypoints) ] ) return coco_results def convert_to_xywh(boxes): xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def merge(img_ids, eval_imgs): all_img_ids = utils.all_gather(img_ids) all_eval_imgs = utils.all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids = np.array(merged_img_ids) merged_eval_imgs = np.concatenate(merged_eval_imgs, 2) # keep only unique (and in sorted order) images merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) merged_eval_imgs = merged_eval_imgs[..., idx] return merged_img_ids, merged_eval_imgs def create_common_coco_eval(coco_eval, img_ids, eval_imgs): img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) coco_eval.evalImgs = eval_imgs coco_eval.params.imgIds = img_ids coco_eval._paramsEval = copy.deepcopy(coco_eval.params) ################################################################# # From pycocotools, just removed the prints and fixed # a Python3 bug about unicode not defined ################################################################# # Ideally, pycocotools wouldn't have hard-coded prints # so that we could avoid copy-pasting those two functions def createIndex(self): # create index # print('creating index...') anns, cats, imgs = {}, {}, {} imgToAnns, catToImgs = defaultdict(list), defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) # print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats maskUtils = mask_util def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] # print('Loading and preparing results...') # tic = time.time() if isinstance(resFile, torch._six.string_classes): anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id + 1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]] if 'segmentation' not in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2] * bb[3] ann['id'] = id + 1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results ann['area'] = maskUtils.area(ann['segmentation']) if 'bbox' not in ann: ann['bbox'] = maskUtils.toBbox(ann['segmentation']) ann['id'] = id + 1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x1, x2, y1, y2 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x2 - x1) * (y2 - y1) ann['id'] = id + 1 ann['bbox'] = [x1, y1, x2 - x1, y2 - y1] # print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset['annotations'] = anns createIndex(res) return res def evaluate(self): ''' Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None ''' # tic = time.time() # print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) # print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] evalImgs = [ evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # this is NOT in the pycocotools code, but could be done outside evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds)) self._paramsEval = copy.deepcopy(self.params) # toc = time.time() # print('DONE (t={:0.2f}s).'.format(toc-tic)) return p.imgIds, evalImgs ################################################################# # end of straight copy from pycocotools, just removing the prints #################################################################