general: project_name: AED_project logs_dir: logs saved_models_dir: saved_models train_parameters: batch_size: 16 training_epochs: 50 optimizer: adam initial_learning: 0.001 patience: 100 learning_rate_scheduler: reducelronplateau restore_best_weights: True dataset: name: esc10 class_names: ['dog', 'chainsaw', 'crackling_fire', 'helicopter', 'rain', 'crying_baby', 'clock_tick', 'sneezing', 'rooster', 'sea_waves'] audio_path: /opt/ml/input/data/train/datasets/ESC-50/audio csv_path: /opt/ml/input/data/train/datasets/ESC-50/meta/esc50.csv file_extension: .wav validation_split: 0.1 test_split : 0.2 test_path: pre_processing: min_length: 1 max_length : 10 target_rate: 16000 top_db: 60 frame_length: 3200 hop_length: 3200 trim_last_second: False lengthen : 'after' feature_extraction: patch_length: 96 n_mels: 64 overlap: 0.25 n_fft: 512 hop_length: 160 window_length: 400 window: hann center: False pad_mode: constant power: 1.0 fmin: 125 fmax: 7500 norm: None htk : True to_db : False include_last_patch: False data_augmentation: GaussianNoise: 0.1 VolumeAugment: True min_scale: 0.8 max_scale: 1.2 SpecAug: False freq_mask_param: 1 time_mask_param: 1 n_freq_mask: 3 n_time_mask: 4 mask_value : 0 model: model_type: {name : yamnet, embedding_size: 256} # Shape of a single patch. # Input shape must be [mels, frames] input_shape: [64, 96] expand_last_dim: True transfer_learning : True multi_label : False quantization: quantize: True evaluate: True quantizer: TFlite_converter quantization_type: PTQ quantization_input_type: int8 quantization_output_type: float export_dir: quantized_models stm32ai: optimization: balanced footprints_on_target: B-U585I-IOT02A path_to_stm32ai: C:/Users/martinlu/STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/8.0.0/Utilities/windows/stm32ai.exe mlflow: uri: ./mlruns hydra: run: dir: /opt/ml/model/outputs/${now:%Y_%m_%d_%H_%M_%S}