general: project_name: AED_project dataset: name: esc10 class_names: ['dog', 'chainsaw', 'crackling_fire', 'helicopter', 'rain', 'crying_baby', 'clock_tick', 'sneezing', 'rooster', 'sea_waves'] audio_path: /opt/ml/processing/input/datasets/ESC-50/audio csv_path: /opt/ml/processing/input/datasets/ESC-50/meta/esc50.csv file_extension: .wav validation_split: 0.1 test_split: 0.2 test_path: pre_processing: min_length: 1 max_length: 10 target_rate: 16000 top_db: 60 frame_length: 3200 hop_length: 3200 trim_last_second: False lengthen: 'after' feature_extraction: patch_length: 96 n_mels: 64 overlap: 0.25 n_fft: 512 hop_length: 160 window_length: 400 window: hann center: False pad_mode: constant power: 1.0 fmin: 125 fmax: 7500 norm: None htk: True to_db: False include_last_patch: False model: model_type: { name: yamnet, embedding_size: 256 } # Shape of a single patch. # Input shape must be [mels, frames] input_shape: [64, 96] expand_last_dim: True multi_label: False model_path: /opt/ml/processing/input/model/model.tar.gz quantization: quantize: True evaluate: True quantizer: TFlite_converter quantization_type: PTQ quantization_input_type: int8 quantization_output_type: float export_dir: quantized_models stm32ai: optimization: balanced serie: STM32U5 IDE: GCC footprints_on_target: STM32H747I-DISCO path_to_stm32ai: C:\Users\martinlu\work\Xcubeai-7.3.0\windows\stm32ai.exe mlflow: uri: ./mlruns hydra: run: dir: /opt/ml/processing/outputs/build