version: 0.2 artifacts: files: - /tmp/ml/**/* name: ml phases: install: runtime-versions: python: 3.8 commands: - pip install --upgrade . pre_build: commands: - aws s3 sync $CODEBUILD_SRC_DIR_datasets s3://${ARTIFACT_BUCKET}/train/datasets/ESC-50/ --include="*.wav" --include="*.csv" build: commands: - export PYTHONUNBUFFERED=TRUE - export SAGEMAKER_PROJECT_NAME_ID="${SAGEMAKER_PROJECT_NAME}-${SAGEMAKER_PROJECT_ID}" - | run-pipeline --module-name pipelines.stm.pipeline \ --role-arn $SAGEMAKER_PIPELINE_ROLE_ARN \ --tags "[{\"Key\":\"sagemaker:project-name\", \"Value\":\"${SAGEMAKER_PROJECT_NAME}\"}, {\"Key\":\"sagemaker:project-id\", \"Value\":\"${SAGEMAKER_PROJECT_ID}\"}]" \ --kwargs "{\"region\":\"${AWS_REGION}\",\"role\":\"${SAGEMAKER_PIPELINE_ROLE_ARN}\",\"default_bucket\":\"${ARTIFACT_BUCKET}\",\"pipeline_name\":\"${SAGEMAKER_PROJECT_NAME_ID}\",\"model_package_group_name\":\"${SAGEMAKER_PROJECT_NAME_ID}\",\"base_job_prefix\":\"${SAGEMAKER_PROJECT_NAME_ID}\",\"sagemaker_project_name\":\"${SAGEMAKER_PROJECT_NAME}\"}" - echo "Create/Update of the SageMaker Pipeline and execution completed." - aws s3 cp s3://${ARTIFACT_BUCKET}/evaluation/build/ /tmp/ml --recursive