/*
******************************************************************************
* @file lsm6dso_reg.c
* @author Sensors Software Solution Team
* @brief LSM6DSO driver file
******************************************************************************
* @attention
*
*
© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#include "lsm6dso_reg.h"
#include
/**
* @defgroup LSM6DSO
* @brief This file provides a set of functions needed to drive the
* lsm6dso enhanced inertial module.
* @{
*
*/
/**
* @defgroup LSM6DSO_Interfaces_Functions
* @brief This section provide a set of functions used to read and
* write a generic register of the device.
* MANDATORY: return 0 -> no Error.
* @{
*
*/
/**
* @brief Read generic device register
*
* @param ctx read / write interface definitions(ptr)
* @param reg register to read
* @param data pointer to buffer that store the data read(ptr)
* @param len number of consecutive register to read
* @retval interface status (MANDATORY: return 0 -> no Error)
*
*/
int32_t lsm6dso_read_reg(stmdev_ctx_t *ctx, uint8_t reg,
uint8_t *data,
uint16_t len)
{
int32_t ret;
ret = ctx->read_reg(ctx->handle, reg, data, len);
return ret;
}
/**
* @brief Write generic device register
*
* @param ctx read / write interface definitions(ptr)
* @param reg register to write
* @param data pointer to data to write in register reg(ptr)
* @param len number of consecutive register to write
* @retval interface status (MANDATORY: return 0 -> no Error)
*
*/
int32_t lsm6dso_write_reg(stmdev_ctx_t *ctx, uint8_t reg,
uint8_t *data,
uint16_t len)
{
int32_t ret;
ret = ctx->write_reg(ctx->handle, reg, data, len);
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSOX_Private_functions
* @brief Section collect all the utility functions needed by APIs.
* @{
*
*/
static void bytecpy(uint8_t *target, uint8_t *source)
{
if ( (target != NULL) && (source != NULL) ) {
*target = *source;
}
}
/**
* @defgroup LSM6DSO_Sensitivity
* @brief These functions convert raw-data into engineering units.
* @{
*
*/
float_t lsm6dso_from_fs2_to_mg(int16_t lsb)
{
return ((float_t)lsb) * 0.061f;
}
float_t lsm6dso_from_fs4_to_mg(int16_t lsb)
{
return ((float_t)lsb) * 0.122f;
}
float_t lsm6dso_from_fs8_to_mg(int16_t lsb)
{
return ((float_t)lsb) * 0.244f;
}
float_t lsm6dso_from_fs16_to_mg(int16_t lsb)
{
return ((float_t)lsb) * 0.488f;
}
float_t lsm6dso_from_fs125_to_mdps(int16_t lsb)
{
return ((float_t)lsb) * 4.375f;
}
float_t lsm6dso_from_fs500_to_mdps(int16_t lsb)
{
return ((float_t)lsb) * 17.50f;
}
float_t lsm6dso_from_fs250_to_mdps(int16_t lsb)
{
return ((float_t)lsb) * 8.750f;
}
float_t lsm6dso_from_fs1000_to_mdps(int16_t lsb)
{
return ((float_t)lsb) * 35.0f;
}
float_t lsm6dso_from_fs2000_to_mdps(int16_t lsb)
{
return ((float_t)lsb) * 70.0f;
}
float_t lsm6dso_from_lsb_to_celsius(int16_t lsb)
{
return (((float_t)lsb / 256.0f) + 25.0f);
}
float_t lsm6dso_from_lsb_to_nsec(int16_t lsb)
{
return ((float_t)lsb * 25000.0f);
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_Data_Generation
* @brief This section groups all the functions concerning
* data generation.
*
*/
/**
* @brief Accelerometer full-scale selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fs_xl in reg CTRL1_XL
*
*/
int32_t lsm6dso_xl_full_scale_set(stmdev_ctx_t *ctx,
lsm6dso_fs_xl_t val)
{
lsm6dso_ctrl1_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.fs_xl = (uint8_t) val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Accelerometer full-scale selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of fs_xl in reg CTRL1_XL
*
*/
int32_t lsm6dso_xl_full_scale_get(stmdev_ctx_t *ctx,
lsm6dso_fs_xl_t *val)
{
lsm6dso_ctrl1_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
switch (reg.fs_xl) {
case LSM6DSO_2g:
*val = LSM6DSO_2g;
break;
case LSM6DSO_16g:
*val = LSM6DSO_16g;
break;
case LSM6DSO_4g:
*val = LSM6DSO_4g;
break;
case LSM6DSO_8g:
*val = LSM6DSO_8g;
break;
default:
*val = LSM6DSO_2g;
break;
}
return ret;
}
/**
* @brief Accelerometer UI data rate selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of odr_xl in reg CTRL1_XL
*
*/
int32_t lsm6dso_xl_data_rate_set(stmdev_ctx_t *ctx,
lsm6dso_odr_xl_t val)
{
lsm6dso_odr_xl_t odr_xl = val;
lsm6dso_emb_fsm_enable_t fsm_enable;
lsm6dso_fsm_odr_t fsm_odr;
lsm6dso_ctrl1_xl_t reg;
int32_t ret;
/* Check the Finite State Machine data rate constraints */
ret = lsm6dso_fsm_enable_get(ctx, &fsm_enable);
if (ret == 0) {
if ( (fsm_enable.fsm_enable_a.fsm1_en |
fsm_enable.fsm_enable_a.fsm2_en |
fsm_enable.fsm_enable_a.fsm3_en |
fsm_enable.fsm_enable_a.fsm4_en |
fsm_enable.fsm_enable_a.fsm5_en |
fsm_enable.fsm_enable_a.fsm6_en |
fsm_enable.fsm_enable_a.fsm7_en |
fsm_enable.fsm_enable_a.fsm8_en |
fsm_enable.fsm_enable_b.fsm9_en |
fsm_enable.fsm_enable_b.fsm10_en |
fsm_enable.fsm_enable_b.fsm11_en |
fsm_enable.fsm_enable_b.fsm12_en |
fsm_enable.fsm_enable_b.fsm13_en |
fsm_enable.fsm_enable_b.fsm14_en |
fsm_enable.fsm_enable_b.fsm15_en |
fsm_enable.fsm_enable_b.fsm16_en ) == PROPERTY_ENABLE ) {
ret = lsm6dso_fsm_data_rate_get(ctx, &fsm_odr);
if (ret == 0) {
switch (fsm_odr) {
case LSM6DSO_ODR_FSM_12Hz5:
if (val == LSM6DSO_XL_ODR_OFF) {
odr_xl = LSM6DSO_XL_ODR_12Hz5;
}
else {
odr_xl = val;
}
break;
case LSM6DSO_ODR_FSM_26Hz:
if (val == LSM6DSO_XL_ODR_OFF) {
odr_xl = LSM6DSO_XL_ODR_26Hz;
}
else if (val == LSM6DSO_XL_ODR_12Hz5) {
odr_xl = LSM6DSO_XL_ODR_26Hz;
}
else {
odr_xl = val;
}
break;
case LSM6DSO_ODR_FSM_52Hz:
if (val == LSM6DSO_XL_ODR_OFF) {
odr_xl = LSM6DSO_XL_ODR_52Hz;
}
else if (val == LSM6DSO_XL_ODR_12Hz5) {
odr_xl = LSM6DSO_XL_ODR_52Hz;
}
else if (val == LSM6DSO_XL_ODR_26Hz) {
odr_xl = LSM6DSO_XL_ODR_52Hz;
}
else {
odr_xl = val;
}
break;
case LSM6DSO_ODR_FSM_104Hz:
if (val == LSM6DSO_XL_ODR_OFF) {
odr_xl = LSM6DSO_XL_ODR_104Hz;
}
else if (val == LSM6DSO_XL_ODR_12Hz5) {
odr_xl = LSM6DSO_XL_ODR_104Hz;
}
else if (val == LSM6DSO_XL_ODR_26Hz) {
odr_xl = LSM6DSO_XL_ODR_104Hz;
}
else if (val == LSM6DSO_XL_ODR_52Hz) {
odr_xl = LSM6DSO_XL_ODR_104Hz;
}
else {
odr_xl = val;
}
break;
default:
odr_xl = val;
break;
}
}
}
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.odr_xl = (uint8_t) odr_xl;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Accelerometer UI data rate selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of odr_xl in reg CTRL1_XL
*
*/
int32_t lsm6dso_xl_data_rate_get(stmdev_ctx_t *ctx,
lsm6dso_odr_xl_t *val)
{
lsm6dso_ctrl1_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
switch (reg.odr_xl) {
case LSM6DSO_XL_ODR_OFF:
*val = LSM6DSO_XL_ODR_OFF;
break;
case LSM6DSO_XL_ODR_12Hz5:
*val = LSM6DSO_XL_ODR_12Hz5;
break;
case LSM6DSO_XL_ODR_26Hz:
*val = LSM6DSO_XL_ODR_26Hz;
break;
case LSM6DSO_XL_ODR_52Hz:
*val = LSM6DSO_XL_ODR_52Hz;
break;
case LSM6DSO_XL_ODR_104Hz:
*val = LSM6DSO_XL_ODR_104Hz;
break;
case LSM6DSO_XL_ODR_208Hz:
*val = LSM6DSO_XL_ODR_208Hz;
break;
case LSM6DSO_XL_ODR_417Hz:
*val = LSM6DSO_XL_ODR_417Hz;
break;
case LSM6DSO_XL_ODR_833Hz:
*val = LSM6DSO_XL_ODR_833Hz;
break;
case LSM6DSO_XL_ODR_1667Hz:
*val = LSM6DSO_XL_ODR_1667Hz;
break;
case LSM6DSO_XL_ODR_3333Hz:
*val = LSM6DSO_XL_ODR_3333Hz;
break;
case LSM6DSO_XL_ODR_6667Hz:
*val = LSM6DSO_XL_ODR_6667Hz;
break;
case LSM6DSO_XL_ODR_1Hz6:
*val = LSM6DSO_XL_ODR_1Hz6;
break;
default:
*val = LSM6DSO_XL_ODR_OFF;
break;
}
return ret;
}
/**
* @brief Gyroscope UI chain full-scale selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fs_g in reg CTRL2_G
*
*/
int32_t lsm6dso_gy_full_scale_set(stmdev_ctx_t *ctx,
lsm6dso_fs_g_t val)
{
lsm6dso_ctrl2_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1);
if (ret == 0) {
reg.fs_g = (uint8_t) val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Gyroscope UI chain full-scale selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of fs_g in reg CTRL2_G
*
*/
int32_t lsm6dso_gy_full_scale_get(stmdev_ctx_t *ctx,
lsm6dso_fs_g_t *val)
{
lsm6dso_ctrl2_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1);
switch (reg.fs_g) {
case LSM6DSO_250dps:
*val = LSM6DSO_250dps;
break;
case LSM6DSO_125dps:
*val = LSM6DSO_125dps;
break;
case LSM6DSO_500dps:
*val = LSM6DSO_500dps;
break;
case LSM6DSO_1000dps:
*val = LSM6DSO_1000dps;
break;
case LSM6DSO_2000dps:
*val = LSM6DSO_2000dps;
break;
default:
*val = LSM6DSO_250dps;
break;
}
return ret;
}
/**
* @brief Gyroscope UI data rate selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of odr_g in reg CTRL2_G
*
*/
int32_t lsm6dso_gy_data_rate_set(stmdev_ctx_t *ctx,
lsm6dso_odr_g_t val)
{
lsm6dso_odr_g_t odr_gy = val;
lsm6dso_emb_fsm_enable_t fsm_enable;
lsm6dso_fsm_odr_t fsm_odr;
lsm6dso_ctrl2_g_t reg;
int32_t ret;
/* Check the Finite State Machine data rate constraints */
ret = lsm6dso_fsm_enable_get(ctx, &fsm_enable);
if (ret == 0) {
if ( (fsm_enable.fsm_enable_a.fsm1_en |
fsm_enable.fsm_enable_a.fsm2_en |
fsm_enable.fsm_enable_a.fsm3_en |
fsm_enable.fsm_enable_a.fsm4_en |
fsm_enable.fsm_enable_a.fsm5_en |
fsm_enable.fsm_enable_a.fsm6_en |
fsm_enable.fsm_enable_a.fsm7_en |
fsm_enable.fsm_enable_a.fsm8_en |
fsm_enable.fsm_enable_b.fsm9_en |
fsm_enable.fsm_enable_b.fsm10_en |
fsm_enable.fsm_enable_b.fsm11_en |
fsm_enable.fsm_enable_b.fsm12_en |
fsm_enable.fsm_enable_b.fsm13_en |
fsm_enable.fsm_enable_b.fsm14_en |
fsm_enable.fsm_enable_b.fsm15_en |
fsm_enable.fsm_enable_b.fsm16_en ) == PROPERTY_ENABLE ) {
ret = lsm6dso_fsm_data_rate_get(ctx, &fsm_odr);
if (ret == 0) {
switch (fsm_odr) {
case LSM6DSO_ODR_FSM_12Hz5:
if (val == LSM6DSO_GY_ODR_OFF) {
odr_gy = LSM6DSO_GY_ODR_12Hz5;
}
else {
odr_gy = val;
}
break;
case LSM6DSO_ODR_FSM_26Hz:
if (val == LSM6DSO_GY_ODR_OFF) {
odr_gy = LSM6DSO_GY_ODR_26Hz;
}
else if (val == LSM6DSO_GY_ODR_12Hz5) {
odr_gy = LSM6DSO_GY_ODR_26Hz;
}
else {
odr_gy = val;
}
break;
case LSM6DSO_ODR_FSM_52Hz:
if (val == LSM6DSO_GY_ODR_OFF) {
odr_gy = LSM6DSO_GY_ODR_52Hz;
}
else if (val == LSM6DSO_GY_ODR_12Hz5) {
odr_gy = LSM6DSO_GY_ODR_52Hz;
}
else if (val == LSM6DSO_GY_ODR_26Hz) {
odr_gy = LSM6DSO_GY_ODR_52Hz;
}
else {
odr_gy = val;
}
break;
case LSM6DSO_ODR_FSM_104Hz:
if (val == LSM6DSO_GY_ODR_OFF) {
odr_gy = LSM6DSO_GY_ODR_104Hz;
}
else if (val == LSM6DSO_GY_ODR_12Hz5) {
odr_gy = LSM6DSO_GY_ODR_104Hz;
}
else if (val == LSM6DSO_GY_ODR_26Hz) {
odr_gy = LSM6DSO_GY_ODR_104Hz;
}
else if (val == LSM6DSO_GY_ODR_52Hz) {
odr_gy = LSM6DSO_GY_ODR_104Hz;
}
else {
odr_gy = val;
}
break;
default:
odr_gy = val;
break;
}
}
}
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.odr_g = (uint8_t) odr_gy;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Gyroscope UI data rate selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of odr_g in reg CTRL2_G
*
*/
int32_t lsm6dso_gy_data_rate_get(stmdev_ctx_t *ctx,
lsm6dso_odr_g_t *val)
{
lsm6dso_ctrl2_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1);
switch (reg.odr_g) {
case LSM6DSO_GY_ODR_OFF:
*val = LSM6DSO_GY_ODR_OFF;
break;
case LSM6DSO_GY_ODR_12Hz5:
*val = LSM6DSO_GY_ODR_12Hz5;
break;
case LSM6DSO_GY_ODR_26Hz:
*val = LSM6DSO_GY_ODR_26Hz;
break;
case LSM6DSO_GY_ODR_52Hz:
*val = LSM6DSO_GY_ODR_52Hz;
break;
case LSM6DSO_GY_ODR_104Hz:
*val = LSM6DSO_GY_ODR_104Hz;
break;
case LSM6DSO_GY_ODR_208Hz:
*val = LSM6DSO_GY_ODR_208Hz;
break;
case LSM6DSO_GY_ODR_417Hz:
*val = LSM6DSO_GY_ODR_417Hz;
break;
case LSM6DSO_GY_ODR_833Hz:
*val = LSM6DSO_GY_ODR_833Hz;
break;
case LSM6DSO_GY_ODR_1667Hz:
*val = LSM6DSO_GY_ODR_1667Hz;
break;
case LSM6DSO_GY_ODR_3333Hz:
*val = LSM6DSO_GY_ODR_3333Hz;
break;
case LSM6DSO_GY_ODR_6667Hz:
*val = LSM6DSO_GY_ODR_6667Hz;
break;
default:
*val = LSM6DSO_GY_ODR_OFF;
break;
}
return ret;
}
/**
* @brief Block data update.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of bdu in reg CTRL3_C
*
*/
int32_t lsm6dso_block_data_update_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.bdu = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Block data update.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of bdu in reg CTRL3_C
*
*/
int32_t lsm6dso_block_data_update_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
*val = reg.bdu;
return ret;
}
/**
* @brief Weight of XL user offset bits of registers X_OFS_USR (73h),
* Y_OFS_USR (74h), Z_OFS_USR (75h).[set]
*
* @param ctx read / write interface definitions
* @param val change the values of usr_off_w in reg CTRL6_C
*
*/
int32_t lsm6dso_xl_offset_weight_set(stmdev_ctx_t *ctx,
lsm6dso_usr_off_w_t val)
{
lsm6dso_ctrl6_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.usr_off_w = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Weight of XL user offset bits of registers X_OFS_USR (73h),
* Y_OFS_USR (74h), Z_OFS_USR (75h).[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of usr_off_w in reg CTRL6_C
*
*/
int32_t lsm6dso_xl_offset_weight_get(stmdev_ctx_t *ctx,
lsm6dso_usr_off_w_t *val)
{
lsm6dso_ctrl6_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
switch (reg.usr_off_w) {
case LSM6DSO_LSb_1mg:
*val = LSM6DSO_LSb_1mg;
break;
case LSM6DSO_LSb_16mg:
*val = LSM6DSO_LSb_16mg;
break;
default:
*val = LSM6DSO_LSb_1mg;
break;
}
return ret;
}
/**
* @brief Accelerometer power mode.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of xl_hm_mode in
* reg CTRL6_C
*
*/
int32_t lsm6dso_xl_power_mode_set(stmdev_ctx_t *ctx,
lsm6dso_xl_hm_mode_t val)
{
lsm6dso_ctrl5_c_t ctrl5_c;
lsm6dso_ctrl6_c_t ctrl6_c;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *) &ctrl5_c, 1);
if (ret == 0) {
ctrl5_c.xl_ulp_en = ((uint8_t)val & 0x02U) >> 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *) &ctrl5_c,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *) &ctrl6_c, 1);
}
if (ret == 0) {
ctrl6_c.xl_hm_mode = (uint8_t)val & 0x01U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *) &ctrl6_c,
1);
}
return ret;
}
/**
* @brief Accelerometer power mode.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of xl_hm_mode in reg CTRL6_C
*
*/
int32_t lsm6dso_xl_power_mode_get(stmdev_ctx_t *ctx,
lsm6dso_xl_hm_mode_t *val)
{
lsm6dso_ctrl5_c_t ctrl5_c;
lsm6dso_ctrl6_c_t ctrl6_c;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *) &ctrl5_c, 1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *) &ctrl6_c, 1);
switch ( (ctrl5_c.xl_ulp_en << 1) | ctrl6_c.xl_hm_mode) {
case LSM6DSO_HIGH_PERFORMANCE_MD:
*val = LSM6DSO_HIGH_PERFORMANCE_MD;
break;
case LSM6DSO_LOW_NORMAL_POWER_MD:
*val = LSM6DSO_LOW_NORMAL_POWER_MD;
break;
case LSM6DSO_ULTRA_LOW_POWER_MD:
*val = LSM6DSO_ULTRA_LOW_POWER_MD;
break;
default:
*val = LSM6DSO_HIGH_PERFORMANCE_MD;
break;
}
}
return ret;
}
/**
* @brief Operating mode for gyroscope.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of g_hm_mode in reg CTRL7_G
*
*/
int32_t lsm6dso_gy_power_mode_set(stmdev_ctx_t *ctx,
lsm6dso_g_hm_mode_t val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
if (ret == 0) {
reg.g_hm_mode = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Operating mode for gyroscope.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of g_hm_mode in reg CTRL7_G
*
*/
int32_t lsm6dso_gy_power_mode_get(stmdev_ctx_t *ctx,
lsm6dso_g_hm_mode_t *val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
switch (reg.g_hm_mode) {
case LSM6DSO_GY_HIGH_PERFORMANCE:
*val = LSM6DSO_GY_HIGH_PERFORMANCE;
break;
case LSM6DSO_GY_NORMAL:
*val = LSM6DSO_GY_NORMAL;
break;
default:
*val = LSM6DSO_GY_HIGH_PERFORMANCE;
break;
}
return ret;
}
/**
* @brief The STATUS_REG register is read by the primary interface.[get]
*
* @param ctx read / write interface definitions
* @param val register STATUS_REG
*
*/
int32_t lsm6dso_status_reg_get(stmdev_ctx_t *ctx,
lsm6dso_status_reg_t *val)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *) val, 1);
return ret;
}
/**
* @brief Accelerometer new data available.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of xlda in reg STATUS_REG
*
*/
int32_t lsm6dso_xl_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_status_reg_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *)®, 1);
*val = reg.xlda;
return ret;
}
/**
* @brief Gyroscope new data available.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of gda in reg STATUS_REG
*
*/
int32_t lsm6dso_gy_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_status_reg_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *)®, 1);
*val = reg.gda;
return ret;
}
/**
* @brief Temperature new data available.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tda in reg STATUS_REG
*
*/
int32_t lsm6dso_temp_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_status_reg_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *)®, 1);
*val = reg.tda;
return ret;
}
/**
* @brief Accelerometer X-axis user offset correction expressed in
* two’s complement, weight depends on USR_OFF_W in CTRL6_C (15h).
* The value must be in the range [-127 127].[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_xl_usr_offset_x_set(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_write_reg(ctx, LSM6DSO_X_OFS_USR, buff, 1);
return ret;
}
/**
* @brief Accelerometer X-axis user offset correction expressed in two’s
* complement, weight depends on USR_OFF_W in CTRL6_C (15h).
* The value must be in the range [-127 127].[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_xl_usr_offset_x_get(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_X_OFS_USR, buff, 1);
return ret;
}
/**
* @brief Accelerometer Y-axis user offset correction expressed in two’s
* complement, weight depends on USR_OFF_W in CTRL6_C (15h).
* The value must be in the range [-127 127].[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_xl_usr_offset_y_set(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_write_reg(ctx, LSM6DSO_Y_OFS_USR, buff, 1);
return ret;
}
/**
* @brief Accelerometer Y-axis user offset correction expressed in two’s
* complement, weight depends on USR_OFF_W in CTRL6_C (15h).
* The value must be in the range [-127 127].[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_xl_usr_offset_y_get(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_Y_OFS_USR, buff, 1);
return ret;
}
/**
* @brief Accelerometer Z-axis user offset correction expressed in two’s
* complement, weight depends on USR_OFF_W in CTRL6_C (15h).
* The value must be in the range [-127 127].[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_xl_usr_offset_z_set(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_write_reg(ctx, LSM6DSO_Z_OFS_USR, buff, 1);
return ret;
}
/**
* @brief Accelerometer Z-axis user offset correction expressed in two’s
* complement, weight depends on USR_OFF_W in CTRL6_C (15h).
* The value must be in the range [-127 127].[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_xl_usr_offset_z_get(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_Z_OFS_USR, buff, 1);
return ret;
}
/**
* @brief Enables user offset on out.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of usr_off_on_out in reg CTRL7_G
*
*/
int32_t lsm6dso_xl_usr_offset_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
if (ret == 0) {
reg.usr_off_on_out = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief User offset on out flag.[get]
*
* @param ctx read / write interface definitions
* @param val values of usr_off_on_out in reg CTRL7_G
*
*/
int32_t lsm6dso_xl_usr_offset_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
*val = reg.usr_off_on_out;
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_Timestamp
* @brief This section groups all the functions that manage the
* timestamp generation.
* @{
*
*/
/**
* @brief Reset timestamp counter.[set]
*
* @param ctx Read / write interface definitions.(ptr)
* @retval Interface status (MANDATORY: return 0 -> no Error).
*
*/
int32_t lsm6dso_timestamp_rst(stmdev_ctx_t *ctx)
{
uint8_t rst_val = 0xAA;
return lsm6dso_write_reg(ctx, LSM6DSO_TIMESTAMP2, &rst_val, 1);
}
/**
* @brief Enables timestamp counter.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of timestamp_en in reg CTRL10_C
*
*/
int32_t lsm6dso_timestamp_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl10_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL10_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.timestamp_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL10_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables timestamp counter.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of timestamp_en in reg CTRL10_C
*
*/
int32_t lsm6dso_timestamp_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl10_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL10_C, (uint8_t *)®, 1);
*val = reg.timestamp_en;
return ret;
}
/**
* @brief Timestamp first data output register (r).
* The value is expressed as a 32-bit word and the bit
* resolution is 25 μs.[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_timestamp_raw_get(stmdev_ctx_t *ctx, uint32_t *val)
{
uint8_t buff[4];
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TIMESTAMP0, buff, 4);
*val = buff[3];
*val = (*val * 256U) + buff[2];
*val = (*val * 256U) + buff[1];
*val = (*val * 256U) + buff[0];
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_Data output
* @brief This section groups all the data output functions.
* @{
*
*/
/**
* @brief Circular burst-mode (rounding) read of the output
* registers.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of rounding in reg CTRL5_C
*
*/
int32_t lsm6dso_rounding_mode_set(stmdev_ctx_t *ctx,
lsm6dso_rounding_t val)
{
lsm6dso_ctrl5_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.rounding = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Gyroscope UI chain full-scale selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of rounding in reg CTRL5_C
*
*/
int32_t lsm6dso_rounding_mode_get(stmdev_ctx_t *ctx,
lsm6dso_rounding_t *val)
{
lsm6dso_ctrl5_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
switch (reg.rounding) {
case LSM6DSO_NO_ROUND:
*val = LSM6DSO_NO_ROUND;
break;
case LSM6DSO_ROUND_XL:
*val = LSM6DSO_ROUND_XL;
break;
case LSM6DSO_ROUND_GY:
*val = LSM6DSO_ROUND_GY;
break;
case LSM6DSO_ROUND_GY_XL:
*val = LSM6DSO_ROUND_GY_XL;
break;
default:
*val = LSM6DSO_NO_ROUND;
break;
}
return ret;
}
/**
* @brief Temperature data output register (r).
* L and H registers together express a 16-bit word in two’s
* complement.[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_temperature_raw_get(stmdev_ctx_t *ctx, int16_t *val)
{
uint8_t buff[2];
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_OUT_TEMP_L, buff, 2);
val[0] = (int16_t)buff[1];
val[0] = (val[0] * 256) + (int16_t)buff[0];
return ret;
}
/**
* @brief Angular rate sensor. The value is expressed as a 16-bit
* word in two’s complement.[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_angular_rate_raw_get(stmdev_ctx_t *ctx, int16_t *val)
{
uint8_t buff[6];
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_OUTX_L_G, buff, 6);
val[0] = (int16_t)buff[1];
val[0] = (val[0] * 256) + (int16_t)buff[0];
val[1] = (int16_t)buff[3];
val[1] = (val[1] * 256) + (int16_t)buff[2];
val[2] = (int16_t)buff[5];
val[2] = (val[2] * 256) + (int16_t)buff[4];
return ret;
}
/**
* @brief Linear acceleration output register.
* The value is expressed as a 16-bit word in two’s complement.[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_acceleration_raw_get(stmdev_ctx_t *ctx, int16_t *val)
{
uint8_t buff[6];
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_OUTX_L_A, buff, 6);
val[0] = (int16_t)buff[1];
val[0] = (val[0] * 256) + (int16_t)buff[0];
val[1] = (int16_t)buff[3];
val[1] = (val[1] * 256) + (int16_t)buff[2];
val[2] = (int16_t)buff[5];
val[2] = (val[2] * 256) + (int16_t)buff[4];
return ret;
}
/**
* @brief FIFO data output [get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_fifo_out_raw_get(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_DATA_OUT_X_L, buff, 6);
return ret;
}
/**
* @brief Step counter output register.[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_number_of_steps_get(stmdev_ctx_t *ctx, uint16_t *val)
{
uint8_t buff[2];
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_STEP_COUNTER_L, buff, 2);
}
if (ret == 0) {
*val = buff[1];
*val = (*val * 256U) + buff[0];
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Reset step counter register.[get]
*
* @param ctx read / write interface definitions
*
*/
int32_t lsm6dso_steps_reset(stmdev_ctx_t *ctx)
{
lsm6dso_emb_func_src_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_SRC, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.pedo_rst_step = PROPERTY_ENABLE;
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_SRC, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_common
* @brief This section groups common useful functions.
* @{
*
*/
/**
* @brief Difference in percentage of the effective ODR(and timestamp rate)
* with respect to the typical.
* Step: 0.15%. 8-bit format, 2's complement.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of freq_fine in reg
* INTERNAL_FREQ_FINE
*
*/
int32_t lsm6dso_odr_cal_reg_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_internal_freq_fine_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INTERNAL_FREQ_FINE,
(uint8_t *)®, 1);
if (ret == 0) {
reg.freq_fine = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INTERNAL_FREQ_FINE,
(uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Difference in percentage of the effective ODR(and timestamp rate)
* with respect to the typical.
* Step: 0.15%. 8-bit format, 2's complement.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of freq_fine in reg INTERNAL_FREQ_FINE
*
*/
int32_t lsm6dso_odr_cal_reg_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_internal_freq_fine_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INTERNAL_FREQ_FINE,
(uint8_t *)®, 1);
*val = reg.freq_fine;
return ret;
}
/**
* @brief Enable access to the embedded functions/sensor
* hub configuration registers.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of reg_access in
* reg FUNC_CFG_ACCESS
*
*/
int32_t lsm6dso_mem_bank_set(stmdev_ctx_t *ctx,
lsm6dso_reg_access_t val)
{
lsm6dso_func_cfg_access_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)®,
1);
if (ret == 0) {
reg.reg_access = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)®,
1);
}
return ret;
}
/**
* @brief Enable access to the embedded functions/sensor
* hub configuration registers.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of reg_access in
* reg FUNC_CFG_ACCESS
*
*/
int32_t lsm6dso_mem_bank_get(stmdev_ctx_t *ctx,
lsm6dso_reg_access_t *val)
{
lsm6dso_func_cfg_access_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)®,
1);
switch (reg.reg_access) {
case LSM6DSO_USER_BANK:
*val = LSM6DSO_USER_BANK;
break;
case LSM6DSO_SENSOR_HUB_BANK:
*val = LSM6DSO_SENSOR_HUB_BANK;
break;
case LSM6DSO_EMBEDDED_FUNC_BANK:
*val = LSM6DSO_EMBEDDED_FUNC_BANK;
break;
default:
*val = LSM6DSO_USER_BANK;
break;
}
return ret;
}
/**
* @brief Write a line(byte) in a page.[set]
*
* @param ctx read / write interface definitions
* @param uint8_t address: page line address
* @param val value to write
*
*/
int32_t lsm6dso_ln_pg_write_byte(stmdev_ctx_t *ctx, uint16_t address,
uint8_t *val)
{
lsm6dso_page_rw_t page_rw;
lsm6dso_page_sel_t page_sel;
lsm6dso_page_address_t page_address;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.page_rw = 0x02; /* page_write enable */
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel,
1);
}
if (ret == 0) {
page_sel.page_sel = ((uint8_t)(address >> 8) & 0x0FU);
page_sel.not_used_01 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel,
1);
}
if (ret == 0) {
page_address.page_addr = (uint8_t)address & 0xFFU;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_ADDRESS,
(uint8_t *)&page_address, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_VALUE, val, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.page_rw = 0x00; /* page_write disable */
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Write buffer in a page.[set]
*
* @param ctx read / write interface definitions
* @param uint8_t address: page line address
* @param uint8_t *buf: buffer to write
* @param uint8_t len: buffer len
*
*/
int32_t lsm6dso_ln_pg_write(stmdev_ctx_t *ctx, uint16_t address,
uint8_t *buf, uint8_t len)
{
lsm6dso_page_rw_t page_rw;
lsm6dso_page_sel_t page_sel;
lsm6dso_page_address_t page_address;
uint16_t addr_pointed;
int32_t ret;
uint8_t i ;
addr_pointed = address;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.page_rw = 0x02; /* page_write enable*/
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel,
1);
}
if (ret == 0) {
page_sel.page_sel = ((uint8_t)(addr_pointed >> 8) & 0x0FU);
page_sel.not_used_01 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel,
1);
}
if (ret == 0) {
page_address.page_addr = (uint8_t)(addr_pointed & 0x00FFU);
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_ADDRESS,
(uint8_t *)&page_address, 1);
}
if (ret == 0) {
for (i = 0; ( (i < len) && (ret == 0) ); i++) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_VALUE, &buf[i], 1);
addr_pointed++;
/* Check if page wrap */
if ( ( (addr_pointed % 0x0100U) == 0x00U ) && (ret == 0) ) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *)&page_sel,
1);
if (ret == 0) {
page_sel.page_sel = ((uint8_t)(addr_pointed >> 8) & 0x0FU);
page_sel.not_used_01 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL,
(uint8_t *)&page_sel, 1);
}
}
}
page_sel.page_sel = 0;
page_sel.not_used_01 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.page_rw = 0x00; /* page_write disable */
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Read a line(byte) in a page.[get]
*
* @param ctx read / write interface definitions
* @param uint8_t address: page line address
* @param val read value
*
*/
int32_t lsm6dso_ln_pg_read_byte(stmdev_ctx_t *ctx, uint16_t address,
uint8_t *val)
{
lsm6dso_page_rw_t page_rw;
lsm6dso_page_sel_t page_sel;
lsm6dso_page_address_t page_address;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.page_rw = 0x01; /* page_read enable*/
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel,
1);
}
if (ret == 0) {
page_sel.page_sel = ((uint8_t)(address >> 8) & 0x0FU);
page_sel.not_used_01 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel,
1);
}
if (ret == 0) {
page_address.page_addr = (uint8_t)address & 0x00FFU;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_ADDRESS,
(uint8_t *)&page_address, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_VALUE, val, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.page_rw = 0x00; /* page_read disable */
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Data-ready pulsed / letched mode.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of
* dataready_pulsed in
* reg COUNTER_BDR_REG1
*
*/
int32_t lsm6dso_data_ready_mode_set(stmdev_ctx_t *ctx,
lsm6dso_dataready_pulsed_t val)
{
lsm6dso_counter_bdr_reg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®,
1);
if (ret == 0) {
reg.dataready_pulsed = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1,
(uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Data-ready pulsed / letched mode.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of
* dataready_pulsed in
* reg COUNTER_BDR_REG1
*
*/
int32_t lsm6dso_data_ready_mode_get(stmdev_ctx_t *ctx,
lsm6dso_dataready_pulsed_t *val)
{
lsm6dso_counter_bdr_reg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®,
1);
switch (reg.dataready_pulsed) {
case LSM6DSO_DRDY_LATCHED:
*val = LSM6DSO_DRDY_LATCHED;
break;
case LSM6DSO_DRDY_PULSED:
*val = LSM6DSO_DRDY_PULSED;
break;
default:
*val = LSM6DSO_DRDY_LATCHED;
break;
}
return ret;
}
/**
* @brief Device "Who am I".[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_device_id_get(stmdev_ctx_t *ctx, uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WHO_AM_I, buff, 1);
return ret;
}
/**
* @brief Software reset. Restore the default values
* in user registers[set]
*
* @param ctx read / write interface definitions
* @param val change the values of sw_reset in reg CTRL3_C
*
*/
int32_t lsm6dso_reset_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.sw_reset = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Software reset. Restore the default values in user registers.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of sw_reset in reg CTRL3_C
*
*/
int32_t lsm6dso_reset_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
*val = reg.sw_reset;
return ret;
}
/**
* @brief Register address automatically incremented during a multiple byte
* access with a serial interface.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of if_inc in reg CTRL3_C
*
*/
int32_t lsm6dso_auto_increment_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.if_inc = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Register address automatically incremented during a multiple byte
* access with a serial interface.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of if_inc in reg CTRL3_C
*
*/
int32_t lsm6dso_auto_increment_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
*val = reg.if_inc;
return ret;
}
/**
* @brief Reboot memory content. Reload the calibration parameters.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of boot in reg CTRL3_C
*
*/
int32_t lsm6dso_boot_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.boot = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Reboot memory content. Reload the calibration parameters.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of boot in reg CTRL3_C
*
*/
int32_t lsm6dso_boot_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
*val = reg.boot;
return ret;
}
/**
* @brief Linear acceleration sensor self-test enable.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of st_xl in reg CTRL5_C
*
*/
int32_t lsm6dso_xl_self_test_set(stmdev_ctx_t *ctx,
lsm6dso_st_xl_t val)
{
lsm6dso_ctrl5_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.st_xl = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Linear acceleration sensor self-test enable.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of st_xl in reg CTRL5_C
*
*/
int32_t lsm6dso_xl_self_test_get(stmdev_ctx_t *ctx,
lsm6dso_st_xl_t *val)
{
lsm6dso_ctrl5_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
switch (reg.st_xl) {
case LSM6DSO_XL_ST_DISABLE:
*val = LSM6DSO_XL_ST_DISABLE;
break;
case LSM6DSO_XL_ST_POSITIVE:
*val = LSM6DSO_XL_ST_POSITIVE;
break;
case LSM6DSO_XL_ST_NEGATIVE:
*val = LSM6DSO_XL_ST_NEGATIVE;
break;
default:
*val = LSM6DSO_XL_ST_DISABLE;
break;
}
return ret;
}
/**
* @brief Angular rate sensor self-test enable.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of st_g in reg CTRL5_C
*
*/
int32_t lsm6dso_gy_self_test_set(stmdev_ctx_t *ctx,
lsm6dso_st_g_t val)
{
lsm6dso_ctrl5_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.st_g = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Angular rate sensor self-test enable.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of st_g in reg CTRL5_C
*
*/
int32_t lsm6dso_gy_self_test_get(stmdev_ctx_t *ctx,
lsm6dso_st_g_t *val)
{
lsm6dso_ctrl5_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1);
switch (reg.st_g) {
case LSM6DSO_GY_ST_DISABLE:
*val = LSM6DSO_GY_ST_DISABLE;
break;
case LSM6DSO_GY_ST_POSITIVE:
*val = LSM6DSO_GY_ST_POSITIVE;
break;
case LSM6DSO_GY_ST_NEGATIVE:
*val = LSM6DSO_GY_ST_NEGATIVE;
break;
default:
*val = LSM6DSO_GY_ST_DISABLE;
break;
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_filters
* @brief This section group all the functions concerning the
* filters configuration
* @{
*
*/
/**
* @brief Accelerometer output from LPF2 filtering stage selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of lpf2_xl_en in reg CTRL1_XL
*
*/
int32_t lsm6dso_xl_filter_lp2_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl1_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.lpf2_xl_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Accelerometer output from LPF2 filtering stage selection.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of lpf2_xl_en in reg CTRL1_XL
*
*/
int32_t lsm6dso_xl_filter_lp2_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl1_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1);
*val = reg.lpf2_xl_en;
return ret;
}
/**
* @brief Enables gyroscope digital LPF1 if auxiliary SPI is disabled;
* the bandwidth can be selected through FTYPE [2:0]
* in CTRL6_C (15h).[set]
*
* @param ctx read / write interface definitions
* @param val change the values of lpf1_sel_g in reg CTRL4_C
*
*/
int32_t lsm6dso_gy_filter_lp1_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.lpf1_sel_g = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables gyroscope digital LPF1 if auxiliary SPI is disabled;
* the bandwidth can be selected through FTYPE [2:0]
* in CTRL6_C (15h).[get]
*
* @param ctx read / write interface definitions
* @param val change the values of lpf1_sel_g in reg CTRL4_C
*
*/
int32_t lsm6dso_gy_filter_lp1_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
*val = reg.lpf1_sel_g;
return ret;
}
/**
* @brief Mask DRDY on pin (both XL & Gyro) until filter settling ends
* (XL and Gyro independently masked).[set]
*
* @param ctx read / write interface definitions
* @param val change the values of drdy_mask in reg CTRL4_C
*
*/
int32_t lsm6dso_filter_settling_mask_set(stmdev_ctx_t *ctx,
uint8_t val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.drdy_mask = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Mask DRDY on pin (both XL & Gyro) until filter settling ends
* (XL and Gyro independently masked).[get]
*
* @param ctx read / write interface definitions
* @param val change the values of drdy_mask in reg CTRL4_C
*
*/
int32_t lsm6dso_filter_settling_mask_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
*val = reg.drdy_mask;
return ret;
}
/**
* @brief Gyroscope lp1 bandwidth.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of ftype in reg CTRL6_C
*
*/
int32_t lsm6dso_gy_lp1_bandwidth_set(stmdev_ctx_t *ctx,
lsm6dso_ftype_t val)
{
lsm6dso_ctrl6_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.ftype = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Gyroscope lp1 bandwidth.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of ftype in reg CTRL6_C
*
*/
int32_t lsm6dso_gy_lp1_bandwidth_get(stmdev_ctx_t *ctx,
lsm6dso_ftype_t *val)
{
lsm6dso_ctrl6_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
switch (reg.ftype) {
case LSM6DSO_ULTRA_LIGHT:
*val = LSM6DSO_ULTRA_LIGHT;
break;
case LSM6DSO_VERY_LIGHT:
*val = LSM6DSO_VERY_LIGHT;
break;
case LSM6DSO_LIGHT:
*val = LSM6DSO_LIGHT;
break;
case LSM6DSO_MEDIUM:
*val = LSM6DSO_MEDIUM;
break;
case LSM6DSO_STRONG:
*val = LSM6DSO_STRONG;
break;
case LSM6DSO_VERY_STRONG:
*val = LSM6DSO_VERY_STRONG;
break;
case LSM6DSO_AGGRESSIVE:
*val = LSM6DSO_AGGRESSIVE;
break;
case LSM6DSO_XTREME:
*val = LSM6DSO_XTREME;
break;
default:
*val = LSM6DSO_ULTRA_LIGHT;
break;
}
return ret;
}
/**
* @brief Low pass filter 2 on 6D function selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of low_pass_on_6d in reg CTRL8_XL
*
*/
int32_t lsm6dso_xl_lp2_on_6d_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.low_pass_on_6d = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Low pass filter 2 on 6D function selection.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of low_pass_on_6d in reg CTRL8_XL
*
*/
int32_t lsm6dso_xl_lp2_on_6d_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
*val = reg.low_pass_on_6d;
return ret;
}
/**
* @brief Accelerometer slope filter / high-pass filter selection
* on output.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of hp_slope_xl_en
* in reg CTRL8_XL
*
*/
int32_t lsm6dso_xl_hp_path_on_out_set(stmdev_ctx_t *ctx,
lsm6dso_hp_slope_xl_en_t val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.hp_slope_xl_en = ((uint8_t)val & 0x10U) >> 4;
reg.hp_ref_mode_xl = ((uint8_t)val & 0x20U) >> 5;
reg.hpcf_xl = (uint8_t)val & 0x07U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Accelerometer slope filter / high-pass filter selection
* on output.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of hp_slope_xl_en
* in reg CTRL8_XL
*
*/
int32_t lsm6dso_xl_hp_path_on_out_get(stmdev_ctx_t *ctx,
lsm6dso_hp_slope_xl_en_t *val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
switch ((reg.hp_ref_mode_xl << 5) | (reg.hp_slope_xl_en << 4) |
reg.hpcf_xl) {
case LSM6DSO_HP_PATH_DISABLE_ON_OUT:
*val = LSM6DSO_HP_PATH_DISABLE_ON_OUT;
break;
case LSM6DSO_SLOPE_ODR_DIV_4:
*val = LSM6DSO_SLOPE_ODR_DIV_4;
break;
case LSM6DSO_HP_ODR_DIV_10:
*val = LSM6DSO_HP_ODR_DIV_10;
break;
case LSM6DSO_HP_ODR_DIV_20:
*val = LSM6DSO_HP_ODR_DIV_20;
break;
case LSM6DSO_HP_ODR_DIV_45:
*val = LSM6DSO_HP_ODR_DIV_45;
break;
case LSM6DSO_HP_ODR_DIV_100:
*val = LSM6DSO_HP_ODR_DIV_100;
break;
case LSM6DSO_HP_ODR_DIV_200:
*val = LSM6DSO_HP_ODR_DIV_200;
break;
case LSM6DSO_HP_ODR_DIV_400:
*val = LSM6DSO_HP_ODR_DIV_400;
break;
case LSM6DSO_HP_ODR_DIV_800:
*val = LSM6DSO_HP_ODR_DIV_800;
break;
case LSM6DSO_HP_REF_MD_ODR_DIV_10:
*val = LSM6DSO_HP_REF_MD_ODR_DIV_10;
break;
case LSM6DSO_HP_REF_MD_ODR_DIV_20:
*val = LSM6DSO_HP_REF_MD_ODR_DIV_20;
break;
case LSM6DSO_HP_REF_MD_ODR_DIV_45:
*val = LSM6DSO_HP_REF_MD_ODR_DIV_45;
break;
case LSM6DSO_HP_REF_MD_ODR_DIV_100:
*val = LSM6DSO_HP_REF_MD_ODR_DIV_100;
break;
case LSM6DSO_HP_REF_MD_ODR_DIV_200:
*val = LSM6DSO_HP_REF_MD_ODR_DIV_200;
break;
case LSM6DSO_HP_REF_MD_ODR_DIV_400:
*val = LSM6DSO_HP_REF_MD_ODR_DIV_400;
break;
case LSM6DSO_HP_REF_MD_ODR_DIV_800:
*val = LSM6DSO_HP_REF_MD_ODR_DIV_800;
break;
case LSM6DSO_LP_ODR_DIV_10:
*val = LSM6DSO_LP_ODR_DIV_10;
break;
case LSM6DSO_LP_ODR_DIV_20:
*val = LSM6DSO_LP_ODR_DIV_20;
break;
case LSM6DSO_LP_ODR_DIV_45:
*val = LSM6DSO_LP_ODR_DIV_45;
break;
case LSM6DSO_LP_ODR_DIV_100:
*val = LSM6DSO_LP_ODR_DIV_100;
break;
case LSM6DSO_LP_ODR_DIV_200:
*val = LSM6DSO_LP_ODR_DIV_200;
break;
case LSM6DSO_LP_ODR_DIV_400:
*val = LSM6DSO_LP_ODR_DIV_400;
break;
case LSM6DSO_LP_ODR_DIV_800:
*val = LSM6DSO_LP_ODR_DIV_800;
break;
default:
*val = LSM6DSO_HP_PATH_DISABLE_ON_OUT;
break;
}
return ret;
}
/**
* @brief Enables accelerometer LPF2 and HPF fast-settling mode.
* The filter sets the second samples after writing this bit.
* Active only during device exit from power-down mode.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fastsettl_mode_xl in
* reg CTRL8_XL
*
*/
int32_t lsm6dso_xl_fast_settling_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.fastsettl_mode_xl = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables accelerometer LPF2 and HPF fast-settling mode.
* The filter sets the second samples after writing this bit.
* Active only during device exit from power-down mode.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of fastsettl_mode_xl in reg CTRL8_XL
*
*/
int32_t lsm6dso_xl_fast_settling_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
*val = reg.fastsettl_mode_xl;
return ret;
}
/**
* @brief HPF or SLOPE filter selection on wake-up and Activity/Inactivity
* functions.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of slope_fds in reg TAP_CFG0
*
*/
int32_t lsm6dso_xl_hp_path_internal_set(stmdev_ctx_t *ctx,
lsm6dso_slope_fds_t val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
if (ret == 0) {
reg.slope_fds = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief HPF or SLOPE filter selection on wake-up and Activity/Inactivity
* functions.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of slope_fds in reg TAP_CFG0
*
*/
int32_t lsm6dso_xl_hp_path_internal_get(stmdev_ctx_t *ctx,
lsm6dso_slope_fds_t *val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
switch (reg.slope_fds) {
case LSM6DSO_USE_SLOPE:
*val = LSM6DSO_USE_SLOPE;
break;
case LSM6DSO_USE_HPF:
*val = LSM6DSO_USE_HPF;
break;
default:
*val = LSM6DSO_USE_SLOPE;
break;
}
return ret;
}
/**
* @brief Enables gyroscope digital high-pass filter. The filter is
* enabled only if the gyro is in HP mode.[set]
*
* @param ctx read / write interface definitions
* @param val Get the values of hp_en_g and hp_en_g
* in reg CTRL7_G
*
*/
int32_t lsm6dso_gy_hp_path_internal_set(stmdev_ctx_t *ctx,
lsm6dso_hpm_g_t val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
if (ret == 0) {
reg.hp_en_g = ((uint8_t)val & 0x80U) >> 7;
reg.hpm_g = (uint8_t)val & 0x03U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables gyroscope digital high-pass filter. The filter is
* enabled only if the gyro is in HP mode.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of hp_en_g and hp_en_g
* in reg CTRL7_G
*
*/
int32_t lsm6dso_gy_hp_path_internal_get(stmdev_ctx_t *ctx,
lsm6dso_hpm_g_t *val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
switch ((reg.hp_en_g << 7) + reg.hpm_g) {
case LSM6DSO_HP_FILTER_NONE:
*val = LSM6DSO_HP_FILTER_NONE;
break;
case LSM6DSO_HP_FILTER_16mHz:
*val = LSM6DSO_HP_FILTER_16mHz;
break;
case LSM6DSO_HP_FILTER_65mHz:
*val = LSM6DSO_HP_FILTER_65mHz;
break;
case LSM6DSO_HP_FILTER_260mHz:
*val = LSM6DSO_HP_FILTER_260mHz;
break;
case LSM6DSO_HP_FILTER_1Hz04:
*val = LSM6DSO_HP_FILTER_1Hz04;
break;
default:
*val = LSM6DSO_HP_FILTER_NONE;
break;
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_ Auxiliary_interface
* @brief This section groups all the functions concerning
* auxiliary interface.
* @{
*
*/
/**
* @brief aOn auxiliary interface connect/disconnect SDO and OCS
* internal pull-up.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of ois_pu_dis in
* reg PIN_CTRL
*
*/
int32_t lsm6dso_aux_sdo_ocs_mode_set(stmdev_ctx_t *ctx,
lsm6dso_ois_pu_dis_t val)
{
lsm6dso_pin_ctrl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1);
if (ret == 0) {
reg.ois_pu_dis = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief On auxiliary interface connect/disconnect SDO and OCS
* internal pull-up.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of ois_pu_dis in reg PIN_CTRL
*
*/
int32_t lsm6dso_aux_sdo_ocs_mode_get(stmdev_ctx_t *ctx,
lsm6dso_ois_pu_dis_t *val)
{
lsm6dso_pin_ctrl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1);
switch (reg.ois_pu_dis) {
case LSM6DSO_AUX_PULL_UP_DISC:
*val = LSM6DSO_AUX_PULL_UP_DISC;
break;
case LSM6DSO_AUX_PULL_UP_CONNECT:
*val = LSM6DSO_AUX_PULL_UP_CONNECT;
break;
default:
*val = LSM6DSO_AUX_PULL_UP_DISC;
break;
}
return ret;
}
/**
* @brief OIS chain on aux interface power on mode.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of ois_on in reg CTRL7_G
*
*/
int32_t lsm6dso_aux_pw_on_ctrl_set(stmdev_ctx_t *ctx,
lsm6dso_ois_on_t val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
if (ret == 0) {
reg.ois_on_en = (uint8_t)val & 0x01U;
reg.ois_on = (uint8_t)val & 0x01U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief aux_pw_on_ctrl: [get] OIS chain on aux interface power on mode
*
* @param ctx read / write interface definitions
* @param val Get the values of ois_on in reg CTRL7_G
*
*/
int32_t lsm6dso_aux_pw_on_ctrl_get(stmdev_ctx_t *ctx,
lsm6dso_ois_on_t *val)
{
lsm6dso_ctrl7_g_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1);
switch (reg.ois_on) {
case LSM6DSO_AUX_ON:
*val = LSM6DSO_AUX_ON;
break;
case LSM6DSO_AUX_ON_BY_AUX_INTERFACE:
*val = LSM6DSO_AUX_ON_BY_AUX_INTERFACE;
break;
default:
*val = LSM6DSO_AUX_ON;
break;
}
return ret;
}
/**
* @brief Accelerometer full-scale management between UI chain and
* OIS chain. When XL UI is on, the full scale is the same
* between UI/OIS and is chosen by the UI CTRL registers;
* when XL UI is in PD, the OIS can choose the FS.
* Full scales are independent between the UI/OIS chain
* but both bound to 8 g.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of xl_fs_mode in
* reg CTRL8_XL
*
*/
int32_t lsm6dso_aux_xl_fs_mode_set(stmdev_ctx_t *ctx,
lsm6dso_xl_fs_mode_t val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.xl_fs_mode = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Accelerometer full-scale management between UI chain and
* OIS chain. When XL UI is on, the full scale is the same
* between UI/OIS and is chosen by the UI CTRL registers;
* when XL UI is in PD, the OIS can choose the FS.
* Full scales are independent between the UI/OIS chain
* but both bound to 8 g.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of xl_fs_mode in reg CTRL8_XL
*
*/
int32_t lsm6dso_aux_xl_fs_mode_get(stmdev_ctx_t *ctx,
lsm6dso_xl_fs_mode_t *val)
{
lsm6dso_ctrl8_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1);
switch (reg.xl_fs_mode) {
case LSM6DSO_USE_SAME_XL_FS:
*val = LSM6DSO_USE_SAME_XL_FS;
break;
case LSM6DSO_USE_DIFFERENT_XL_FS:
*val = LSM6DSO_USE_DIFFERENT_XL_FS;
break;
default:
*val = LSM6DSO_USE_SAME_XL_FS;
break;
}
return ret;
}
/**
* @brief The STATUS_SPIAux register is read by the auxiliary SPI.[get]
*
* @param ctx read / write interface definitions
* @param lsm6dso_status_spiaux_t: registers STATUS_SPIAUX
*
*/
int32_t lsm6dso_aux_status_reg_get(stmdev_ctx_t *ctx,
lsm6dso_status_spiaux_t *val)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *) val,
1);
return ret;
}
/**
* @brief aux_xl_flag_data_ready: [get] AUX accelerometer data available
*
* @param ctx read / write interface definitions
* @param val change the values of xlda in reg STATUS_SPIAUX
*
*/
int32_t lsm6dso_aux_xl_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_status_spiaux_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *)®,
1);
*val = reg.xlda;
return ret;
}
/**
* @brief aux_gy_flag_data_ready: [get] AUX gyroscope data available.
*
* @param ctx read / write interface definitions
* @param val change the values of gda in reg STATUS_SPIAUX
*
*/
int32_t lsm6dso_aux_gy_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_status_spiaux_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *)®,
1);
*val = reg.gda;
return ret;
}
/**
* @brief High when the gyroscope output is in the settling phase.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of gyro_settling in reg STATUS_SPIAUX
*
*/
int32_t lsm6dso_aux_gy_flag_settling_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_status_spiaux_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *)®,
1);
*val = reg.gyro_settling;
return ret;
}
/**
* @brief Selects accelerometer self-test. Effective only if XL OIS
* chain is enabled.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of st_xl_ois in reg INT_OIS
*
*/
int32_t lsm6dso_aux_xl_self_test_set(stmdev_ctx_t *ctx,
lsm6dso_st_xl_ois_t val)
{
lsm6dso_int_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.st_xl_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects accelerometer self-test. Effective only if XL OIS
* chain is enabled.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of st_xl_ois in reg INT_OIS
*
*/
int32_t lsm6dso_aux_xl_self_test_get(stmdev_ctx_t *ctx,
lsm6dso_st_xl_ois_t *val)
{
lsm6dso_int_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
switch (reg.st_xl_ois) {
case LSM6DSO_AUX_XL_DISABLE:
*val = LSM6DSO_AUX_XL_DISABLE;
break;
case LSM6DSO_AUX_XL_POS:
*val = LSM6DSO_AUX_XL_POS;
break;
case LSM6DSO_AUX_XL_NEG:
*val = LSM6DSO_AUX_XL_NEG;
break;
default:
*val = LSM6DSO_AUX_XL_DISABLE;
break;
}
return ret;
}
/**
* @brief Indicates polarity of DEN signal on OIS chain.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of den_lh_ois in
* reg INT_OIS
*
*/
int32_t lsm6dso_aux_den_polarity_set(stmdev_ctx_t *ctx,
lsm6dso_den_lh_ois_t val)
{
lsm6dso_int_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.den_lh_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Indicates polarity of DEN signal on OIS chain.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of den_lh_ois in reg INT_OIS
*
*/
int32_t lsm6dso_aux_den_polarity_get(stmdev_ctx_t *ctx,
lsm6dso_den_lh_ois_t *val)
{
lsm6dso_int_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
switch (reg.den_lh_ois) {
case LSM6DSO_AUX_DEN_ACTIVE_LOW:
*val = LSM6DSO_AUX_DEN_ACTIVE_LOW;
break;
case LSM6DSO_AUX_DEN_ACTIVE_HIGH:
*val = LSM6DSO_AUX_DEN_ACTIVE_HIGH;
break;
default:
*val = LSM6DSO_AUX_DEN_ACTIVE_LOW;
break;
}
return ret;
}
/**
* @brief Configure DEN mode on the OIS chain.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of lvl2_ois in reg INT_OIS
*
*/
int32_t lsm6dso_aux_den_mode_set(stmdev_ctx_t *ctx,
lsm6dso_lvl2_ois_t val)
{
lsm6dso_ctrl1_ois_t ctrl1_ois;
lsm6dso_int_ois_t int_ois;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *) &int_ois, 1);
if (ret == 0) {
int_ois.lvl2_ois = (uint8_t)val & 0x01U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *) &int_ois,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *) &ctrl1_ois,
1);
}
if (ret == 0) {
ctrl1_ois.lvl1_ois = ((uint8_t)val & 0x02U) >> 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS,
(uint8_t *) &ctrl1_ois, 1);
}
return ret;
}
/**
* @brief Configure DEN mode on the OIS chain.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of lvl2_ois in reg INT_OIS
*
*/
int32_t lsm6dso_aux_den_mode_get(stmdev_ctx_t *ctx,
lsm6dso_lvl2_ois_t *val)
{
lsm6dso_ctrl1_ois_t ctrl1_ois;
lsm6dso_int_ois_t int_ois;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *) &int_ois, 1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *) &ctrl1_ois,
1);
switch ((ctrl1_ois.lvl1_ois << 1) + int_ois.lvl2_ois) {
case LSM6DSO_AUX_DEN_DISABLE:
*val = LSM6DSO_AUX_DEN_DISABLE;
break;
case LSM6DSO_AUX_DEN_LEVEL_LATCH:
*val = LSM6DSO_AUX_DEN_LEVEL_LATCH;
break;
case LSM6DSO_AUX_DEN_LEVEL_TRIG:
*val = LSM6DSO_AUX_DEN_LEVEL_TRIG;
break;
default:
*val = LSM6DSO_AUX_DEN_DISABLE;
break;
}
}
return ret;
}
/**
* @brief Enables/Disable OIS chain DRDY on INT2 pin.
* This setting has priority over all other INT2 settings.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of int2_drdy_ois in reg INT_OIS
*
*/
int32_t lsm6dso_aux_drdy_on_int2_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_int_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.int2_drdy_ois = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables/Disable OIS chain DRDY on INT2 pin.
* This setting has priority over all other INT2 settings.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of int2_drdy_ois in reg INT_OIS
*
*/
int32_t lsm6dso_aux_drdy_on_int2_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_int_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1);
*val = reg.int2_drdy_ois;
return ret;
}
/**
* @brief Enables OIS chain data processing for gyro in Mode 3 and Mode 4
* (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1).
* When the OIS chain is enabled, the OIS outputs are available
* through the SPI2 in registers OUTX_L_G (22h) through
* OUTZ_H_G (27h) and STATUS_REG (1Eh) / STATUS_SPIAux, and
* LPF1 is dedicated to this chain.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of ois_en_spi2 in
* reg CTRL1_OIS
*
*/
int32_t lsm6dso_aux_mode_set(stmdev_ctx_t *ctx,
lsm6dso_ois_en_spi2_t val)
{
lsm6dso_ctrl1_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.ois_en_spi2 = (uint8_t)val & 0x01U;
reg.mode4_en = ((uint8_t)val & 0x02U) >> 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables OIS chain data processing for gyro in Mode 3 and Mode 4
* (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1).
* When the OIS chain is enabled, the OIS outputs are available
* through the SPI2 in registers OUTX_L_G (22h) through
* OUTZ_H_G (27h) and STATUS_REG (1Eh) / STATUS_SPIAux, and
* LPF1 is dedicated to this chain.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of ois_en_spi2 in
* reg CTRL1_OIS
*
*/
int32_t lsm6dso_aux_mode_get(stmdev_ctx_t *ctx,
lsm6dso_ois_en_spi2_t *val)
{
lsm6dso_ctrl1_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
switch ((reg.mode4_en << 1) | reg.ois_en_spi2) {
case LSM6DSO_AUX_DISABLE:
*val = LSM6DSO_AUX_DISABLE;
break;
case LSM6DSO_MODE_3_GY:
*val = LSM6DSO_MODE_3_GY;
break;
case LSM6DSO_MODE_4_GY_XL:
*val = LSM6DSO_MODE_4_GY_XL;
break;
default:
*val = LSM6DSO_AUX_DISABLE;
break;
}
return ret;
}
/**
* @brief Selects gyroscope OIS chain full-scale.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fs_g_ois in reg CTRL1_OIS
*
*/
int32_t lsm6dso_aux_gy_full_scale_set(stmdev_ctx_t *ctx,
lsm6dso_fs_g_ois_t val)
{
lsm6dso_ctrl1_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.fs_g_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects gyroscope OIS chain full-scale.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of fs_g_ois in reg CTRL1_OIS
*
*/
int32_t lsm6dso_aux_gy_full_scale_get(stmdev_ctx_t *ctx,
lsm6dso_fs_g_ois_t *val)
{
lsm6dso_ctrl1_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
switch (reg.fs_g_ois) {
case LSM6DSO_250dps_AUX:
*val = LSM6DSO_250dps_AUX;
break;
case LSM6DSO_125dps_AUX:
*val = LSM6DSO_125dps_AUX;
break;
case LSM6DSO_500dps_AUX:
*val = LSM6DSO_500dps_AUX;
break;
case LSM6DSO_1000dps_AUX:
*val = LSM6DSO_1000dps_AUX;
break;
case LSM6DSO_2000dps_AUX:
*val = LSM6DSO_2000dps_AUX;
break;
default:
*val = LSM6DSO_250dps_AUX;
break;
}
return ret;
}
/**
* @brief SPI2 3- or 4-wire interface.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of sim_ois in reg CTRL1_OIS
*
*/
int32_t lsm6dso_aux_spi_mode_set(stmdev_ctx_t *ctx,
lsm6dso_sim_ois_t val)
{
lsm6dso_ctrl1_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.sim_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief SPI2 3- or 4-wire interface.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of sim_ois in reg CTRL1_OIS
*
*/
int32_t lsm6dso_aux_spi_mode_get(stmdev_ctx_t *ctx,
lsm6dso_sim_ois_t *val)
{
lsm6dso_ctrl1_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1);
switch (reg.sim_ois) {
case LSM6DSO_AUX_SPI_4_WIRE:
*val = LSM6DSO_AUX_SPI_4_WIRE;
break;
case LSM6DSO_AUX_SPI_3_WIRE:
*val = LSM6DSO_AUX_SPI_3_WIRE;
break;
default:
*val = LSM6DSO_AUX_SPI_4_WIRE;
break;
}
return ret;
}
/**
* @brief Selects gyroscope digital LPF1 filter bandwidth.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of ftype_ois in
* reg CTRL2_OIS
*
*/
int32_t lsm6dso_aux_gy_lp1_bandwidth_set(stmdev_ctx_t *ctx,
lsm6dso_ftype_ois_t val)
{
lsm6dso_ctrl2_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.ftype_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects gyroscope digital LPF1 filter bandwidth.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of ftype_ois in reg CTRL2_OIS
*
*/
int32_t lsm6dso_aux_gy_lp1_bandwidth_get(stmdev_ctx_t *ctx,
lsm6dso_ftype_ois_t *val)
{
lsm6dso_ctrl2_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1);
switch (reg.ftype_ois) {
case LSM6DSO_351Hz39:
*val = LSM6DSO_351Hz39;
break;
case LSM6DSO_236Hz63:
*val = LSM6DSO_236Hz63;
break;
case LSM6DSO_172Hz70:
*val = LSM6DSO_172Hz70;
break;
case LSM6DSO_937Hz91:
*val = LSM6DSO_937Hz91;
break;
default:
*val = LSM6DSO_351Hz39;
break;
}
return ret;
}
/**
* @brief Selects gyroscope OIS chain digital high-pass filter cutoff.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of hpm_ois in reg CTRL2_OIS
*
*/
int32_t lsm6dso_aux_gy_hp_bandwidth_set(stmdev_ctx_t *ctx,
lsm6dso_hpm_ois_t val)
{
lsm6dso_ctrl2_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.hpm_ois = (uint8_t)val & 0x03U;
reg.hp_en_ois = ((uint8_t)val & 0x10U) >> 4;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects gyroscope OIS chain digital high-pass filter cutoff.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of hpm_ois in reg CTRL2_OIS
*
*/
int32_t lsm6dso_aux_gy_hp_bandwidth_get(stmdev_ctx_t *ctx,
lsm6dso_hpm_ois_t *val)
{
lsm6dso_ctrl2_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1);
switch ((reg.hp_en_ois << 4) | reg.hpm_ois) {
case LSM6DSO_AUX_HP_DISABLE:
*val = LSM6DSO_AUX_HP_DISABLE;
break;
case LSM6DSO_AUX_HP_Hz016:
*val = LSM6DSO_AUX_HP_Hz016;
break;
case LSM6DSO_AUX_HP_Hz065:
*val = LSM6DSO_AUX_HP_Hz065;
break;
case LSM6DSO_AUX_HP_Hz260:
*val = LSM6DSO_AUX_HP_Hz260;
break;
case LSM6DSO_AUX_HP_1Hz040:
*val = LSM6DSO_AUX_HP_1Hz040;
break;
default:
*val = LSM6DSO_AUX_HP_DISABLE;
break;
}
return ret;
}
/**
* @brief Enable / Disables OIS chain clamp.
* Enable: All OIS chain outputs = 8000h
* during self-test; Disable: OIS chain self-test
* outputs dependent from the aux gyro full
* scale selected.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of st_ois_clampdis in
* reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_gy_clamp_set(stmdev_ctx_t *ctx,
lsm6dso_st_ois_clampdis_t val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.st_ois_clampdis = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enable / Disables OIS chain clamp.
* Enable: All OIS chain outputs = 8000h
* during self-test; Disable: OIS chain self-test
* outputs dependent from the aux gyro full
* scale selected.[set]
*
* @param ctx read / write interface definitions
* @param val Get the values of st_ois_clampdis in
* reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_gy_clamp_get(stmdev_ctx_t *ctx,
lsm6dso_st_ois_clampdis_t *val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
switch (reg.st_ois_clampdis) {
case LSM6DSO_ENABLE_CLAMP:
*val = LSM6DSO_ENABLE_CLAMP;
break;
case LSM6DSO_DISABLE_CLAMP:
*val = LSM6DSO_DISABLE_CLAMP;
break;
default:
*val = LSM6DSO_ENABLE_CLAMP;
break;
}
return ret;
}
/**
* @brief Selects gyroscope OIS chain self-test.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of st_ois in reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_gy_self_test_set(stmdev_ctx_t *ctx,
lsm6dso_st_ois_t val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.st_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects gyroscope OIS chain self-test.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of st_ois in reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_gy_self_test_get(stmdev_ctx_t *ctx,
lsm6dso_st_ois_t *val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
switch (reg.st_ois) {
case LSM6DSO_AUX_GY_DISABLE:
*val = LSM6DSO_AUX_GY_DISABLE;
break;
case LSM6DSO_AUX_GY_POS:
*val = LSM6DSO_AUX_GY_POS;
break;
case LSM6DSO_AUX_GY_NEG:
*val = LSM6DSO_AUX_GY_NEG;
break;
default:
*val = LSM6DSO_AUX_GY_DISABLE;
break;
}
return ret;
}
/**
* @brief Selects accelerometer OIS channel bandwidth.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of
* filter_xl_conf_ois in reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_xl_bandwidth_set(stmdev_ctx_t *ctx,
lsm6dso_filter_xl_conf_ois_t val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.filter_xl_conf_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects accelerometer OIS channel bandwidth.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of
* filter_xl_conf_ois in reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_xl_bandwidth_get(stmdev_ctx_t *ctx,
lsm6dso_filter_xl_conf_ois_t *val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
switch (reg.filter_xl_conf_ois) {
case LSM6DSO_289Hz:
*val = LSM6DSO_289Hz;
break;
case LSM6DSO_258Hz:
*val = LSM6DSO_258Hz;
break;
case LSM6DSO_120Hz:
*val = LSM6DSO_120Hz;
break;
case LSM6DSO_65Hz2:
*val = LSM6DSO_65Hz2;
break;
case LSM6DSO_33Hz2:
*val = LSM6DSO_33Hz2;
break;
case LSM6DSO_16Hz6:
*val = LSM6DSO_16Hz6;
break;
case LSM6DSO_8Hz30:
*val = LSM6DSO_8Hz30;
break;
case LSM6DSO_4Hz15:
*val = LSM6DSO_4Hz15;
break;
default:
*val = LSM6DSO_289Hz;
break;
}
return ret;
}
/**
* @brief Selects accelerometer OIS channel full-scale.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fs_xl_ois in
* reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_xl_full_scale_set(stmdev_ctx_t *ctx,
lsm6dso_fs_xl_ois_t val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
if (ret == 0) {
reg.fs_xl_ois = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects accelerometer OIS channel full-scale.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of fs_xl_ois in reg CTRL3_OIS
*
*/
int32_t lsm6dso_aux_xl_full_scale_get(stmdev_ctx_t *ctx,
lsm6dso_fs_xl_ois_t *val)
{
lsm6dso_ctrl3_ois_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1);
switch (reg.fs_xl_ois) {
case LSM6DSO_AUX_2g:
*val = LSM6DSO_AUX_2g;
break;
case LSM6DSO_AUX_16g:
*val = LSM6DSO_AUX_16g;
break;
case LSM6DSO_AUX_4g:
*val = LSM6DSO_AUX_4g;
break;
case LSM6DSO_AUX_8g:
*val = LSM6DSO_AUX_8g;
break;
default:
*val = LSM6DSO_AUX_2g;
break;
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_ main_serial_interface
* @brief This section groups all the functions concerning main
* serial interface management (not auxiliary)
* @{
*
*/
/**
* @brief Connect/Disconnect SDO/SA0 internal pull-up.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of sdo_pu_en in
* reg PIN_CTRL
*
*/
int32_t lsm6dso_sdo_sa0_mode_set(stmdev_ctx_t *ctx,
lsm6dso_sdo_pu_en_t val)
{
lsm6dso_pin_ctrl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1);
if (ret == 0) {
reg.sdo_pu_en = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Connect/Disconnect SDO/SA0 internal pull-up.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of sdo_pu_en in reg PIN_CTRL
*
*/
int32_t lsm6dso_sdo_sa0_mode_get(stmdev_ctx_t *ctx,
lsm6dso_sdo_pu_en_t *val)
{
lsm6dso_pin_ctrl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1);
switch (reg.sdo_pu_en) {
case LSM6DSO_PULL_UP_DISC:
*val = LSM6DSO_PULL_UP_DISC;
break;
case LSM6DSO_PULL_UP_CONNECT:
*val = LSM6DSO_PULL_UP_CONNECT;
break;
default:
*val = LSM6DSO_PULL_UP_DISC;
break;
}
return ret;
}
/**
* @brief SPI Serial Interface Mode selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of sim in reg CTRL3_C
*
*/
int32_t lsm6dso_spi_mode_set(stmdev_ctx_t *ctx, lsm6dso_sim_t val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.sim = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief SPI Serial Interface Mode selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of sim in reg CTRL3_C
*
*/
int32_t lsm6dso_spi_mode_get(stmdev_ctx_t *ctx, lsm6dso_sim_t *val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
switch (reg.sim) {
case LSM6DSO_SPI_4_WIRE:
*val = LSM6DSO_SPI_4_WIRE;
break;
case LSM6DSO_SPI_3_WIRE:
*val = LSM6DSO_SPI_3_WIRE;
break;
default:
*val = LSM6DSO_SPI_4_WIRE;
break;
}
return ret;
}
/**
* @brief Disable / Enable I2C interface.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of i2c_disable in
* reg CTRL4_C
*
*/
int32_t lsm6dso_i2c_interface_set(stmdev_ctx_t *ctx,
lsm6dso_i2c_disable_t val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.i2c_disable = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Disable / Enable I2C interface.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of i2c_disable in
* reg CTRL4_C
*
*/
int32_t lsm6dso_i2c_interface_get(stmdev_ctx_t *ctx,
lsm6dso_i2c_disable_t *val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
switch (reg.i2c_disable) {
case LSM6DSO_I2C_ENABLE:
*val = LSM6DSO_I2C_ENABLE;
break;
case LSM6DSO_I2C_DISABLE:
*val = LSM6DSO_I2C_DISABLE;
break;
default:
*val = LSM6DSO_I2C_ENABLE;
break;
}
return ret;
}
/**
* @brief I3C Enable/Disable communication protocol[.set]
*
* @param ctx read / write interface definitions
* @param val change the values of i3c_disable
* in reg CTRL9_XL
*
*/
int32_t lsm6dso_i3c_disable_set(stmdev_ctx_t *ctx,
lsm6dso_i3c_disable_t val)
{
lsm6dso_i3c_bus_avb_t i3c_bus_avb;
lsm6dso_ctrl9_xl_t ctrl9_xl;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl,
1);
if (ret == 0) {
ctrl9_xl.i3c_disable = ((uint8_t)val & 0x80U) >> 7;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
if (ret == 0) {
i3c_bus_avb.i3c_bus_avb_sel = (uint8_t)val & 0x03U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
return ret;
}
/**
* @brief I3C Enable/Disable communication protocol.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of i3c_disable in
* reg CTRL9_XL
*
*/
int32_t lsm6dso_i3c_disable_get(stmdev_ctx_t *ctx,
lsm6dso_i3c_disable_t *val)
{
lsm6dso_ctrl9_xl_t ctrl9_xl;
lsm6dso_i3c_bus_avb_t i3c_bus_avb;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl,
1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
switch ((ctrl9_xl.i3c_disable << 7) | i3c_bus_avb.i3c_bus_avb_sel) {
case LSM6DSO_I3C_DISABLE:
*val = LSM6DSO_I3C_DISABLE;
break;
case LSM6DSO_I3C_ENABLE_T_50us:
*val = LSM6DSO_I3C_ENABLE_T_50us;
break;
case LSM6DSO_I3C_ENABLE_T_2us:
*val = LSM6DSO_I3C_ENABLE_T_2us;
break;
case LSM6DSO_I3C_ENABLE_T_1ms:
*val = LSM6DSO_I3C_ENABLE_T_1ms;
break;
case LSM6DSO_I3C_ENABLE_T_25ms:
*val = LSM6DSO_I3C_ENABLE_T_25ms;
break;
default:
*val = LSM6DSO_I3C_DISABLE;
break;
}
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_interrupt_pins
* @brief This section groups all the functions that manage interrupt pins
* @{
*
*/
/**
* @brief Connect/Disconnect INT1 internal pull-down.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of pd_dis_int1 in reg I3C_BUS_AVB
*
*/
int32_t lsm6dso_int1_mode_set(stmdev_ctx_t *ctx,
lsm6dso_int1_pd_en_t val)
{
lsm6dso_i3c_bus_avb_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)®, 1);
if (ret == 0) {
reg.pd_dis_int1 = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Connect/Disconnect INT1 internal pull-down.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of pd_dis_int1 in reg I3C_BUS_AVB
*
*/
int32_t lsm6dso_int1_mode_get(stmdev_ctx_t *ctx,
lsm6dso_int1_pd_en_t *val)
{
lsm6dso_i3c_bus_avb_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)®, 1);
switch (reg.pd_dis_int1) {
case LSM6DSO_PULL_DOWN_DISC:
*val = LSM6DSO_PULL_DOWN_DISC;
break;
case LSM6DSO_PULL_DOWN_CONNECT:
*val = LSM6DSO_PULL_DOWN_CONNECT;
break;
default:
*val = LSM6DSO_PULL_DOWN_DISC;
break;
}
return ret;
}
/**
* @brief Push-pull/open drain selection on interrupt pads.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of pp_od in reg CTRL3_C
*
*/
int32_t lsm6dso_pin_mode_set(stmdev_ctx_t *ctx, lsm6dso_pp_od_t val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.pp_od = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Push-pull/open drain selection on interrupt pads.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of pp_od in reg CTRL3_C
*
*/
int32_t lsm6dso_pin_mode_get(stmdev_ctx_t *ctx, lsm6dso_pp_od_t *val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
switch (reg.pp_od) {
case LSM6DSO_PUSH_PULL:
*val = LSM6DSO_PUSH_PULL;
break;
case LSM6DSO_OPEN_DRAIN:
*val = LSM6DSO_OPEN_DRAIN;
break;
default:
*val = LSM6DSO_PUSH_PULL;
break;
}
return ret;
}
/**
* @brief Interrupt active-high/low.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of h_lactive in reg CTRL3_C
*
*/
int32_t lsm6dso_pin_polarity_set(stmdev_ctx_t *ctx,
lsm6dso_h_lactive_t val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.h_lactive = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Interrupt active-high/low.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of h_lactive in reg CTRL3_C
*
*/
int32_t lsm6dso_pin_polarity_get(stmdev_ctx_t *ctx,
lsm6dso_h_lactive_t *val)
{
lsm6dso_ctrl3_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1);
switch (reg.h_lactive) {
case LSM6DSO_ACTIVE_HIGH:
*val = LSM6DSO_ACTIVE_HIGH;
break;
case LSM6DSO_ACTIVE_LOW:
*val = LSM6DSO_ACTIVE_LOW;
break;
default:
*val = LSM6DSO_ACTIVE_HIGH;
break;
}
return ret;
}
/**
* @brief All interrupt signals become available on INT1 pin.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of int2_on_int1 in reg CTRL4_C
*
*/
int32_t lsm6dso_all_on_int1_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.int2_on_int1 = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief All interrupt signals become available on INT1 pin.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of int2_on_int1 in reg CTRL4_C
*
*/
int32_t lsm6dso_all_on_int1_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
*val = reg.int2_on_int1;
return ret;
}
/**
* @brief Interrupt notification mode.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of lir in reg TAP_CFG0
*
*/
int32_t lsm6dso_int_notification_set(stmdev_ctx_t *ctx,
lsm6dso_lir_t val)
{
lsm6dso_tap_cfg0_t tap_cfg0;
lsm6dso_page_rw_t page_rw;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0,
1);
if (ret == 0) {
tap_cfg0.lir = (uint8_t)val & 0x01U;
tap_cfg0.int_clr_on_read = (uint8_t)val & 0x01U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.emb_func_lir = ((uint8_t)val & 0x02U) >> 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Interrupt notification mode.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of lir in reg TAP_CFG0
*
*/
int32_t lsm6dso_int_notification_get(stmdev_ctx_t *ctx,
lsm6dso_lir_t *val)
{
lsm6dso_tap_cfg0_t tap_cfg0;
lsm6dso_page_rw_t page_rw;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0,
1);
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
if (ret == 0) {
switch ((page_rw.emb_func_lir << 1) | tap_cfg0.lir) {
case LSM6DSO_ALL_INT_PULSED:
*val = LSM6DSO_ALL_INT_PULSED;
break;
case LSM6DSO_BASE_LATCHED_EMB_PULSED:
*val = LSM6DSO_BASE_LATCHED_EMB_PULSED;
break;
case LSM6DSO_BASE_PULSED_EMB_LATCHED:
*val = LSM6DSO_BASE_PULSED_EMB_LATCHED;
break;
case LSM6DSO_ALL_INT_LATCHED:
*val = LSM6DSO_ALL_INT_LATCHED;
break;
default:
*val = LSM6DSO_ALL_INT_PULSED;
break;
}
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_Wake_Up_event
* @brief This section groups all the functions that manage the Wake Up
* event generation.
* @{
*
*/
/**
* @brief Weight of 1 LSB of wakeup threshold.[set]
* 0: 1 LSB =FS_XL / 64
* 1: 1 LSB = FS_XL / 256
*
* @param ctx read / write interface definitions
* @param val change the values of wake_ths_w in
* reg WAKE_UP_DUR
*
*/
int32_t lsm6dso_wkup_ths_weight_set(stmdev_ctx_t *ctx,
lsm6dso_wake_ths_w_t val)
{
lsm6dso_wake_up_dur_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
if (ret == 0) {
reg.wake_ths_w = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Weight of 1 LSB of wakeup threshold.[get]
* 0: 1 LSB =FS_XL / 64
* 1: 1 LSB = FS_XL / 256
*
* @param ctx read / write interface definitions
* @param val Get the values of wake_ths_w in
* reg WAKE_UP_DUR
*
*/
int32_t lsm6dso_wkup_ths_weight_get(stmdev_ctx_t *ctx,
lsm6dso_wake_ths_w_t *val)
{
lsm6dso_wake_up_dur_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
switch (reg.wake_ths_w) {
case LSM6DSO_LSb_FS_DIV_64:
*val = LSM6DSO_LSb_FS_DIV_64;
break;
case LSM6DSO_LSb_FS_DIV_256:
*val = LSM6DSO_LSb_FS_DIV_256;
break;
default:
*val = LSM6DSO_LSb_FS_DIV_64;
break;
}
return ret;
}
/**
* @brief Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in
* WAKE_UP_DUR.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of wk_ths in reg WAKE_UP_THS
*
*/
int32_t lsm6dso_wkup_threshold_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_wake_up_ths_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
if (ret == 0) {
reg.wk_ths = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in
* WAKE_UP_DUR.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of wk_ths in reg WAKE_UP_THS
*
*/
int32_t lsm6dso_wkup_threshold_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_wake_up_ths_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
*val = reg.wk_ths;
return ret;
}
/**
* @brief Wake up duration event.[set]
* 1LSb = 1 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of usr_off_on_wu in reg WAKE_UP_THS
*
*/
int32_t lsm6dso_xl_usr_offset_on_wkup_set(stmdev_ctx_t *ctx,
uint8_t val)
{
lsm6dso_wake_up_ths_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
if (ret == 0) {
reg.usr_off_on_wu = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Wake up duration event.[get]
* 1LSb = 1 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of usr_off_on_wu in reg WAKE_UP_THS
*
*/
int32_t lsm6dso_xl_usr_offset_on_wkup_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_wake_up_ths_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
*val = reg.usr_off_on_wu;
return ret;
}
/**
* @brief Wake up duration event.[set]
* 1LSb = 1 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of wake_dur in reg WAKE_UP_DUR
*
*/
int32_t lsm6dso_wkup_dur_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_wake_up_dur_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
if (ret == 0) {
reg.wake_dur = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Wake up duration event.[get]
* 1LSb = 1 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of wake_dur in reg WAKE_UP_DUR
*
*/
int32_t lsm6dso_wkup_dur_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_wake_up_dur_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
*val = reg.wake_dur;
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_ Activity/Inactivity_detection
* @brief This section groups all the functions concerning
* activity/inactivity detection.
* @{
*
*/
/**
* @brief Enables gyroscope Sleep mode.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of sleep_g in reg CTRL4_C
*
*/
int32_t lsm6dso_gy_sleep_mode_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.sleep_g = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables gyroscope Sleep mode.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of sleep_g in reg CTRL4_C
*
*/
int32_t lsm6dso_gy_sleep_mode_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl4_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1);
*val = reg.sleep_g;
return ret;
}
/**
* @brief Drives the sleep status instead of
* sleep change on INT pins
* (only if INT1_SLEEP_CHANGE or
* INT2_SLEEP_CHANGE bits are enabled).[set]
*
* @param ctx read / write interface definitions
* @param val change the values of sleep_status_on_int in reg TAP_CFG0
*
*/
int32_t lsm6dso_act_pin_notification_set(stmdev_ctx_t *ctx,
lsm6dso_sleep_status_on_int_t val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
if (ret == 0) {
reg.sleep_status_on_int = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Drives the sleep status instead of
* sleep change on INT pins (only if
* INT1_SLEEP_CHANGE or
* INT2_SLEEP_CHANGE bits are enabled).[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of sleep_status_on_int in reg TAP_CFG0
*
*/
int32_t lsm6dso_act_pin_notification_get(stmdev_ctx_t *ctx,
lsm6dso_sleep_status_on_int_t *val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
switch (reg.sleep_status_on_int) {
case LSM6DSO_DRIVE_SLEEP_CHG_EVENT:
*val = LSM6DSO_DRIVE_SLEEP_CHG_EVENT;
break;
case LSM6DSO_DRIVE_SLEEP_STATUS:
*val = LSM6DSO_DRIVE_SLEEP_STATUS;
break;
default:
*val = LSM6DSO_DRIVE_SLEEP_CHG_EVENT;
break;
}
return ret;
}
/**
* @brief Enable inactivity function.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of inact_en in reg TAP_CFG2
*
*/
int32_t lsm6dso_act_mode_set(stmdev_ctx_t *ctx,
lsm6dso_inact_en_t val)
{
lsm6dso_tap_cfg2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1);
if (ret == 0) {
reg.inact_en = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enable inactivity function.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of inact_en in reg TAP_CFG2
*
*/
int32_t lsm6dso_act_mode_get(stmdev_ctx_t *ctx,
lsm6dso_inact_en_t *val)
{
lsm6dso_tap_cfg2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1);
switch (reg.inact_en) {
case LSM6DSO_XL_AND_GY_NOT_AFFECTED:
*val = LSM6DSO_XL_AND_GY_NOT_AFFECTED;
break;
case LSM6DSO_XL_12Hz5_GY_NOT_AFFECTED:
*val = LSM6DSO_XL_12Hz5_GY_NOT_AFFECTED;
break;
case LSM6DSO_XL_12Hz5_GY_SLEEP:
*val = LSM6DSO_XL_12Hz5_GY_SLEEP;
break;
case LSM6DSO_XL_12Hz5_GY_PD:
*val = LSM6DSO_XL_12Hz5_GY_PD;
break;
default:
*val = LSM6DSO_XL_AND_GY_NOT_AFFECTED;
break;
}
return ret;
}
/**
* @brief Duration to go in sleep mode.[set]
* 1 LSb = 512 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of sleep_dur in reg WAKE_UP_DUR
*
*/
int32_t lsm6dso_act_sleep_dur_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_wake_up_dur_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
if (ret == 0) {
reg.sleep_dur = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Duration to go in sleep mode.[get]
* 1 LSb = 512 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of sleep_dur in reg WAKE_UP_DUR
*
*/
int32_t lsm6dso_act_sleep_dur_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_wake_up_dur_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1);
*val = reg.sleep_dur;
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_tap_generator
* @brief This section groups all the functions that manage the
* tap and double tap event generation.
* @{
*
*/
/**
* @brief Enable Z direction in tap recognition.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_z_en in reg TAP_CFG0
*
*/
int32_t lsm6dso_tap_detection_on_z_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
if (ret == 0) {
reg.tap_z_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enable Z direction in tap recognition.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_z_en in reg TAP_CFG0
*
*/
int32_t lsm6dso_tap_detection_on_z_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
*val = reg.tap_z_en;
return ret;
}
/**
* @brief Enable Y direction in tap recognition.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_y_en in reg TAP_CFG0
*
*/
int32_t lsm6dso_tap_detection_on_y_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
if (ret == 0) {
reg.tap_y_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enable Y direction in tap recognition.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_y_en in reg TAP_CFG0
*
*/
int32_t lsm6dso_tap_detection_on_y_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
*val = reg.tap_y_en;
return ret;
}
/**
* @brief Enable X direction in tap recognition.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_x_en in reg TAP_CFG0
*
*/
int32_t lsm6dso_tap_detection_on_x_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
if (ret == 0) {
reg.tap_x_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enable X direction in tap recognition.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_x_en in reg TAP_CFG0
*
*/
int32_t lsm6dso_tap_detection_on_x_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_tap_cfg0_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1);
*val = reg.tap_x_en;
return ret;
}
/**
* @brief X-axis tap recognition threshold.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_ths_x in reg TAP_CFG1
*
*/
int32_t lsm6dso_tap_threshold_x_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_tap_cfg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1);
if (ret == 0) {
reg.tap_ths_x = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief X-axis tap recognition threshold.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_ths_x in reg TAP_CFG1
*
*/
int32_t lsm6dso_tap_threshold_x_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_tap_cfg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1);
*val = reg.tap_ths_x;
return ret;
}
/**
* @brief Selection of axis priority for TAP detection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_priority in
* reg TAP_CFG1
*
*/
int32_t lsm6dso_tap_axis_priority_set(stmdev_ctx_t *ctx,
lsm6dso_tap_priority_t val)
{
lsm6dso_tap_cfg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1);
if (ret == 0) {
reg.tap_priority = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selection of axis priority for TAP detection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of tap_priority in
* reg TAP_CFG1
*
*/
int32_t lsm6dso_tap_axis_priority_get(stmdev_ctx_t *ctx,
lsm6dso_tap_priority_t *val)
{
lsm6dso_tap_cfg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1);
switch (reg.tap_priority) {
case LSM6DSO_XYZ:
*val = LSM6DSO_XYZ;
break;
case LSM6DSO_YXZ:
*val = LSM6DSO_YXZ;
break;
case LSM6DSO_XZY:
*val = LSM6DSO_XZY;
break;
case LSM6DSO_ZYX:
*val = LSM6DSO_ZYX;
break;
case LSM6DSO_YZX:
*val = LSM6DSO_YZX;
break;
case LSM6DSO_ZXY:
*val = LSM6DSO_ZXY;
break;
default:
*val = LSM6DSO_XYZ;
break;
}
return ret;
}
/**
* @brief Y-axis tap recognition threshold.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_ths_y in reg TAP_CFG2
*
*/
int32_t lsm6dso_tap_threshold_y_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_tap_cfg2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1);
if (ret == 0) {
reg.tap_ths_y = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Y-axis tap recognition threshold.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_ths_y in reg TAP_CFG2
*
*/
int32_t lsm6dso_tap_threshold_y_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_tap_cfg2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1);
*val = reg.tap_ths_y;
return ret;
}
/**
* @brief Z-axis recognition threshold.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_ths_z in reg TAP_THS_6D
*
*/
int32_t lsm6dso_tap_threshold_z_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_tap_ths_6d_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
if (ret == 0) {
reg.tap_ths_z = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Z-axis recognition threshold.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tap_ths_z in reg TAP_THS_6D
*
*/
int32_t lsm6dso_tap_threshold_z_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_tap_ths_6d_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
*val = reg.tap_ths_z;
return ret;
}
/**
* @brief Maximum duration is the maximum time of an
* over threshold signal detection to be recognized
* as a tap event. The default value of these bits
* is 00b which corresponds to 4*ODR_XL time.
* If the SHOCK[1:0] bits are set to a different
* value, 1LSB corresponds to 8*ODR_XL time.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of shock in reg INT_DUR2
*
*/
int32_t lsm6dso_tap_shock_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_int_dur2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
if (ret == 0) {
reg.shock = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Maximum duration is the maximum time of an
* over threshold signal detection to be recognized
* as a tap event. The default value of these bits
* is 00b which corresponds to 4*ODR_XL time.
* If the SHOCK[1:0] bits are set to a different
* value, 1LSB corresponds to 8*ODR_XL time.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of shock in reg INT_DUR2
*
*/
int32_t lsm6dso_tap_shock_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_int_dur2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
*val = reg.shock;
return ret;
}
/**
* @brief Quiet time is the time after the first detected
* tap in which there must not be any over threshold
* event.
* The default value of these bits is 00b which
* corresponds to 2*ODR_XL time. If the QUIET[1:0]
* bits are set to a different value,
* 1LSB corresponds to 4*ODR_XL time.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of quiet in reg INT_DUR2
*
*/
int32_t lsm6dso_tap_quiet_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_int_dur2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
if (ret == 0) {
reg.quiet = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Quiet time is the time after the first detected
* tap in which there must not be any over threshold
* event.
* The default value of these bits is 00b which
* corresponds to 2*ODR_XL time.
* If the QUIET[1:0] bits are set to a different
* value, 1LSB corresponds to 4*ODR_XL time.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of quiet in reg INT_DUR2
*
*/
int32_t lsm6dso_tap_quiet_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_int_dur2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
*val = reg.quiet;
return ret;
}
/**
* @brief When double tap recognition is enabled,
* this register expresses the maximum time
* between two consecutive detected taps to
* determine a double tap event.
* The default value of these bits is 0000b which
* corresponds to 16*ODR_XL time.
* If the DUR[3:0] bits are set to a different value,
* 1LSB corresponds to 32*ODR_XL time.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of dur in reg INT_DUR2
*
*/
int32_t lsm6dso_tap_dur_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_int_dur2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
if (ret == 0) {
reg.dur = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief When double tap recognition is enabled,
* this register expresses the maximum time
* between two consecutive detected taps to
* determine a double tap event.
* The default value of these bits is 0000b which
* corresponds to 16*ODR_XL time. If the DUR[3:0]
* bits are set to a different value,
* 1LSB corresponds to 32*ODR_XL time.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of dur in reg INT_DUR2
*
*/
int32_t lsm6dso_tap_dur_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_int_dur2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1);
*val = reg.dur;
return ret;
}
/**
* @brief Single/double-tap event enable.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of single_double_tap in reg WAKE_UP_THS
*
*/
int32_t lsm6dso_tap_mode_set(stmdev_ctx_t *ctx,
lsm6dso_single_double_tap_t val)
{
lsm6dso_wake_up_ths_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
if (ret == 0) {
reg.single_double_tap = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Single/double-tap event enable.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of single_double_tap in reg WAKE_UP_THS
*
*/
int32_t lsm6dso_tap_mode_get(stmdev_ctx_t *ctx,
lsm6dso_single_double_tap_t *val)
{
lsm6dso_wake_up_ths_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1);
switch (reg.single_double_tap) {
case LSM6DSO_ONLY_SINGLE:
*val = LSM6DSO_ONLY_SINGLE;
break;
case LSM6DSO_BOTH_SINGLE_DOUBLE:
*val = LSM6DSO_BOTH_SINGLE_DOUBLE;
break;
default:
*val = LSM6DSO_ONLY_SINGLE;
break;
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_ Six_position_detection(6D/4D)
* @brief This section groups all the functions concerning six position
* detection (6D).
* @{
*
*/
/**
* @brief Threshold for 4D/6D function.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of sixd_ths in reg TAP_THS_6D
*
*/
int32_t lsm6dso_6d_threshold_set(stmdev_ctx_t *ctx,
lsm6dso_sixd_ths_t val)
{
lsm6dso_tap_ths_6d_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
if (ret == 0) {
reg.sixd_ths = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Threshold for 4D/6D function.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of sixd_ths in reg TAP_THS_6D
*
*/
int32_t lsm6dso_6d_threshold_get(stmdev_ctx_t *ctx,
lsm6dso_sixd_ths_t *val)
{
lsm6dso_tap_ths_6d_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
switch (reg.sixd_ths) {
case LSM6DSO_DEG_80:
*val = LSM6DSO_DEG_80;
break;
case LSM6DSO_DEG_70:
*val = LSM6DSO_DEG_70;
break;
case LSM6DSO_DEG_60:
*val = LSM6DSO_DEG_60;
break;
case LSM6DSO_DEG_50:
*val = LSM6DSO_DEG_50;
break;
default:
*val = LSM6DSO_DEG_80;
break;
}
return ret;
}
/**
* @brief 4D orientation detection enable.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of d4d_en in reg TAP_THS_6D
*
*/
int32_t lsm6dso_4d_mode_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_tap_ths_6d_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
if (ret == 0) {
reg.d4d_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief 4D orientation detection enable.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of d4d_en in reg TAP_THS_6D
*
*/
int32_t lsm6dso_4d_mode_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_tap_ths_6d_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1);
*val = reg.d4d_en;
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_free_fall
* @brief This section group all the functions concerning the free
* fall detection.
* @{
*
*/
/**
* @brief Free fall threshold setting.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of ff_ths in reg FREE_FALL
*
*/
int32_t lsm6dso_ff_threshold_set(stmdev_ctx_t *ctx,
lsm6dso_ff_ths_t val)
{
lsm6dso_free_fall_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)®, 1);
if (ret == 0) {
reg.ff_ths = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Free fall threshold setting.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of ff_ths in reg FREE_FALL
*
*/
int32_t lsm6dso_ff_threshold_get(stmdev_ctx_t *ctx,
lsm6dso_ff_ths_t *val)
{
lsm6dso_free_fall_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)®, 1);
switch (reg.ff_ths) {
case LSM6DSO_FF_TSH_156mg:
*val = LSM6DSO_FF_TSH_156mg;
break;
case LSM6DSO_FF_TSH_219mg:
*val = LSM6DSO_FF_TSH_219mg;
break;
case LSM6DSO_FF_TSH_250mg:
*val = LSM6DSO_FF_TSH_250mg;
break;
case LSM6DSO_FF_TSH_312mg:
*val = LSM6DSO_FF_TSH_312mg;
break;
case LSM6DSO_FF_TSH_344mg:
*val = LSM6DSO_FF_TSH_344mg;
break;
case LSM6DSO_FF_TSH_406mg:
*val = LSM6DSO_FF_TSH_406mg;
break;
case LSM6DSO_FF_TSH_469mg:
*val = LSM6DSO_FF_TSH_469mg;
break;
case LSM6DSO_FF_TSH_500mg:
*val = LSM6DSO_FF_TSH_500mg;
break;
default:
*val = LSM6DSO_FF_TSH_156mg;
break;
}
return ret;
}
/**
* @brief Free-fall duration event.[set]
* 1LSb = 1 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of ff_dur in reg FREE_FALL
*
*/
int32_t lsm6dso_ff_dur_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_wake_up_dur_t wake_up_dur;
lsm6dso_free_fall_t free_fall;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR,
(uint8_t *)&wake_up_dur, 1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)&free_fall,
1);
}
if (ret == 0) {
wake_up_dur.ff_dur = ((uint8_t)val & 0x20U) >> 5;
free_fall.ff_dur = (uint8_t)val & 0x1FU;
ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR,
(uint8_t *)&wake_up_dur, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)&free_fall,
1);
}
return ret;
}
/**
* @brief Free-fall duration event.[get]
* 1LSb = 1 / ODR
*
* @param ctx read / write interface definitions
* @param val change the values of ff_dur in reg FREE_FALL
*
*/
int32_t lsm6dso_ff_dur_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_wake_up_dur_t wake_up_dur;
lsm6dso_free_fall_t free_fall;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR,
(uint8_t *)&wake_up_dur, 1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)&free_fall,
1);
*val = (wake_up_dur.ff_dur << 5) + free_fall.ff_dur;
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_fifo
* @brief This section group all the functions concerning the fifo usage
* @{
*
*/
/**
* @brief FIFO watermark level selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of wtm in reg FIFO_CTRL1
*
*/
int32_t lsm6dso_fifo_watermark_set(stmdev_ctx_t *ctx, uint16_t val)
{
lsm6dso_fifo_ctrl1_t fifo_ctrl1;
lsm6dso_fifo_ctrl2_t fifo_ctrl2;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2,
(uint8_t *)&fifo_ctrl2, 1);
if (ret == 0) {
fifo_ctrl1.wtm = 0x00FFU & (uint8_t)val;
fifo_ctrl2.wtm = (uint8_t)(( 0x0100U & val ) >> 8);
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL1,
(uint8_t *)&fifo_ctrl1, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2,
(uint8_t *)&fifo_ctrl2, 1);
}
return ret;
}
/**
* @brief FIFO watermark level selection.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of wtm in reg FIFO_CTRL1
*
*/
int32_t lsm6dso_fifo_watermark_get(stmdev_ctx_t *ctx, uint16_t *val)
{
lsm6dso_fifo_ctrl1_t fifo_ctrl1;
lsm6dso_fifo_ctrl2_t fifo_ctrl2;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL1,
(uint8_t *)&fifo_ctrl1, 1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2,
(uint8_t *)&fifo_ctrl2, 1);
*val = ((uint16_t)fifo_ctrl2.wtm << 8) + (uint16_t)fifo_ctrl1.wtm;
}
return ret;
}
/**
* @brief FIFO compression feature initialization request [set].
*
* @param ctx read / write interface definitions
* @param val change the values of FIFO_COMPR_INIT in
* reg EMB_FUNC_INIT_B
*
*/
int32_t lsm6dso_compression_algo_init_set(stmdev_ctx_t *ctx,
uint8_t val)
{
lsm6dso_emb_func_init_b_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.fifo_compr_init = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief FIFO compression feature initialization request [get].
*
* @param ctx read / write interface definitions
* @param val change the values of FIFO_COMPR_INIT in
* reg EMB_FUNC_INIT_B
*
*/
int32_t lsm6dso_compression_algo_init_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_emb_func_init_b_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.fifo_compr_init;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable and configure compression algo.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of uncoptr_rate in
* reg FIFO_CTRL2
*
*/
int32_t lsm6dso_compression_algo_set(stmdev_ctx_t *ctx,
lsm6dso_uncoptr_rate_t val)
{
lsm6dso_fifo_ctrl2_t fifo_ctrl2;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2,
(uint8_t *)&fifo_ctrl2, 1);
if (ret == 0) {
fifo_ctrl2.fifo_compr_rt_en = ((uint8_t)val & 0x04U) >> 2;
fifo_ctrl2.uncoptr_rate = (uint8_t)val & 0x03U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2,
(uint8_t *)&fifo_ctrl2, 1);
}
return ret;
}
/**
* @brief Enable and configure compression algo.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of uncoptr_rate in
* reg FIFO_CTRL2
*
*/
int32_t lsm6dso_compression_algo_get(stmdev_ctx_t *ctx,
lsm6dso_uncoptr_rate_t *val)
{
lsm6dso_fifo_ctrl2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
switch ((reg.fifo_compr_rt_en << 2) | reg.uncoptr_rate) {
case LSM6DSO_CMP_DISABLE:
*val = LSM6DSO_CMP_DISABLE;
break;
case LSM6DSO_CMP_ALWAYS:
*val = LSM6DSO_CMP_ALWAYS;
break;
case LSM6DSO_CMP_8_TO_1:
*val = LSM6DSO_CMP_8_TO_1;
break;
case LSM6DSO_CMP_16_TO_1:
*val = LSM6DSO_CMP_16_TO_1;
break;
case LSM6DSO_CMP_32_TO_1:
*val = LSM6DSO_CMP_32_TO_1;
break;
default:
*val = LSM6DSO_CMP_DISABLE;
break;
}
return ret;
}
/**
* @brief Enables ODR CHANGE virtual sensor to be batched in FIFO.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of odrchg_en in reg FIFO_CTRL2
*
*/
int32_t lsm6dso_fifo_virtual_sens_odr_chg_set(stmdev_ctx_t *ctx,
uint8_t val)
{
lsm6dso_fifo_ctrl2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
if (ret == 0) {
reg.odrchg_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables ODR CHANGE virtual sensor to be batched in FIFO.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of odrchg_en in reg FIFO_CTRL2
*
*/
int32_t lsm6dso_fifo_virtual_sens_odr_chg_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_fifo_ctrl2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
*val = reg.odrchg_en;
return ret;
}
/**
* @brief Enables/Disables compression algorithm runtime.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fifo_compr_rt_en in
* reg FIFO_CTRL2
*
*/
int32_t lsm6dso_compression_algo_real_time_set(stmdev_ctx_t *ctx,
uint8_t val)
{
lsm6dso_fifo_ctrl2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
if (ret == 0) {
reg.fifo_compr_rt_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Enables/Disables compression algorithm runtime. [get]
*
* @param ctx read / write interface definitions
* @param val change the values of fifo_compr_rt_en in reg FIFO_CTRL2
*
*/
int32_t lsm6dso_compression_algo_real_time_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_fifo_ctrl2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
*val = reg.fifo_compr_rt_en;
return ret;
}
/**
* @brief Sensing chain FIFO stop values memorization at
* threshold level.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of stop_on_wtm in reg FIFO_CTRL2
*
*/
int32_t lsm6dso_fifo_stop_on_wtm_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_fifo_ctrl2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
if (ret == 0) {
reg.stop_on_wtm = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Sensing chain FIFO stop values memorization at
* threshold level.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of stop_on_wtm in reg FIFO_CTRL2
*
*/
int32_t lsm6dso_fifo_stop_on_wtm_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_fifo_ctrl2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1);
*val = reg.stop_on_wtm;
return ret;
}
/**
* @brief Selects Batching Data Rate (writing frequency in FIFO)
* for accelerometer data.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of bdr_xl in reg FIFO_CTRL3
*
*/
int32_t lsm6dso_fifo_xl_batch_set(stmdev_ctx_t *ctx,
lsm6dso_bdr_xl_t val)
{
lsm6dso_fifo_ctrl3_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1);
if (ret == 0) {
reg.bdr_xl = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects Batching Data Rate (writing frequency in FIFO)
* for accelerometer data.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of bdr_xl in reg FIFO_CTRL3
*
*/
int32_t lsm6dso_fifo_xl_batch_get(stmdev_ctx_t *ctx,
lsm6dso_bdr_xl_t *val)
{
lsm6dso_fifo_ctrl3_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1);
switch (reg.bdr_xl) {
case LSM6DSO_XL_NOT_BATCHED:
*val = LSM6DSO_XL_NOT_BATCHED;
break;
case LSM6DSO_XL_BATCHED_AT_12Hz5:
*val = LSM6DSO_XL_BATCHED_AT_12Hz5;
break;
case LSM6DSO_XL_BATCHED_AT_26Hz:
*val = LSM6DSO_XL_BATCHED_AT_26Hz;
break;
case LSM6DSO_XL_BATCHED_AT_52Hz:
*val = LSM6DSO_XL_BATCHED_AT_52Hz;
break;
case LSM6DSO_XL_BATCHED_AT_104Hz:
*val = LSM6DSO_XL_BATCHED_AT_104Hz;
break;
case LSM6DSO_XL_BATCHED_AT_208Hz:
*val = LSM6DSO_XL_BATCHED_AT_208Hz;
break;
case LSM6DSO_XL_BATCHED_AT_417Hz:
*val = LSM6DSO_XL_BATCHED_AT_417Hz;
break;
case LSM6DSO_XL_BATCHED_AT_833Hz:
*val = LSM6DSO_XL_BATCHED_AT_833Hz;
break;
case LSM6DSO_XL_BATCHED_AT_1667Hz:
*val = LSM6DSO_XL_BATCHED_AT_1667Hz;
break;
case LSM6DSO_XL_BATCHED_AT_3333Hz:
*val = LSM6DSO_XL_BATCHED_AT_3333Hz;
break;
case LSM6DSO_XL_BATCHED_AT_6667Hz:
*val = LSM6DSO_XL_BATCHED_AT_6667Hz;
break;
case LSM6DSO_XL_BATCHED_AT_6Hz5:
*val = LSM6DSO_XL_BATCHED_AT_6Hz5;
break;
default:
*val = LSM6DSO_XL_NOT_BATCHED;
break;
}
return ret;
}
/**
* @brief Selects Batching Data Rate (writing frequency in FIFO)
* for gyroscope data.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of bdr_gy in reg FIFO_CTRL3
*
*/
int32_t lsm6dso_fifo_gy_batch_set(stmdev_ctx_t *ctx,
lsm6dso_bdr_gy_t val)
{
lsm6dso_fifo_ctrl3_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1);
if (ret == 0) {
reg.bdr_gy = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects Batching Data Rate (writing frequency in FIFO)
* for gyroscope data.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of bdr_gy in reg FIFO_CTRL3
*
*/
int32_t lsm6dso_fifo_gy_batch_get(stmdev_ctx_t *ctx,
lsm6dso_bdr_gy_t *val)
{
lsm6dso_fifo_ctrl3_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1);
switch (reg.bdr_gy) {
case LSM6DSO_GY_NOT_BATCHED:
*val = LSM6DSO_GY_NOT_BATCHED;
break;
case LSM6DSO_GY_BATCHED_AT_12Hz5:
*val = LSM6DSO_GY_BATCHED_AT_12Hz5;
break;
case LSM6DSO_GY_BATCHED_AT_26Hz:
*val = LSM6DSO_GY_BATCHED_AT_26Hz;
break;
case LSM6DSO_GY_BATCHED_AT_52Hz:
*val = LSM6DSO_GY_BATCHED_AT_52Hz;
break;
case LSM6DSO_GY_BATCHED_AT_104Hz:
*val = LSM6DSO_GY_BATCHED_AT_104Hz;
break;
case LSM6DSO_GY_BATCHED_AT_208Hz:
*val = LSM6DSO_GY_BATCHED_AT_208Hz;
break;
case LSM6DSO_GY_BATCHED_AT_417Hz:
*val = LSM6DSO_GY_BATCHED_AT_417Hz;
break;
case LSM6DSO_GY_BATCHED_AT_833Hz:
*val = LSM6DSO_GY_BATCHED_AT_833Hz;
break;
case LSM6DSO_GY_BATCHED_AT_1667Hz:
*val = LSM6DSO_GY_BATCHED_AT_1667Hz;
break;
case LSM6DSO_GY_BATCHED_AT_3333Hz:
*val = LSM6DSO_GY_BATCHED_AT_3333Hz;
break;
case LSM6DSO_GY_BATCHED_AT_6667Hz:
*val = LSM6DSO_GY_BATCHED_AT_6667Hz;
break;
case LSM6DSO_GY_BATCHED_AT_6Hz5:
*val = LSM6DSO_GY_BATCHED_AT_6Hz5;
break;
default:
*val = LSM6DSO_GY_NOT_BATCHED;
break;
}
return ret;
}
/**
* @brief FIFO mode selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fifo_mode in reg FIFO_CTRL4
*
*/
int32_t lsm6dso_fifo_mode_set(stmdev_ctx_t *ctx,
lsm6dso_fifo_mode_t val)
{
lsm6dso_fifo_ctrl4_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
if (ret == 0) {
reg.fifo_mode = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief FIFO mode selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of fifo_mode in reg FIFO_CTRL4
*
*/
int32_t lsm6dso_fifo_mode_get(stmdev_ctx_t *ctx,
lsm6dso_fifo_mode_t *val)
{
lsm6dso_fifo_ctrl4_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
switch (reg.fifo_mode) {
case LSM6DSO_BYPASS_MODE:
*val = LSM6DSO_BYPASS_MODE;
break;
case LSM6DSO_FIFO_MODE:
*val = LSM6DSO_FIFO_MODE;
break;
case LSM6DSO_STREAM_TO_FIFO_MODE:
*val = LSM6DSO_STREAM_TO_FIFO_MODE;
break;
case LSM6DSO_BYPASS_TO_STREAM_MODE:
*val = LSM6DSO_BYPASS_TO_STREAM_MODE;
break;
case LSM6DSO_STREAM_MODE:
*val = LSM6DSO_STREAM_MODE;
break;
case LSM6DSO_BYPASS_TO_FIFO_MODE:
*val = LSM6DSO_BYPASS_TO_FIFO_MODE;
break;
default:
*val = LSM6DSO_BYPASS_MODE;
break;
}
return ret;
}
/**
* @brief Selects Batching Data Rate (writing frequency in FIFO)
* for temperature data.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of odr_t_batch in reg FIFO_CTRL4
*
*/
int32_t lsm6dso_fifo_temp_batch_set(stmdev_ctx_t *ctx,
lsm6dso_odr_t_batch_t val)
{
lsm6dso_fifo_ctrl4_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
if (ret == 0) {
reg.odr_t_batch = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects Batching Data Rate (writing frequency in FIFO)
* for temperature data.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of odr_t_batch in reg FIFO_CTRL4
*
*/
int32_t lsm6dso_fifo_temp_batch_get(stmdev_ctx_t *ctx,
lsm6dso_odr_t_batch_t *val)
{
lsm6dso_fifo_ctrl4_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
switch (reg.odr_t_batch) {
case LSM6DSO_TEMP_NOT_BATCHED:
*val = LSM6DSO_TEMP_NOT_BATCHED;
break;
case LSM6DSO_TEMP_BATCHED_AT_1Hz6:
*val = LSM6DSO_TEMP_BATCHED_AT_1Hz6;
break;
case LSM6DSO_TEMP_BATCHED_AT_12Hz5:
*val = LSM6DSO_TEMP_BATCHED_AT_12Hz5;
break;
case LSM6DSO_TEMP_BATCHED_AT_52Hz:
*val = LSM6DSO_TEMP_BATCHED_AT_52Hz;
break;
default:
*val = LSM6DSO_TEMP_NOT_BATCHED;
break;
}
return ret;
}
/**
* @brief Selects decimation for timestamp batching in FIFO.
* Writing rate will be the maximum rate between XL and
* GYRO BDR divided by decimation decoder.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of odr_ts_batch in reg FIFO_CTRL4
*
*/
int32_t lsm6dso_fifo_timestamp_decimation_set(stmdev_ctx_t *ctx,
lsm6dso_odr_ts_batch_t val)
{
lsm6dso_fifo_ctrl4_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
if (ret == 0) {
reg.odr_ts_batch = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects decimation for timestamp batching in FIFO.
* Writing rate will be the maximum rate between XL and
* GYRO BDR divided by decimation decoder.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of odr_ts_batch in reg FIFO_CTRL4
*
*/
int32_t lsm6dso_fifo_timestamp_decimation_get(stmdev_ctx_t *ctx,
lsm6dso_odr_ts_batch_t *val)
{
lsm6dso_fifo_ctrl4_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1);
switch (reg.odr_ts_batch) {
case LSM6DSO_NO_DECIMATION:
*val = LSM6DSO_NO_DECIMATION;
break;
case LSM6DSO_DEC_1:
*val = LSM6DSO_DEC_1;
break;
case LSM6DSO_DEC_8:
*val = LSM6DSO_DEC_8;
break;
case LSM6DSO_DEC_32:
*val = LSM6DSO_DEC_32;
break;
default:
*val = LSM6DSO_NO_DECIMATION;
break;
}
return ret;
}
/**
* @brief Selects the trigger for the internal counter of batching events
* between XL and gyro.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of trig_counter_bdr
* in reg COUNTER_BDR_REG1
*
*/
int32_t lsm6dso_fifo_cnt_event_batch_set(stmdev_ctx_t *ctx,
lsm6dso_trig_counter_bdr_t val)
{
lsm6dso_counter_bdr_reg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®,
1);
if (ret == 0) {
reg.trig_counter_bdr = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1,
(uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Selects the trigger for the internal counter of batching events
* between XL and gyro.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of trig_counter_bdr
* in reg COUNTER_BDR_REG1
*
*/
int32_t lsm6dso_fifo_cnt_event_batch_get(stmdev_ctx_t *ctx,
lsm6dso_trig_counter_bdr_t *val)
{
lsm6dso_counter_bdr_reg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®,
1);
switch (reg.trig_counter_bdr) {
case LSM6DSO_XL_BATCH_EVENT:
*val = LSM6DSO_XL_BATCH_EVENT;
break;
case LSM6DSO_GYRO_BATCH_EVENT:
*val = LSM6DSO_GYRO_BATCH_EVENT;
break;
default:
*val = LSM6DSO_XL_BATCH_EVENT;
break;
}
return ret;
}
/**
* @brief Resets the internal counter of batching vents for a single sensor.
* This bit is automatically reset to zero if it was set to ‘1’.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of rst_counter_bdr in
* reg COUNTER_BDR_REG1
*
*/
int32_t lsm6dso_rst_batch_counter_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_counter_bdr_reg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®,
1);
if (ret == 0) {
reg.rst_counter_bdr = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1,
(uint8_t *)®, 1);
}
return ret;
}
/**
* @brief Resets the internal counter of batching events for a single sensor.
* This bit is automatically reset to zero if it was set to ‘1’.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of rst_counter_bdr in
* reg COUNTER_BDR_REG1
*
*/
int32_t lsm6dso_rst_batch_counter_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_counter_bdr_reg1_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®,
1);
*val = reg.rst_counter_bdr;
return ret;
}
/**
* @brief Batch data rate counter.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of cnt_bdr_th in
* reg COUNTER_BDR_REG2 and COUNTER_BDR_REG1.
*
*/
int32_t lsm6dso_batch_counter_threshold_set(stmdev_ctx_t *ctx,
uint16_t val)
{
lsm6dso_counter_bdr_reg1_t counter_bdr_reg1;
lsm6dso_counter_bdr_reg2_t counter_bdr_reg2;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1,
(uint8_t *)&counter_bdr_reg1, 1);
if (ret == 0) {
counter_bdr_reg2.cnt_bdr_th = 0x00FFU & (uint8_t)val;
counter_bdr_reg1.cnt_bdr_th = (uint8_t)(0x0700U & val) >> 8;
ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1,
(uint8_t *)&counter_bdr_reg1, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG2,
(uint8_t *)&counter_bdr_reg2, 1);
}
return ret;
}
/**
* @brief Batch data rate counter.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of cnt_bdr_th in
* reg COUNTER_BDR_REG2 and COUNTER_BDR_REG1.
*
*/
int32_t lsm6dso_batch_counter_threshold_get(stmdev_ctx_t *ctx,
uint16_t *val)
{
lsm6dso_counter_bdr_reg1_t counter_bdr_reg1;
lsm6dso_counter_bdr_reg2_t counter_bdr_reg2;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1,
(uint8_t *)&counter_bdr_reg1, 1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG2,
(uint8_t *)&counter_bdr_reg2, 1);
*val = ((uint16_t)counter_bdr_reg1.cnt_bdr_th << 8)
+ (uint16_t)counter_bdr_reg2.cnt_bdr_th;
}
return ret;
}
/**
* @brief Number of unread sensor data(TAG + 6 bytes) stored in FIFO.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of diff_fifo in reg FIFO_STATUS1
*
*/
int32_t lsm6dso_fifo_data_level_get(stmdev_ctx_t *ctx, uint16_t *val)
{
lsm6dso_fifo_status1_t fifo_status1;
lsm6dso_fifo_status2_t fifo_status2;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS1,
(uint8_t *)&fifo_status1, 1);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2,
(uint8_t *)&fifo_status2, 1);
*val = ((uint16_t)fifo_status2.diff_fifo << 8) +
(uint16_t)fifo_status1.diff_fifo;
}
return ret;
}
/**
* @brief FIFO status.[get]
*
* @param ctx read / write interface definitions
* @param val registers FIFO_STATUS2
*
*/
int32_t lsm6dso_fifo_status_get(stmdev_ctx_t *ctx,
lsm6dso_fifo_status2_t *val)
{
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *) val, 1);
return ret;
}
/**
* @brief Smart FIFO full status.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of fifo_full_ia in reg FIFO_STATUS2
*
*/
int32_t lsm6dso_fifo_full_flag_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_fifo_status2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *)®, 1);
*val = reg.fifo_full_ia;
return ret;
}
/**
* @brief FIFO overrun status.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of fifo_over_run_latched in
* reg FIFO_STATUS2
*
*/
int32_t lsm6dso_fifo_ovr_flag_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_fifo_status2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *)®, 1);
*val = reg.fifo_ovr_ia;
return ret;
}
/**
* @brief FIFO watermark status.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of fifo_wtm_ia in reg FIFO_STATUS2
*
*/
int32_t lsm6dso_fifo_wtm_flag_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_fifo_status2_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *)®, 1);
*val = reg.fifo_wtm_ia;
return ret;
}
/**
* @brief Identifies the sensor in FIFO_DATA_OUT.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of tag_sensor in reg FIFO_DATA_OUT_TAG
*
*/
int32_t lsm6dso_fifo_sensor_tag_get(stmdev_ctx_t *ctx,
lsm6dso_fifo_tag_t *val)
{
lsm6dso_fifo_data_out_tag_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_DATA_OUT_TAG,
(uint8_t *)®, 1);
switch (reg.tag_sensor) {
case LSM6DSO_GYRO_NC_TAG:
*val = LSM6DSO_GYRO_NC_TAG;
break;
case LSM6DSO_XL_NC_TAG:
*val = LSM6DSO_XL_NC_TAG;
break;
case LSM6DSO_TEMPERATURE_TAG:
*val = LSM6DSO_TEMPERATURE_TAG;
break;
case LSM6DSO_CFG_CHANGE_TAG:
*val = LSM6DSO_CFG_CHANGE_TAG;
break;
case LSM6DSO_XL_NC_T_2_TAG:
*val = LSM6DSO_XL_NC_T_2_TAG;
break;
case LSM6DSO_XL_NC_T_1_TAG:
*val = LSM6DSO_XL_NC_T_1_TAG;
break;
case LSM6DSO_XL_2XC_TAG:
*val = LSM6DSO_XL_2XC_TAG;
break;
case LSM6DSO_XL_3XC_TAG:
*val = LSM6DSO_XL_3XC_TAG;
break;
case LSM6DSO_GYRO_NC_T_2_TAG:
*val = LSM6DSO_GYRO_NC_T_2_TAG;
break;
case LSM6DSO_GYRO_NC_T_1_TAG:
*val = LSM6DSO_GYRO_NC_T_1_TAG;
break;
case LSM6DSO_GYRO_2XC_TAG:
*val = LSM6DSO_GYRO_2XC_TAG;
break;
case LSM6DSO_GYRO_3XC_TAG:
*val = LSM6DSO_GYRO_3XC_TAG;
break;
case LSM6DSO_SENSORHUB_SLAVE0_TAG:
*val = LSM6DSO_SENSORHUB_SLAVE0_TAG;
break;
case LSM6DSO_SENSORHUB_SLAVE1_TAG:
*val = LSM6DSO_SENSORHUB_SLAVE1_TAG;
break;
case LSM6DSO_SENSORHUB_SLAVE2_TAG:
*val = LSM6DSO_SENSORHUB_SLAVE2_TAG;
break;
case LSM6DSO_SENSORHUB_SLAVE3_TAG:
*val = LSM6DSO_SENSORHUB_SLAVE3_TAG;
break;
case LSM6DSO_STEP_CPUNTER_TAG:
*val = LSM6DSO_STEP_CPUNTER_TAG;
break;
case LSM6DSO_GAME_ROTATION_TAG:
*val = LSM6DSO_GAME_ROTATION_TAG;
break;
case LSM6DSO_GEOMAG_ROTATION_TAG:
*val = LSM6DSO_GEOMAG_ROTATION_TAG;
break;
case LSM6DSO_ROTATION_TAG:
*val = LSM6DSO_ROTATION_TAG;
break;
case LSM6DSO_SENSORHUB_NACK_TAG:
*val = LSM6DSO_SENSORHUB_NACK_TAG;
break;
default:
*val = LSM6DSO_GYRO_NC_TAG;
break;
}
return ret;
}
/**
* @brief : Enable FIFO batching of pedometer embedded
* function values.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of gbias_fifo_en in
* reg LSM6DSO_EMB_FUNC_FIFO_CFG
*
*/
int32_t lsm6dso_fifo_pedo_batch_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_emb_func_fifo_cfg_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_FIFO_CFG,
(uint8_t *)®, 1);
}
if (ret == 0) {
reg.pedo_fifo_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_FIFO_CFG,
(uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching of pedometer embedded function values.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of pedo_fifo_en in
* reg LSM6DSO_EMB_FUNC_FIFO_CFG
*
*/
int32_t lsm6dso_fifo_pedo_batch_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_emb_func_fifo_cfg_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_FIFO_CFG,
(uint8_t *)®, 1);
}
if (ret == 0) {
*val = reg.pedo_fifo_en;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of first slave.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_0_en in
* reg SLV0_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_0_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_slv0_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.batch_ext_sens_0_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of first slave.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_0_en in
* reg SLV0_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_0_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_slv0_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
*val = reg.batch_ext_sens_0_en;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of second slave.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_1_en in
* reg SLV1_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_1_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_slv1_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.batch_ext_sens_1_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of second slave.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_1_en in
* reg SLV1_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_1_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_slv1_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1);
*val = reg.batch_ext_sens_1_en;
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of third slave.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_2_en in
* reg SLV2_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_2_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_slv2_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.batch_ext_sens_2_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of third slave.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_2_en in
* reg SLV2_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_2_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_slv2_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
*val = reg.batch_ext_sens_2_en;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of fourth slave.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_3_en
* in reg SLV3_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_3_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_slv3_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.batch_ext_sens_3_en = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Enable FIFO batching data of fourth slave.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of batch_ext_sens_3_en in
* reg SLV3_CONFIG
*
*/
int32_t lsm6dso_sh_batch_slave_3_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_slv3_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
*val = reg.batch_ext_sens_3_en;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_DEN_functionality
* @brief This section groups all the functions concerning
* DEN functionality.
* @{
*
*/
/**
* @brief DEN functionality marking mode.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of den_mode in reg CTRL6_C
*
*/
int32_t lsm6dso_den_mode_set(stmdev_ctx_t *ctx,
lsm6dso_den_mode_t val)
{
lsm6dso_ctrl6_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
if (ret == 0) {
reg.den_mode = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief DEN functionality marking mode.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of den_mode in reg CTRL6_C
*
*/
int32_t lsm6dso_den_mode_get(stmdev_ctx_t *ctx,
lsm6dso_den_mode_t *val)
{
lsm6dso_ctrl6_c_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1);
switch (reg.den_mode) {
case LSM6DSO_DEN_DISABLE:
*val = LSM6DSO_DEN_DISABLE;
break;
case LSM6DSO_LEVEL_FIFO:
*val = LSM6DSO_LEVEL_FIFO;
break;
case LSM6DSO_LEVEL_LETCHED:
*val = LSM6DSO_LEVEL_LETCHED;
break;
case LSM6DSO_LEVEL_TRIGGER:
*val = LSM6DSO_LEVEL_TRIGGER;
break;
case LSM6DSO_EDGE_TRIGGER:
*val = LSM6DSO_EDGE_TRIGGER;
break;
default:
*val = LSM6DSO_DEN_DISABLE;
break;
}
return ret;
}
/**
* @brief DEN active level configuration.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of den_lh in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_polarity_set(stmdev_ctx_t *ctx,
lsm6dso_den_lh_t val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.den_lh = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief DEN active level configuration.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of den_lh in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_polarity_get(stmdev_ctx_t *ctx,
lsm6dso_den_lh_t *val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
switch (reg.den_lh) {
case LSM6DSO_DEN_ACT_LOW:
*val = LSM6DSO_DEN_ACT_LOW;
break;
case LSM6DSO_DEN_ACT_HIGH:
*val = LSM6DSO_DEN_ACT_HIGH;
break;
default:
*val = LSM6DSO_DEN_ACT_LOW;
break;
}
return ret;
}
/**
* @brief DEN enable.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of den_xl_g in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_enable_set(stmdev_ctx_t *ctx,
lsm6dso_den_xl_g_t val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.den_xl_g = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief DEN enable.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of den_xl_g in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_enable_get(stmdev_ctx_t *ctx,
lsm6dso_den_xl_g_t *val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
switch (reg.den_xl_g) {
case LSM6DSO_STAMP_IN_GY_DATA:
*val = LSM6DSO_STAMP_IN_GY_DATA;
break;
case LSM6DSO_STAMP_IN_XL_DATA:
*val = LSM6DSO_STAMP_IN_XL_DATA;
break;
case LSM6DSO_STAMP_IN_GY_XL_DATA:
*val = LSM6DSO_STAMP_IN_GY_XL_DATA;
break;
default:
*val = LSM6DSO_STAMP_IN_GY_DATA;
break;
}
return ret;
}
/**
* @brief DEN value stored in LSB of X-axis.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of den_z in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_mark_axis_x_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.den_z = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief DEN value stored in LSB of X-axis.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of den_z in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_mark_axis_x_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
*val = reg.den_z;
return ret;
}
/**
* @brief DEN value stored in LSB of Y-axis.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of den_y in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_mark_axis_y_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.den_y = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief DEN value stored in LSB of Y-axis.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of den_y in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_mark_axis_y_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
*val = reg.den_y;
return ret;
}
/**
* @brief DEN value stored in LSB of Z-axis.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of den_x in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_mark_axis_z_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
if (ret == 0) {
reg.den_x = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
}
return ret;
}
/**
* @brief DEN value stored in LSB of Z-axis.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of den_x in reg CTRL9_XL
*
*/
int32_t lsm6dso_den_mark_axis_z_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_ctrl9_xl_t reg;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1);
*val = reg.den_x;
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_Pedometer
* @brief This section groups all the functions that manage pedometer.
* @{
*
*/
/**
* @brief Enable pedometer algorithm.[set]
*
* @param ctx read / write interface definitions
* @param val turn on and configure pedometer
*
*/
int32_t lsm6dso_pedo_sens_set(stmdev_ctx_t *ctx,
lsm6dso_pedo_md_t val)
{
lsm6dso_pedo_cmd_reg_t pedo_cmd_reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG,
(uint8_t *)&pedo_cmd_reg);
if (ret == 0) {
pedo_cmd_reg.fp_rejection_en = ((uint8_t)val & 0x10U) >> 4;
pedo_cmd_reg.ad_det_en = ((uint8_t)val & 0x20U) >> 5;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_CMD_REG,
(uint8_t *)&pedo_cmd_reg);
}
return ret;
}
/**
* @brief Enable pedometer algorithm.[get]
*
* @param ctx read / write interface definitions
* @param val turn on and configure pedometer
*
*/
int32_t lsm6dso_pedo_sens_get(stmdev_ctx_t *ctx,
lsm6dso_pedo_md_t *val)
{
lsm6dso_pedo_cmd_reg_t pedo_cmd_reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG,
(uint8_t *)&pedo_cmd_reg);
switch ( (pedo_cmd_reg.ad_det_en << 5) | (pedo_cmd_reg.fp_rejection_en
<< 4) ) {
case LSM6DSO_PEDO_BASE_MODE:
*val = LSM6DSO_PEDO_BASE_MODE;
break;
case LSM6DSO_FALSE_STEP_REJ:
*val = LSM6DSO_FALSE_STEP_REJ;
break;
case LSM6DSO_FALSE_STEP_REJ_ADV_MODE:
*val = LSM6DSO_FALSE_STEP_REJ_ADV_MODE;
break;
default:
*val = LSM6DSO_PEDO_BASE_MODE;
break;
}
return ret;
}
/**
* @brief Interrupt status bit for step detection.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of is_step_det in reg EMB_FUNC_STATUS
*
*/
int32_t lsm6dso_pedo_step_detect_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_emb_func_status_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.is_step_det;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Pedometer debounce configuration register (r/w).[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_pedo_debounce_steps_set(stmdev_ctx_t *ctx,
uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_DEB_STEPS_CONF,
buff);
return ret;
}
/**
* @brief Pedometer debounce configuration register (r/w).[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_pedo_debounce_steps_get(stmdev_ctx_t *ctx,
uint8_t *buff)
{
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_DEB_STEPS_CONF, buff);
return ret;
}
/**
* @brief Time period register for step detection on delta time (r/w).[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_pedo_steps_period_set(stmdev_ctx_t *ctx, uint16_t val)
{
uint8_t buff[2];
int32_t ret;
buff[1] = (uint8_t) (val / 256U);
buff[0] = (uint8_t) (val - (buff[1] * 256U));
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_L,
&buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_H,
&buff[1]);
}
return ret;
}
/**
* @brief Time period register for step detection on delta time (r/w).[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_pedo_steps_period_get(stmdev_ctx_t *ctx,
uint16_t *val)
{
uint8_t buff[2];
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_L,
&buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_H,
&buff[1]);
*val = buff[1];
*val = (*val * 256U) + buff[0];
}
return ret;
}
/**
* @brief Set when user wants to generate interrupt on count overflow
* event/every step.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of carry_count_en in reg PEDO_CMD_REG
*
*/
int32_t lsm6dso_pedo_int_mode_set(stmdev_ctx_t *ctx,
lsm6dso_carry_count_en_t val)
{
lsm6dso_pedo_cmd_reg_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG,
(uint8_t *)®);
if (ret == 0) {
reg.carry_count_en = (uint8_t)val;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_CMD_REG,
(uint8_t *)®);
}
return ret;
}
/**
* @brief Set when user wants to generate interrupt on count overflow
* event/every step.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of carry_count_en in reg PEDO_CMD_REG
*
*/
int32_t lsm6dso_pedo_int_mode_get(stmdev_ctx_t *ctx,
lsm6dso_carry_count_en_t *val)
{
lsm6dso_pedo_cmd_reg_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG,
(uint8_t *)®);
switch (reg.carry_count_en) {
case LSM6DSO_EVERY_STEP:
*val = LSM6DSO_EVERY_STEP;
break;
case LSM6DSO_COUNT_OVERFLOW:
*val = LSM6DSO_COUNT_OVERFLOW;
break;
default:
*val = LSM6DSO_EVERY_STEP;
break;
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_significant_motion
* @brief This section groups all the functions that manage the
* significant motion detection.
* @{
*
*/
/**
* @brief Interrupt status bit for significant motion detection.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of is_sigmot in reg EMB_FUNC_STATUS
*
*/
int32_t lsm6dso_motion_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_emb_func_status_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.is_sigmot;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_tilt_detection
* @brief This section groups all the functions that manage the tilt
* event detection.
* @{
*
*/
/**
* @brief Interrupt status bit for tilt detection.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of is_tilt in reg EMB_FUNC_STATUS
*
*/
int32_t lsm6dso_tilt_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_emb_func_status_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.is_tilt;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_ magnetometer_sensor
* @brief This section groups all the functions that manage additional
* magnetometer sensor.
* @{
*
*/
/**
* @brief External magnetometer sensitivity value register.[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_mag_sensitivity_set(stmdev_ctx_t *ctx, uint16_t val)
{
uint8_t buff[2];
int32_t ret;
buff[1] = (uint8_t) (val / 256U);
buff[0] = (uint8_t) (val - (buff[1] * 256U));
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SENSITIVITY_L,
&buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SENSITIVITY_H,
&buff[1]);
}
return ret;
}
/**
* @brief External magnetometer sensitivity value register.[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_mag_sensitivity_get(stmdev_ctx_t *ctx, uint16_t *val)
{
uint8_t buff[2];
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SENSITIVITY_L,
&buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SENSITIVITY_H,
&buff[1]);
*val = buff[1];
*val = (*val * 256U) + buff[0];
}
return ret;
}
/**
* @brief Offset for hard-iron compensation register (r/w).[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_mag_offset_set(stmdev_ctx_t *ctx, int16_t *val)
{
uint8_t buff[6];
int32_t ret;
buff[1] = (uint8_t) ((uint16_t)val[0] / 256U);
buff[0] = (uint8_t) ((uint16_t)val[0] - (buff[1] * 256U));
buff[3] = (uint8_t) ((uint16_t)val[1] / 256U);
buff[2] = (uint8_t) ((uint16_t)val[1] - (buff[3] * 256U));
buff[5] = (uint8_t) ((uint16_t)val[2] / 256U);
buff[4] = (uint8_t) ((uint16_t)val[2] - (buff[5] * 256U));
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFX_L, &buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFX_H, &buff[1]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFY_L, &buff[2]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFY_H, &buff[3]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFZ_L, &buff[4]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFZ_H, &buff[5]);
}
return ret;
}
/**
* @brief Offset for hard-iron compensation register (r/w).[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_mag_offset_get(stmdev_ctx_t *ctx, int16_t *val)
{
uint8_t buff[6];
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFX_L, &buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFX_H, &buff[1]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFY_L, &buff[2]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFY_H, &buff[3]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFZ_L, &buff[4]);
}
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFZ_H, &buff[5]);
val[0] = (int16_t)buff[1];
val[0] = (val[0] * 256) + (int16_t)buff[0];
val[1] = (int16_t)buff[3];
val[1] = (val[1] * 256) + (int16_t)buff[2];
val[2] = (int16_t)buff[5];
val[2] = (val[2] * 256) + (int16_t)buff[4];
}
return ret;
}
/**
* @brief Soft-iron (3x3 symmetric) matrix correction
* register (r/w). The value is expressed as
* half-precision floating-point format:
* SEEEEEFFFFFFFFFF
* S: 1 sign bit;
* E: 5 exponent bits;
* F: 10 fraction bits).[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_mag_soft_iron_set(stmdev_ctx_t *ctx, int16_t *val)
{
uint8_t buff[12];
int32_t ret;
uint8_t index;
buff[1] = (uint8_t) ((uint16_t)val[0] / 256U);
buff[0] = (uint8_t) ((uint16_t)val[0] - (buff[1] * 256U));
buff[3] = (uint8_t) ((uint16_t)val[1] / 256U);
buff[2] = (uint8_t) ((uint16_t)val[1] - (buff[3] * 256U));
buff[5] = (uint8_t) ((uint16_t)val[2] / 256U);
buff[4] = (uint8_t) ((uint16_t)val[2] - (buff[5] * 256U));
buff[7] = (uint8_t) ((uint16_t)val[3] / 256U);
buff[6] = (uint8_t) ((uint16_t)val[3] - (buff[7] * 256U));
buff[9] = (uint8_t) ((uint16_t)val[4] / 256U);
buff[8] = (uint8_t) ((uint16_t)val[4] - (buff[9] * 256U));
buff[11] = (uint8_t) ((uint16_t)val[5] / 256U);
buff[10] = (uint8_t) ((uint16_t)val[5] - (buff[11] * 256U));
index = 0x00U;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XX_L,
&buff[index]);
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XX_H,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XY_L,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XY_H,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XZ_L,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XZ_H,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YY_L,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YY_H,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YZ_L,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YZ_H,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_ZZ_L,
&buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_ZZ_H,
&buff[index]);
}
return ret;
}
/**
* @brief Soft-iron (3x3 symmetric) matrix
* correction register (r/w).
* The value is expressed as half-precision
* floating-point format:
* SEEEEEFFFFFFFFFF
* S: 1 sign bit;
* E: 5 exponent bits;
* F: 10 fraction bits.[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_mag_soft_iron_get(stmdev_ctx_t *ctx, int16_t *val)
{
uint8_t buff[12];
int32_t ret;
uint8_t index;
index = 0x00U;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XX_L, &buff[index]);
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XX_H, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XY_L, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XY_H, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XZ_L, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XZ_H, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YY_L, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YY_H, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YZ_L, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YZ_H, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_ZZ_L, &buff[index]);
}
if (ret == 0) {
index++;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_ZZ_H, &buff[index]);
}
val[0] = (int16_t)buff[1];
val[0] = (val[0] * 256) + (int16_t)buff[0];
val[1] = (int16_t)buff[3];
val[1] = (val[1] * 256) + (int16_t)buff[2];
val[2] = (int16_t)buff[5];
val[2] = (val[2] * 256) + (int16_t)buff[4];
val[3] = (int16_t)buff[7];
val[3] = (val[3] * 256) + (int16_t)buff[6];
val[4] = (int16_t)buff[9];
val[4] = (val[4] * 256) + (int16_t)buff[8];
val[5] = (int16_t)buff[11];
val[5] = (val[5] * 256) + (int16_t)buff[10];
return ret;
}
/**
* @brief Magnetometer Z-axis coordinates
* rotation (to be aligned to
* accelerometer/gyroscope axes
* orientation).[set]
*
* @param ctx read / write interface definitions
* @param val change the values of mag_z_axis in reg MAG_CFG_A
*
*/
int32_t lsm6dso_mag_z_orient_set(stmdev_ctx_t *ctx,
lsm6dso_mag_z_axis_t val)
{
lsm6dso_mag_cfg_a_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A,
(uint8_t *)®);
if (ret == 0) {
reg.mag_z_axis = (uint8_t) val;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_CFG_A,
(uint8_t *)®);
}
return ret;
}
/**
* @brief Magnetometer Z-axis coordinates
* rotation (to be aligned to
* accelerometer/gyroscope axes
* orientation).[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of mag_z_axis in reg MAG_CFG_A
*
*/
int32_t lsm6dso_mag_z_orient_get(stmdev_ctx_t *ctx,
lsm6dso_mag_z_axis_t *val)
{
lsm6dso_mag_cfg_a_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A,
(uint8_t *)®);
switch (reg.mag_z_axis) {
case LSM6DSO_Z_EQ_Y:
*val = LSM6DSO_Z_EQ_Y;
break;
case LSM6DSO_Z_EQ_MIN_Y:
*val = LSM6DSO_Z_EQ_MIN_Y;
break;
case LSM6DSO_Z_EQ_X:
*val = LSM6DSO_Z_EQ_X;
break;
case LSM6DSO_Z_EQ_MIN_X:
*val = LSM6DSO_Z_EQ_MIN_X;
break;
case LSM6DSO_Z_EQ_MIN_Z:
*val = LSM6DSO_Z_EQ_MIN_Z;
break;
case LSM6DSO_Z_EQ_Z:
*val = LSM6DSO_Z_EQ_Z;
break;
default:
*val = LSM6DSO_Z_EQ_Y;
break;
}
return ret;
}
/**
* @brief Magnetometer Y-axis coordinates
* rotation (to be aligned to
* accelerometer/gyroscope axes
* orientation).[set]
*
* @param ctx read / write interface definitions
* @param val change the values of mag_y_axis in reg MAG_CFG_A
*
*/
int32_t lsm6dso_mag_y_orient_set(stmdev_ctx_t *ctx,
lsm6dso_mag_y_axis_t val)
{
lsm6dso_mag_cfg_a_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A,
(uint8_t *)®);
if (ret == 0) {
reg.mag_y_axis = (uint8_t)val;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_CFG_A,
(uint8_t *) ®);
}
return ret;
}
/**
* @brief Magnetometer Y-axis coordinates
* rotation (to be aligned to
* accelerometer/gyroscope axes
* orientation).[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of mag_y_axis in reg MAG_CFG_A
*
*/
int32_t lsm6dso_mag_y_orient_get(stmdev_ctx_t *ctx,
lsm6dso_mag_y_axis_t *val)
{
lsm6dso_mag_cfg_a_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A,
(uint8_t *)®);
switch (reg.mag_y_axis) {
case LSM6DSO_Y_EQ_Y:
*val = LSM6DSO_Y_EQ_Y;
break;
case LSM6DSO_Y_EQ_MIN_Y:
*val = LSM6DSO_Y_EQ_MIN_Y;
break;
case LSM6DSO_Y_EQ_X:
*val = LSM6DSO_Y_EQ_X;
break;
case LSM6DSO_Y_EQ_MIN_X:
*val = LSM6DSO_Y_EQ_MIN_X;
break;
case LSM6DSO_Y_EQ_MIN_Z:
*val = LSM6DSO_Y_EQ_MIN_Z;
break;
case LSM6DSO_Y_EQ_Z:
*val = LSM6DSO_Y_EQ_Z;
break;
default:
*val = LSM6DSO_Y_EQ_Y;
break;
}
return ret;
}
/**
* @brief Magnetometer X-axis coordinates
* rotation (to be aligned to
* accelerometer/gyroscope axes
* orientation).[set]
*
* @param ctx read / write interface definitions
* @param val change the values of mag_x_axis in reg MAG_CFG_B
*
*/
int32_t lsm6dso_mag_x_orient_set(stmdev_ctx_t *ctx,
lsm6dso_mag_x_axis_t val)
{
lsm6dso_mag_cfg_b_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_B,
(uint8_t *)®);
if (ret == 0) {
reg.mag_x_axis = (uint8_t)val;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_CFG_B,
(uint8_t *)®);
}
return ret;
}
/**
* @brief Magnetometer X-axis coordinates
* rotation (to be aligned to
* accelerometer/gyroscope axes
* orientation).[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of mag_x_axis in reg MAG_CFG_B
*
*/
int32_t lsm6dso_mag_x_orient_get(stmdev_ctx_t *ctx,
lsm6dso_mag_x_axis_t *val)
{
lsm6dso_mag_cfg_b_t reg;
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_B,
(uint8_t *)®);
switch (reg.mag_x_axis) {
case LSM6DSO_X_EQ_Y:
*val = LSM6DSO_X_EQ_Y;
break;
case LSM6DSO_X_EQ_MIN_Y:
*val = LSM6DSO_X_EQ_MIN_Y;
break;
case LSM6DSO_X_EQ_X:
*val = LSM6DSO_X_EQ_X;
break;
case LSM6DSO_X_EQ_MIN_X:
*val = LSM6DSO_X_EQ_MIN_X;
break;
case LSM6DSO_X_EQ_MIN_Z:
*val = LSM6DSO_X_EQ_MIN_Z;
break;
case LSM6DSO_X_EQ_Z:
*val = LSM6DSO_X_EQ_Z;
break;
default:
*val = LSM6DSO_X_EQ_Y;
break;
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_finite_state_machine
* @brief This section groups all the functions that manage the
* state_machine.
* @{
*
*/
/**
* @brief Interrupt status bit for FSM long counter
* timeout interrupt event.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of is_fsm_lc in reg EMB_FUNC_STATUS
*
*/
int32_t lsm6dso_long_cnt_flag_data_ready_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
lsm6dso_emb_func_status_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.is_fsm_lc;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Final State Machine enable.[set]
*
* @param ctx read / write interface definitions
* @param val union of registers from FSM_ENABLE_A to FSM_ENABLE_B
*
*/
int32_t lsm6dso_fsm_enable_set(stmdev_ctx_t *ctx,
lsm6dso_emb_fsm_enable_t *val)
{
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_ENABLE_A,
(uint8_t *)&val->fsm_enable_a, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_ENABLE_B,
(uint8_t *)&val->fsm_enable_b, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Final State Machine enable.[get]
*
* @param ctx read / write interface definitions
* @param val union of registers from FSM_ENABLE_A to FSM_ENABLE_B
*
*/
int32_t lsm6dso_fsm_enable_get(stmdev_ctx_t *ctx,
lsm6dso_emb_fsm_enable_t *val)
{
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_ENABLE_A, (uint8_t *) val, 2);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief FSM long counter status register. Long counter value is an
* unsigned integer value (16-bit format).[set]
*
* @param ctx read / write interface definitions
* @param buff buffer that contains data to write
*
*/
int32_t lsm6dso_long_cnt_set(stmdev_ctx_t *ctx, uint16_t val)
{
uint8_t buff[2];
int32_t ret;
buff[1] = (uint8_t) (val / 256U);
buff[0] = (uint8_t) (val - (buff[1] * 256U));
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_L, buff, 2);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief FSM long counter status register. Long counter value is an
* unsigned integer value (16-bit format).[get]
*
* @param ctx read / write interface definitions
* @param buff buffer that stores data read
*
*/
int32_t lsm6dso_long_cnt_get(stmdev_ctx_t *ctx, uint16_t *val)
{
uint8_t buff[2];
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_L, buff, 2);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
*val = buff[1];
*val = (*val * 256U) + buff[0];
}
return ret;
}
/**
* @brief Clear FSM long counter value.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fsm_lc_clr in
* reg FSM_LONG_COUNTER_CLEAR
*
*/
int32_t lsm6dso_long_clr_set(stmdev_ctx_t *ctx,
lsm6dso_fsm_lc_clr_t val)
{
lsm6dso_fsm_long_counter_clear_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_CLEAR,
(uint8_t *)®, 1);
}
if (ret == 0) {
reg. fsm_lc_clr = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_CLEAR,
(uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Clear FSM long counter value.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of fsm_lc_clr in
* reg FSM_LONG_COUNTER_CLEAR
*
*/
int32_t lsm6dso_long_clr_get(stmdev_ctx_t *ctx,
lsm6dso_fsm_lc_clr_t *val)
{
lsm6dso_fsm_long_counter_clear_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_CLEAR,
(uint8_t *)®, 1);
}
if (ret == 0) {
switch (reg.fsm_lc_clr) {
case LSM6DSO_LC_NORMAL:
*val = LSM6DSO_LC_NORMAL;
break;
case LSM6DSO_LC_CLEAR:
*val = LSM6DSO_LC_CLEAR;
break;
case LSM6DSO_LC_CLEAR_DONE:
*val = LSM6DSO_LC_CLEAR_DONE;
break;
default:
*val = LSM6DSO_LC_NORMAL;
break;
}
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief FSM output registers[get]
*
* @param ctx read / write interface definitions
* @param val struct of registers from FSM_OUTS1 to FSM_OUTS16
*
*/
int32_t lsm6dso_fsm_out_get(stmdev_ctx_t *ctx, lsm6dso_fsm_out_t *val)
{
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_OUTS1, (uint8_t *)val, 16);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Finite State Machine ODR configuration.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fsm_odr in reg EMB_FUNC_ODR_CFG_B
*
*/
int32_t lsm6dso_fsm_data_rate_set(stmdev_ctx_t *ctx,
lsm6dso_fsm_odr_t val)
{
lsm6dso_emb_func_odr_cfg_b_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B,
(uint8_t *)®, 1);
}
if (ret == 0) {
reg.not_used_01 = 3; /* set default values */
reg.not_used_02 = 2; /* set default values */
reg.fsm_odr = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B,
(uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Finite State Machine ODR configuration.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of fsm_odr in reg EMB_FUNC_ODR_CFG_B
*
*/
int32_t lsm6dso_fsm_data_rate_get(stmdev_ctx_t *ctx,
lsm6dso_fsm_odr_t *val)
{
lsm6dso_emb_func_odr_cfg_b_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B,
(uint8_t *)®, 1);
}
if (ret == 0) {
switch (reg.fsm_odr) {
case LSM6DSO_ODR_FSM_12Hz5:
*val = LSM6DSO_ODR_FSM_12Hz5;
break;
case LSM6DSO_ODR_FSM_26Hz:
*val = LSM6DSO_ODR_FSM_26Hz;
break;
case LSM6DSO_ODR_FSM_52Hz:
*val = LSM6DSO_ODR_FSM_52Hz;
break;
case LSM6DSO_ODR_FSM_104Hz:
*val = LSM6DSO_ODR_FSM_104Hz;
break;
default:
*val = LSM6DSO_ODR_FSM_12Hz5;
break;
}
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief FSM initialization request.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of fsm_init in reg FSM_INIT
*
*/
int32_t lsm6dso_fsm_init_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_emb_func_init_b_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.fsm_init = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief FSM initialization request.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of fsm_init in reg FSM_INIT
*
*/
int32_t lsm6dso_fsm_init_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_emb_func_init_b_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.fsm_init;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief FSM long counter timeout register (r/w). The long counter
* timeout value is an unsigned integer value (16-bit format).
* When the long counter value reached this value,
* the FSM generates an interrupt.[set]
*
* @param ctx read / write interface definitions
* @param val the value of long counter
*
*/
int32_t lsm6dso_long_cnt_int_value_set(stmdev_ctx_t *ctx,
uint16_t val)
{
uint8_t buff[2];
int32_t ret;
buff[1] = (uint8_t) (val / 256U);
buff[0] = (uint8_t) (val - (buff[1] * 256U));
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_L,
&buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_H,
&buff[1]);
}
return ret;
}
/**
* @brief FSM long counter timeout register (r/w). The long counter
* timeout value is an unsigned integer value (16-bit format).
* When the long counter value reached this value,
* the FSM generates an interrupt.[get]
*
* @param ctx read / write interface definitions
* @param val buffer that stores the value of long counter
*
*/
int32_t lsm6dso_long_cnt_int_value_get(stmdev_ctx_t *ctx,
uint16_t *val)
{
uint8_t buff[2];
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_L,
&buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_H,
&buff[1]);
*val = buff[1];
*val = (*val * 256U) + buff[0];
}
return ret;
}
/**
* @brief FSM number of programs register.[set]
*
* @param ctx read / write interface definitions
* @param val value to write
*
*/
int32_t lsm6dso_fsm_number_of_programs_set(stmdev_ctx_t *ctx,
uint8_t val)
{
int32_t ret;
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_PROGRAMS, &val);
return ret;
}
/**
* @brief FSM number of programs register.[get]
*
* @param ctx read / write interface definitions
* @param val buffer that stores data read.
*
*/
int32_t lsm6dso_fsm_number_of_programs_get(stmdev_ctx_t *ctx,
uint8_t *val)
{
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_PROGRAMS, val);
return ret;
}
/**
* @brief FSM start address register (r/w).
* First available address is 0x033C.[set]
*
* @param ctx read / write interface definitions
* @param val the value of start address
*
*/
int32_t lsm6dso_fsm_start_address_set(stmdev_ctx_t *ctx, uint16_t val)
{
uint8_t buff[2];
int32_t ret;
buff[1] = (uint8_t) (val / 256U);
buff[0] = (uint8_t) (val - (buff[1] * 256U));
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_START_ADD_L,
&buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_START_ADD_H,
&buff[1]);
}
return ret;
}
/**
* @brief FSM start address register (r/w).
* First available address is 0x033C.[get]
*
* @param ctx read / write interface definitions
* @param val buffer the value of start address.
*
*/
int32_t lsm6dso_fsm_start_address_get(stmdev_ctx_t *ctx,
uint16_t *val)
{
uint8_t buff[2];
int32_t ret;
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_START_ADD_L, &buff[0]);
if (ret == 0) {
ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_START_ADD_H, &buff[1]);
*val = buff[1];
*val = (*val * 256U) + buff[0];
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup LSM6DSO_Sensor_hub
* @brief This section groups all the functions that manage the
* sensor hub.
* @{
*
*/
/**
* @brief Sensor hub output registers.[get]
*
* @param ctx read / write interface definitions
* @param val values read from registers SENSOR_HUB_1 to SENSOR_HUB_18
* @param len number of consecutive register to read (max 18)
*
*/
int32_t lsm6dso_sh_read_data_raw_get(stmdev_ctx_t *ctx, uint8_t *val,
uint8_t len)
{
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SENSOR_HUB_1, (uint8_t *) val,
len);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Number of external sensors to be read by the sensor hub.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of aux_sens_on in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_slave_connected_set(stmdev_ctx_t *ctx,
lsm6dso_aux_sens_on_t val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.aux_sens_on = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Number of external sensors to be read by the sensor hub.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of aux_sens_on in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_slave_connected_get(stmdev_ctx_t *ctx,
lsm6dso_aux_sens_on_t *val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
switch (reg.aux_sens_on) {
case LSM6DSO_SLV_0:
*val = LSM6DSO_SLV_0;
break;
case LSM6DSO_SLV_0_1:
*val = LSM6DSO_SLV_0_1;
break;
case LSM6DSO_SLV_0_1_2:
*val = LSM6DSO_SLV_0_1_2;
break;
case LSM6DSO_SLV_0_1_2_3:
*val = LSM6DSO_SLV_0_1_2_3;
break;
default:
*val = LSM6DSO_SLV_0;
break;
}
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Sensor hub I2C master enable.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of master_on in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_master_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.master_on = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Sensor hub I2C master enable.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of master_on in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_master_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.master_on;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Master I2C pull-up enable.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of shub_pu_en in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_pin_mode_set(stmdev_ctx_t *ctx,
lsm6dso_shub_pu_en_t val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.shub_pu_en = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Master I2C pull-up enable.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of shub_pu_en in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_pin_mode_get(stmdev_ctx_t *ctx,
lsm6dso_shub_pu_en_t *val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
switch (reg.shub_pu_en) {
case LSM6DSO_EXT_PULL_UP:
*val = LSM6DSO_EXT_PULL_UP;
break;
case LSM6DSO_INTERNAL_PULL_UP:
*val = LSM6DSO_INTERNAL_PULL_UP;
break;
default:
*val = LSM6DSO_EXT_PULL_UP;
break;
}
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief I2C interface pass-through.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of pass_through_mode in
* reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_pass_through_set(stmdev_ctx_t *ctx, uint8_t val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.pass_through_mode = val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief I2C interface pass-through.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of pass_through_mode in
* reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_pass_through_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.pass_through_mode;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Sensor hub trigger signal selection.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of start_config in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_syncro_mode_set(stmdev_ctx_t *ctx,
lsm6dso_start_config_t val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.start_config = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Sensor hub trigger signal selection.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of start_config in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_syncro_mode_get(stmdev_ctx_t *ctx,
lsm6dso_start_config_t *val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
switch (reg.start_config) {
case LSM6DSO_EXT_ON_INT2_PIN:
*val = LSM6DSO_EXT_ON_INT2_PIN;
break;
case LSM6DSO_XL_GY_DRDY:
*val = LSM6DSO_XL_GY_DRDY;
break;
default:
*val = LSM6DSO_EXT_ON_INT2_PIN;
break;
}
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Slave 0 write operation is performed only at the first
* sensor hub cycle.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of write_once in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_write_mode_set(stmdev_ctx_t *ctx,
lsm6dso_write_once_t val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.write_once = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Slave 0 write operation is performed only at the first sensor
* hub cycle.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of write_once in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_write_mode_get(stmdev_ctx_t *ctx,
lsm6dso_write_once_t *val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
switch (reg.write_once) {
case LSM6DSO_EACH_SH_CYCLE:
*val = LSM6DSO_EACH_SH_CYCLE;
break;
case LSM6DSO_ONLY_FIRST_CYCLE:
*val = LSM6DSO_ONLY_FIRST_CYCLE;
break;
default:
*val = LSM6DSO_EACH_SH_CYCLE;
break;
}
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Reset Master logic and output registers.[set]
*
* @param ctx read / write interface definitions
*
*/
int32_t lsm6dso_sh_reset_set(stmdev_ctx_t *ctx)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.rst_master_regs = PROPERTY_ENABLE;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
reg.rst_master_regs = PROPERTY_DISABLE;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Reset Master logic and output registers.[get]
*
* @param ctx read / write interface definitions
* @param val change the values of rst_master_regs in reg MASTER_CONFIG
*
*/
int32_t lsm6dso_sh_reset_get(stmdev_ctx_t *ctx, uint8_t *val)
{
lsm6dso_master_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®,
1);
}
if (ret == 0) {
*val = reg.rst_master_regs;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Rate at which the master communicates.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of shub_odr in reg slv1_CONFIG
*
*/
int32_t lsm6dso_sh_data_rate_set(stmdev_ctx_t *ctx,
lsm6dso_shub_odr_t val)
{
lsm6dso_slv0_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
reg.shub_odr = (uint8_t)val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Rate at which the master communicates.[get]
*
* @param ctx read / write interface definitions
* @param val Get the values of shub_odr in reg slv1_CONFIG
*
*/
int32_t lsm6dso_sh_data_rate_get(stmdev_ctx_t *ctx,
lsm6dso_shub_odr_t *val)
{
lsm6dso_slv0_config_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1);
}
if (ret == 0) {
switch (reg.shub_odr) {
case LSM6DSO_SH_ODR_104Hz:
*val = LSM6DSO_SH_ODR_104Hz;
break;
case LSM6DSO_SH_ODR_52Hz:
*val = LSM6DSO_SH_ODR_52Hz;
break;
case LSM6DSO_SH_ODR_26Hz:
*val = LSM6DSO_SH_ODR_26Hz;
break;
case LSM6DSO_SH_ODR_13Hz:
*val = LSM6DSO_SH_ODR_13Hz;
break;
default:
*val = LSM6DSO_SH_ODR_104Hz;
break;
}
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Configure slave 0 for perform a write.[set]
*
* @param ctx read / write interface definitions
* @param val a structure that contain
* - uint8_t slv1_add; 8 bit i2c device address
* - uint8_t slv1_subadd; 8 bit register device address
* - uint8_t slv1_data; 8 bit data to write
*
*/
int32_t lsm6dso_sh_cfg_write(stmdev_ctx_t *ctx,
lsm6dso_sh_cfg_write_t *val)
{
lsm6dso_slv0_add_t reg;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
reg.slave0 = val->slv0_add;
reg.rw_0 = 0;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_ADD, (uint8_t *)®, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_SUBADD,
&(val->slv0_subadd), 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_DATAWRITE_SLV0,
&(val->slv0_data), 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Configure slave 0 for perform a read.[set]
*
* @param ctx read / write interface definitions
* @param val Structure that contain
* - uint8_t slv1_add; 8 bit i2c device address
* - uint8_t slv1_subadd; 8 bit register device address
* - uint8_t slv1_len; num of bit to read
*
*/
int32_t lsm6dso_sh_slv0_cfg_read(stmdev_ctx_t *ctx,
lsm6dso_sh_cfg_read_t *val)
{
lsm6dso_slv0_add_t slv0_add;
lsm6dso_slv0_config_t slv0_config;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
slv0_add.slave0 = val->slv_add;
slv0_add.rw_0 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_ADD, (uint8_t *)&slv0_add,
1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_SUBADD,
&(val->slv_subadd), 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV0_CONFIG,
(uint8_t *)&slv0_config, 1);
}
if (ret == 0) {
slv0_config.slave0_numop = val->slv_len;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_CONFIG,
(uint8_t *)&slv0_config, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Configure slave 0 for perform a write/read.[set]
*
* @param ctx read / write interface definitions
* @param val Structure that contain
* - uint8_t slv1_add; 8 bit i2c device address
* - uint8_t slv1_subadd; 8 bit register device address
* - uint8_t slv1_len; num of bit to read
*
*/
int32_t lsm6dso_sh_slv1_cfg_read(stmdev_ctx_t *ctx,
lsm6dso_sh_cfg_read_t *val)
{
lsm6dso_slv1_add_t slv1_add;
lsm6dso_slv1_config_t slv1_config;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
slv1_add.slave1_add = val->slv_add;
slv1_add.r_1 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_ADD, (uint8_t *)&slv1_add,
1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_SUBADD,
&(val->slv_subadd), 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG,
(uint8_t *)&slv1_config, 1);
}
if (ret == 0) {
slv1_config.slave1_numop = val->slv_len;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_CONFIG,
(uint8_t *)&slv1_config, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Configure slave 0 for perform a write/read.[set]
*
* @param ctx read / write interface definitions
* @param val Structure that contain
* - uint8_t slv2_add; 8 bit i2c device address
* - uint8_t slv2_subadd; 8 bit register device address
* - uint8_t slv2_len; num of bit to read
*
*/
int32_t lsm6dso_sh_slv2_cfg_read(stmdev_ctx_t *ctx,
lsm6dso_sh_cfg_read_t *val)
{
lsm6dso_slv2_add_t slv2_add;
lsm6dso_slv2_config_t slv2_config;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
slv2_add.slave2_add = val->slv_add;
slv2_add.r_2 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_ADD, (uint8_t *)&slv2_add,
1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_SUBADD,
&(val->slv_subadd), 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV2_CONFIG,
(uint8_t *)&slv2_config, 1);
}
if (ret == 0) {
slv2_config.slave2_numop = val->slv_len;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_CONFIG,
(uint8_t *)&slv2_config, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Configure slave 0 for perform a write/read.[set]
*
* @param ctx read / write interface definitions
* @param val Structure that contain
* - uint8_t slv3_add; 8 bit i2c device address
* - uint8_t slv3_subadd; 8 bit register device address
* - uint8_t slv3_len; num of bit to read
*
*/
int32_t lsm6dso_sh_slv3_cfg_read(stmdev_ctx_t *ctx,
lsm6dso_sh_cfg_read_t *val)
{
lsm6dso_slv3_add_t slv3_add;
lsm6dso_slv3_config_t slv3_config;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
slv3_add.slave3_add = val->slv_add;
slv3_add.r_3 = 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_ADD, (uint8_t *)&slv3_add,
1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_SUBADD,
&(val->slv_subadd), 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV3_CONFIG,
(uint8_t *)&slv3_config, 1);
}
if (ret == 0) {
slv3_config.slave3_numop = val->slv_len;
ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_CONFIG,
(uint8_t *)&slv3_config, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Sensor hub source register.[get]
*
* @param ctx read / write interface definitions
* @param val union of registers from STATUS_MASTER to
*
*/
int32_t lsm6dso_sh_status_get(stmdev_ctx_t *ctx,
lsm6dso_status_master_t *val)
{
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_MASTER, (uint8_t *) val,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @}
*
*/
/**
* @defgroup Basic configuration
* @brief This section groups all the functions concerning
* device basic configuration.
* @{
*
*/
/**
* @brief Device "Who am I".[get]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val ID values read from the two interfaces. ID values
* will be the same.(ptr)
*
*/
int32_t lsm6dso_id_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx,
lsm6dso_id_t *val)
{
int32_t ret = 0;
if (ctx != NULL) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_WHO_AM_I,
(uint8_t *) & (val->ui), 1);
}
if (aux_ctx != NULL) {
if (ret == 0) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_WHO_AM_I,
(uint8_t *) & (val->aux), 1);
}
}
return ret;
}
/**
* @brief Re-initialize the device.[set]
*
* @param ctx communication interface handler.(ptr)
* @param val re-initialization mode. Refer to datasheet
* and application note for more information
* about differencies between boot and sw_reset
* procedure.
*
*/
int32_t lsm6dso_init_set(stmdev_ctx_t *ctx, lsm6dso_init_t val)
{
lsm6dso_emb_func_init_a_t emb_func_init_a;
lsm6dso_emb_func_init_b_t emb_func_init_b;
lsm6dso_ctrl3_c_t ctrl3_c;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B,
(uint8_t *)&emb_func_init_b, 1);
}
if (ret == 0) {
emb_func_init_b.fifo_compr_init = (uint8_t)val
& ( (uint8_t)LSM6DSO_FIFO_COMP >> 2 );
emb_func_init_b.fsm_init = (uint8_t)val
& ( (uint8_t)LSM6DSO_FSM >> 3 );
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B,
(uint8_t *)&emb_func_init_b, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_A,
(uint8_t *)&emb_func_init_a, 1);
}
if (ret == 0) {
emb_func_init_a.step_det_init = ( (uint8_t)val
& (uint8_t)LSM6DSO_PEDO ) >> 5;
emb_func_init_a.tilt_init = ( (uint8_t)val
& (uint8_t)LSM6DSO_TILT ) >> 6;
emb_func_init_a.sig_mot_init = ( (uint8_t)val
& (uint8_t)LSM6DSO_SMOTION ) >> 7;
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_A,
(uint8_t *)&emb_func_init_a, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
}
if ( ( (val == LSM6DSO_BOOT) || (val == LSM6DSO_RESET) ) &&
(ret == 0) ) {
ctrl3_c.boot = (uint8_t)val & (uint8_t)LSM6DSO_BOOT;
ctrl3_c.sw_reset = ( (uint8_t)val & (uint8_t)LSM6DSO_RESET) >> 1;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
}
if ( ( val == LSM6DSO_DRV_RDY )
&& ( (ctrl3_c.bdu == PROPERTY_DISABLE)
|| (ctrl3_c.if_inc == PROPERTY_DISABLE) ) && (ret == 0) ) {
ctrl3_c.bdu = PROPERTY_ENABLE;
ctrl3_c.if_inc = PROPERTY_ENABLE;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
}
return ret;
}
/**
* @brief Configures the bus operating mode.[set]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val configures the bus operating mode for both the
* main and the auxiliary interface.
*
*/
int32_t lsm6dso_bus_mode_set(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx,
lsm6dso_bus_mode_t val)
{
lsm6dso_ctrl1_ois_t ctrl1_ois;
lsm6dso_i3c_bus_avb_t i3c_bus_avb;
lsm6dso_ctrl9_xl_t ctrl9_xl;
lsm6dso_ctrl3_c_t ctrl3_c;
lsm6dso_ctrl4_c_t ctrl4_c;
uint8_t bit_val;
int32_t ret;
ret = 0;
if (aux_ctx != NULL) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS,
(uint8_t *)&ctrl1_ois, 1);
bit_val = ( (uint8_t)val.aux_bus_md & 0x04U ) >> 2;
if ( ( ret == 0 ) && ( ctrl1_ois.sim_ois != bit_val ) ) {
ctrl1_ois.sim_ois = bit_val;
ret = lsm6dso_write_reg(aux_ctx, LSM6DSO_CTRL1_OIS,
(uint8_t *)&ctrl1_ois, 1);
}
}
if (ctx != NULL) {
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL,
(uint8_t *)&ctrl9_xl, 1);
}
bit_val = ((uint8_t)val.ui_bus_md & 0x04U) >> 2;
if ( ( ret == 0 ) && ( ctrl9_xl.i3c_disable != bit_val ) ) {
ctrl9_xl.i3c_disable = bit_val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL,
(uint8_t *)&ctrl9_xl, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
bit_val = ((uint8_t)val.ui_bus_md & 0x30U) >> 4;
if ( ( ret == 0 ) && ( i3c_bus_avb.i3c_bus_avb_sel != bit_val ) ) {
i3c_bus_avb.i3c_bus_avb_sel = bit_val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C,
(uint8_t *)&ctrl4_c, 1);
}
bit_val = ( (uint8_t)val.ui_bus_md & 0x02U ) >> 1;
if ( ( ret == 0 ) && ( ctrl4_c.i2c_disable != bit_val ) ) {
ctrl4_c.i2c_disable = bit_val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C,
(uint8_t *)&ctrl4_c, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C,
(uint8_t *)&ctrl3_c, 1);
}
bit_val = (uint8_t)val.ui_bus_md & 0x01U;
if ( ( ret == 0 ) && ( ctrl3_c.sim != bit_val ) ) {
ctrl3_c.sim = bit_val;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C,
(uint8_t *)&ctrl3_c, 1);
}
}
return ret;
}
/**
* @brief Get the bus operating mode.[get]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val retrieves the bus operating mode for both the main
* and the auxiliary interface.(ptr)
*
*/
int32_t lsm6dso_bus_mode_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx,
lsm6dso_bus_mode_t *val)
{
lsm6dso_ctrl1_ois_t ctrl1_ois;
lsm6dso_i3c_bus_avb_t i3c_bus_avb;
lsm6dso_ctrl9_xl_t ctrl9_xl;
lsm6dso_ctrl3_c_t ctrl3_c;
lsm6dso_ctrl4_c_t ctrl4_c;
int32_t ret = 0;
if (aux_ctx != NULL) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS,
(uint8_t *)&ctrl1_ois, 1);
switch ( ctrl1_ois.sim_ois ) {
case LSM6DSO_SPI_4W_AUX:
val->aux_bus_md = LSM6DSO_SPI_4W_AUX;
break;
case LSM6DSO_SPI_3W_AUX:
val->aux_bus_md = LSM6DSO_SPI_3W_AUX;
break;
default:
val->aux_bus_md = LSM6DSO_SPI_4W_AUX;
break;
}
}
if (ctx != NULL) {
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL,
(uint8_t *)&ctrl9_xl, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C,
(uint8_t *)&ctrl4_c, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C,
(uint8_t *)&ctrl3_c, 1);
switch ( ( i3c_bus_avb.i3c_bus_avb_sel << 4 ) &
( ctrl9_xl.i3c_disable << 2 ) &
( ctrl4_c.i2c_disable << 1) & ctrl3_c.sim ) {
case LSM6DSO_SEL_BY_HW:
val->ui_bus_md = LSM6DSO_SEL_BY_HW;
break;
case LSM6DSO_SPI_4W:
val->ui_bus_md = LSM6DSO_SPI_4W;
break;
case LSM6DSO_SPI_3W:
val->ui_bus_md = LSM6DSO_SPI_3W;
break;
case LSM6DSO_I2C:
val->ui_bus_md = LSM6DSO_I2C;
break;
case LSM6DSO_I3C_T_50us:
val->ui_bus_md = LSM6DSO_I3C_T_50us;
break;
case LSM6DSO_I3C_T_2us:
val->ui_bus_md = LSM6DSO_I3C_T_2us;
break;
case LSM6DSO_I3C_T_1ms:
val->ui_bus_md = LSM6DSO_I3C_T_1ms;
break;
case LSM6DSO_I3C_T_25ms:
val->ui_bus_md = LSM6DSO_I3C_T_25ms;
break;
default:
val->ui_bus_md = LSM6DSO_SEL_BY_HW;
break;
}
}
}
return ret;
}
/**
* @brief Get the status of the device.[get]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val the status of the device.(ptr)
*
*/
int32_t lsm6dso_status_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx,
lsm6dso_status_t *val)
{
lsm6dso_status_spiaux_t status_spiaux;
lsm6dso_status_reg_t status_reg;
lsm6dso_ctrl3_c_t ctrl3_c;
int32_t ret;
ret = 0;
if (aux_ctx != NULL) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_STATUS_SPIAUX,
(uint8_t *)&status_spiaux, 1);
val->ois_drdy_xl = status_spiaux.xlda;
val->ois_drdy_g = status_spiaux.gda;
val->ois_gyro_settling = status_spiaux.gyro_settling;
}
if (ctx != NULL) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
val->sw_reset = ctrl3_c.sw_reset;
val->boot = ctrl3_c.boot;
if ( (ret == 0) && ( ctrl3_c.sw_reset == PROPERTY_DISABLE ) &&
( ctrl3_c.boot == PROPERTY_DISABLE ) ) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG,
(uint8_t *)&status_reg, 1);
val->drdy_xl = status_reg.xlda;
val->drdy_g = status_reg.gda;
val->drdy_temp = status_reg.tda;
}
}
return ret;
}
/**
* @brief Electrical pin configuration.[set]
*
* @param ctx communication interface handler.(ptr)
* @param val the electrical settings for the configurable
* pins.
*
*/
int32_t lsm6dso_pin_conf_set(stmdev_ctx_t *ctx,
lsm6dso_pin_conf_t val)
{
lsm6dso_i3c_bus_avb_t i3c_bus_avb;
lsm6dso_pin_ctrl_t pin_ctrl;
lsm6dso_ctrl3_c_t ctrl3_c;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)&pin_ctrl,
1);
if (ret == 0) {
pin_ctrl.ois_pu_dis = ~val.aux_sdo_ocs_pull_up;
pin_ctrl.sdo_pu_en = val.sdo_sa0_pull_up;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)&pin_ctrl,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
}
if (ret == 0) {
ctrl3_c.pp_od = ~val.int1_int2_push_pull;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
if (ret == 0) {
i3c_bus_avb.pd_dis_int1 = ~val.int1_pull_down;
ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
return ret;
}
/**
* @brief Electrical pin configuration.[get]
*
* @param ctx communication interface handler.(ptr)
* @param val the electrical settings for the configurable
* pins.(ptr)
*
*/
int32_t lsm6dso_pin_conf_get(stmdev_ctx_t *ctx,
lsm6dso_pin_conf_t *val)
{
lsm6dso_i3c_bus_avb_t i3c_bus_avb;
lsm6dso_pin_ctrl_t pin_ctrl;
lsm6dso_ctrl3_c_t ctrl3_c;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)&pin_ctrl,
1);
if (ret == 0) {
val->aux_sdo_ocs_pull_up = ~pin_ctrl.ois_pu_dis;
val->aux_sdo_ocs_pull_up = pin_ctrl.sdo_pu_en;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
}
if (ret == 0) {
val->int1_int2_push_pull = ~ctrl3_c.pp_od;
ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB,
(uint8_t *)&i3c_bus_avb, 1);
}
if (ret == 0) {
val->int1_pull_down = ~i3c_bus_avb.pd_dis_int1;
}
return ret;
}
/**
* @brief Interrupt pins hardware signal configuration.[set]
*
* @param ctx communication interface handler.(ptr)
* @param val the pins hardware signal settings.
*
*/
int32_t lsm6dso_interrupt_mode_set(stmdev_ctx_t *ctx,
lsm6dso_int_mode_t val)
{
lsm6dso_tap_cfg0_t tap_cfg0;
lsm6dso_page_rw_t page_rw;
lsm6dso_ctrl3_c_t ctrl3_c;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
if (ret == 0) {
ctrl3_c.h_lactive = val.active_low;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0,
1);
}
if (ret == 0) {
tap_cfg0.lir = val.base_latched;
tap_cfg0.int_clr_on_read = val.base_latched | val.emb_latched;
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.emb_func_lir = val.emb_latched;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Interrupt pins hardware signal configuration.[get]
*
* @param ctx communication interface handler.(ptr)
* @param val the pins hardware signal settings.(ptr)
*
*/
int32_t lsm6dso_interrupt_mode_get(stmdev_ctx_t *ctx,
lsm6dso_int_mode_t *val)
{
lsm6dso_tap_cfg0_t tap_cfg0;
lsm6dso_page_rw_t page_rw;
lsm6dso_ctrl3_c_t ctrl3_c;
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1);
if (ret == 0) {
ctrl3_c.h_lactive = val->active_low;
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0,
1);
}
if (ret == 0) {
tap_cfg0.lir = val->base_latched;
tap_cfg0.int_clr_on_read = val->base_latched | val->emb_latched;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1);
}
if (ret == 0) {
page_rw.emb_func_lir = val->emb_latched;
ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw,
1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Route interrupt signals on int1 pin.[set]
*
* @param ctx communication interface handler.(ptr)
* @param val the signals to route on int1 pin.
*
*/
int32_t lsm6dso_pin_int1_route_set(stmdev_ctx_t *ctx,
lsm6dso_pin_int1_route_t val)
{
lsm6dso_pin_int2_route_t pin_int2_route;
lsm6dso_emb_func_int1_t emb_func_int1;
lsm6dso_fsm_int1_a_t fsm_int1_a;
lsm6dso_fsm_int1_b_t fsm_int1_b;
lsm6dso_int1_ctrl_t int1_ctrl;
lsm6dso_int2_ctrl_t int2_ctrl;
lsm6dso_tap_cfg2_t tap_cfg2;
lsm6dso_md2_cfg_t md2_cfg;
lsm6dso_md1_cfg_t md1_cfg;
lsm6dso_ctrl4_c_t ctrl4_c;
int32_t ret;
int1_ctrl.int1_drdy_xl = val.drdy_xl;
int1_ctrl.int1_drdy_g = val.drdy_g;
int1_ctrl.int1_boot = val.boot;
int1_ctrl.int1_fifo_th = val.fifo_th;
int1_ctrl.int1_fifo_ovr = val.fifo_ovr;
int1_ctrl.int1_fifo_full = val.fifo_full;
int1_ctrl.int1_cnt_bdr = val.fifo_bdr;
int1_ctrl.den_drdy_flag = val.den_flag;
md1_cfg.int1_shub = val.sh_endop;
md1_cfg.int1_6d = val.six_d;
md1_cfg.int1_double_tap = val.double_tap;
md1_cfg.int1_ff = val.free_fall;
md1_cfg.int1_wu = val.wake_up;
md1_cfg.int1_single_tap = val.single_tap;
md1_cfg.int1_sleep_change = val.sleep_change;
emb_func_int1.not_used_01 = 0;
emb_func_int1.int1_step_detector = val.step_detector;
emb_func_int1.int1_tilt = val.tilt;
emb_func_int1.int1_sig_mot = val.sig_mot;
emb_func_int1.not_used_02 = 0;
emb_func_int1.int1_fsm_lc = val.fsm_lc;
fsm_int1_a.int1_fsm1 = val.fsm1;
fsm_int1_a.int1_fsm2 = val.fsm2;
fsm_int1_a.int1_fsm3 = val.fsm3;
fsm_int1_a.int1_fsm4 = val.fsm4;
fsm_int1_a.int1_fsm5 = val.fsm5;
fsm_int1_a.int1_fsm6 = val.fsm6;
fsm_int1_a.int1_fsm7 = val.fsm7;
fsm_int1_a.int1_fsm8 = val.fsm8;
fsm_int1_b.int1_fsm9 = val.fsm9 ;
fsm_int1_b.int1_fsm10 = val.fsm10;
fsm_int1_b.int1_fsm11 = val.fsm11;
fsm_int1_b.int1_fsm12 = val.fsm12;
fsm_int1_b.int1_fsm13 = val.fsm13;
fsm_int1_b.int1_fsm14 = val.fsm14;
fsm_int1_b.int1_fsm15 = val.fsm15;
fsm_int1_b.int1_fsm16 = val.fsm16;
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1);
if (ret == 0) {
if ( ( val.drdy_temp | val.timestamp ) != PROPERTY_DISABLE) {
ctrl4_c.int2_on_int1 = PROPERTY_ENABLE;
}
else {
ctrl4_c.int2_on_int1 = PROPERTY_DISABLE;
}
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INT1,
(uint8_t *)&emb_func_int1, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT1_A,
(uint8_t *)&fsm_int1_a, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT1_B,
(uint8_t *)&fsm_int1_b, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
if (ret == 0) {
if ( ( emb_func_int1.int1_fsm_lc
| emb_func_int1.int1_sig_mot
| emb_func_int1.int1_step_detector
| emb_func_int1.int1_tilt
| fsm_int1_a.int1_fsm1
| fsm_int1_a.int1_fsm2
| fsm_int1_a.int1_fsm3
| fsm_int1_a.int1_fsm4
| fsm_int1_a.int1_fsm5
| fsm_int1_a.int1_fsm6
| fsm_int1_a.int1_fsm7
| fsm_int1_a.int1_fsm8
| fsm_int1_b.int1_fsm9
| fsm_int1_b.int1_fsm10
| fsm_int1_b.int1_fsm11
| fsm_int1_b.int1_fsm12
| fsm_int1_b.int1_fsm13
| fsm_int1_b.int1_fsm14
| fsm_int1_b.int1_fsm15
| fsm_int1_b.int1_fsm16) != PROPERTY_DISABLE) {
md1_cfg.int1_emb_func = PROPERTY_ENABLE;
}
else {
md1_cfg.int1_emb_func = PROPERTY_DISABLE;
}
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT1_CTRL,
(uint8_t *)&int1_ctrl, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_MD1_CFG, (uint8_t *)&md1_cfg, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl,
1);
}
if (ret == 0) {
int2_ctrl.int2_drdy_temp = val.drdy_temp;
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl,
1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1);
}
if (ret == 0) {
md2_cfg.int2_timestamp = val.timestamp;
ret = lsm6dso_write_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2,
1);
}
if (ret == 0) {
ret = lsm6dso_pin_int2_route_get(ctx, NULL, &pin_int2_route);
}
if (ret == 0) {
if ( ( pin_int2_route.fifo_bdr
| pin_int2_route.drdy_g
| pin_int2_route.drdy_temp
| pin_int2_route.drdy_xl
| pin_int2_route.fifo_full
| pin_int2_route.fifo_ovr
| pin_int2_route.fifo_th
| pin_int2_route.six_d
| pin_int2_route.double_tap
| pin_int2_route.free_fall
| pin_int2_route.wake_up
| pin_int2_route.single_tap
| pin_int2_route.sleep_change
| int1_ctrl.den_drdy_flag
| int1_ctrl.int1_boot
| int1_ctrl.int1_cnt_bdr
| int1_ctrl.int1_drdy_g
| int1_ctrl.int1_drdy_xl
| int1_ctrl.int1_fifo_full
| int1_ctrl.int1_fifo_ovr
| int1_ctrl.int1_fifo_th
| md1_cfg.int1_shub
| md1_cfg.int1_6d
| md1_cfg.int1_double_tap
| md1_cfg.int1_ff
| md1_cfg.int1_wu
| md1_cfg.int1_single_tap
| md1_cfg.int1_sleep_change) != PROPERTY_DISABLE) {
tap_cfg2.interrupts_enable = PROPERTY_ENABLE;
}
else {
tap_cfg2.interrupts_enable = PROPERTY_DISABLE;
}
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2,
1);
}
return ret;
}
/**
* @brief Route interrupt signals on int1 pin.[get]
*
* @param ctx communication interface handler.(ptr)
* @param val the signals that are routed on int1 pin.(ptr)
*
*/
int32_t lsm6dso_pin_int1_route_get(stmdev_ctx_t *ctx,
lsm6dso_pin_int1_route_t *val)
{
lsm6dso_emb_func_int1_t emb_func_int1;
lsm6dso_fsm_int1_a_t fsm_int1_a;
lsm6dso_fsm_int1_b_t fsm_int1_b;
lsm6dso_int1_ctrl_t int1_ctrl;
lsm6dso_int2_ctrl_t int2_ctrl;
lsm6dso_md2_cfg_t md2_cfg;
lsm6dso_md1_cfg_t md1_cfg;
lsm6dso_ctrl4_c_t ctrl4_c;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INT1,
(uint8_t *)&emb_func_int1, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT1_A,
(uint8_t *)&fsm_int1_a, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT1_B,
(uint8_t *)&fsm_int1_b, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT1_CTRL,
(uint8_t *)&int1_ctrl, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MD1_CFG, (uint8_t *)&md1_cfg, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1);
}
if (ctrl4_c.int2_on_int1 == PROPERTY_ENABLE) {
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl,
1);
val->drdy_temp = int2_ctrl.int2_drdy_temp;
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1);
val->timestamp = md2_cfg.int2_timestamp;
}
}
else {
val->drdy_temp = PROPERTY_DISABLE;
val->timestamp = PROPERTY_DISABLE;
}
val->drdy_xl = int1_ctrl.int1_drdy_xl;
val->drdy_g = int1_ctrl.int1_drdy_g;
val->boot = int1_ctrl.int1_boot;
val->fifo_th = int1_ctrl.int1_fifo_th;
val->fifo_ovr = int1_ctrl.int1_fifo_ovr;
val->fifo_full = int1_ctrl.int1_fifo_full;
val->fifo_bdr = int1_ctrl.int1_cnt_bdr;
val->den_flag = int1_ctrl.den_drdy_flag;
val->sh_endop = md1_cfg.int1_shub;
val->six_d = md1_cfg.int1_6d;
val->double_tap = md1_cfg.int1_double_tap;
val->free_fall = md1_cfg.int1_ff;
val->wake_up = md1_cfg.int1_wu;
val->single_tap = md1_cfg.int1_single_tap;
val->sleep_change = md1_cfg.int1_sleep_change;
val->step_detector = emb_func_int1.int1_step_detector;
val->tilt = emb_func_int1.int1_tilt;
val->sig_mot = emb_func_int1.int1_sig_mot;
val->fsm_lc = emb_func_int1.int1_fsm_lc;
val->fsm1 = fsm_int1_a.int1_fsm1;
val->fsm2 = fsm_int1_a.int1_fsm2;
val->fsm3 = fsm_int1_a.int1_fsm3;
val->fsm4 = fsm_int1_a.int1_fsm4;
val->fsm5 = fsm_int1_a.int1_fsm5;
val->fsm6 = fsm_int1_a.int1_fsm6;
val->fsm7 = fsm_int1_a.int1_fsm7;
val->fsm8 = fsm_int1_a.int1_fsm8;
val->fsm9 = fsm_int1_b.int1_fsm9;
val->fsm10 = fsm_int1_b.int1_fsm10;
val->fsm11 = fsm_int1_b.int1_fsm11;
val->fsm12 = fsm_int1_b.int1_fsm12;
val->fsm13 = fsm_int1_b.int1_fsm13;
val->fsm14 = fsm_int1_b.int1_fsm14;
val->fsm15 = fsm_int1_b.int1_fsm15;
val->fsm16 = fsm_int1_b.int1_fsm16;
return ret;
}
/**
* @brief Route interrupt signals on int2 pin.[set]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val the signals to route on int2 pin.
*
*/
int32_t lsm6dso_pin_int2_route_set(stmdev_ctx_t *ctx,
stmdev_ctx_t *aux_ctx,
lsm6dso_pin_int2_route_t val)
{
lsm6dso_pin_int1_route_t pin_int1_route;
lsm6dso_emb_func_int2_t emb_func_int2;
lsm6dso_fsm_int2_a_t fsm_int2_a;
lsm6dso_fsm_int2_b_t fsm_int2_b;
lsm6dso_int2_ctrl_t int2_ctrl;
lsm6dso_tap_cfg2_t tap_cfg2;
lsm6dso_md2_cfg_t md2_cfg;
lsm6dso_ctrl4_c_t ctrl4_c;
lsm6dso_int_ois_t int_ois;
int32_t ret;
ret = 0;
if ( aux_ctx != NULL ) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_INT_OIS,
(uint8_t *)&int_ois, 1);
if (ret == 0) {
int_ois.int2_drdy_ois = val.drdy_ois;
ret = lsm6dso_write_reg(aux_ctx, LSM6DSO_INT_OIS,
(uint8_t *)&int_ois, 1);
}
}
if ( ctx != NULL ) {
int2_ctrl.int2_drdy_xl = val.drdy_xl;
int2_ctrl.int2_drdy_g = val.drdy_g;
int2_ctrl.int2_drdy_temp = val.drdy_temp;
int2_ctrl.int2_fifo_th = val.fifo_th;
int2_ctrl.int2_fifo_ovr = val.fifo_ovr;
int2_ctrl.int2_fifo_full = val.fifo_full;
int2_ctrl.int2_cnt_bdr = val.fifo_bdr;
int2_ctrl.not_used_01 = 0;
md2_cfg.int2_timestamp = val.timestamp;
md2_cfg.int2_6d = val.six_d;
md2_cfg.int2_double_tap = val.double_tap;
md2_cfg.int2_ff = val.free_fall;
md2_cfg.int2_wu = val.wake_up;
md2_cfg.int2_single_tap = val.single_tap;
md2_cfg.int2_sleep_change = val.sleep_change;
emb_func_int2.not_used_01 = 0;
emb_func_int2.int2_step_detector = val.step_detector;
emb_func_int2.int2_tilt = val.tilt;
emb_func_int2.int2_sig_mot = val.sig_mot;
emb_func_int2.not_used_02 = 0;
emb_func_int2.int2_fsm_lc = val.fsm_lc;
fsm_int2_a.int2_fsm1 = val.fsm1;
fsm_int2_a.int2_fsm2 = val.fsm2;
fsm_int2_a.int2_fsm3 = val.fsm3;
fsm_int2_a.int2_fsm4 = val.fsm4;
fsm_int2_a.int2_fsm5 = val.fsm5;
fsm_int2_a.int2_fsm6 = val.fsm6;
fsm_int2_a.int2_fsm7 = val.fsm7;
fsm_int2_a.int2_fsm8 = val.fsm8;
fsm_int2_b.int2_fsm9 = val.fsm9 ;
fsm_int2_b.int2_fsm10 = val.fsm10;
fsm_int2_b.int2_fsm11 = val.fsm11;
fsm_int2_b.int2_fsm12 = val.fsm12;
fsm_int2_b.int2_fsm13 = val.fsm13;
fsm_int2_b.int2_fsm14 = val.fsm14;
fsm_int2_b.int2_fsm15 = val.fsm15;
fsm_int2_b.int2_fsm16 = val.fsm16;
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1);
if (ret == 0) {
if ( ( val.drdy_temp | val.timestamp ) != PROPERTY_DISABLE ) {
ctrl4_c.int2_on_int1 = PROPERTY_DISABLE;
}
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1);
}
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INT2,
(uint8_t *)&emb_func_int2, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT2_A,
(uint8_t *)&fsm_int2_a, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT2_B,
(uint8_t *)&fsm_int2_b, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
if (ret == 0) {
if (( emb_func_int2.int2_fsm_lc
| emb_func_int2.int2_sig_mot
| emb_func_int2.int2_step_detector
| emb_func_int2.int2_tilt
| fsm_int2_a.int2_fsm1
| fsm_int2_a.int2_fsm2
| fsm_int2_a.int2_fsm3
| fsm_int2_a.int2_fsm4
| fsm_int2_a.int2_fsm5
| fsm_int2_a.int2_fsm6
| fsm_int2_a.int2_fsm7
| fsm_int2_a.int2_fsm8
| fsm_int2_b.int2_fsm9
| fsm_int2_b.int2_fsm10
| fsm_int2_b.int2_fsm11
| fsm_int2_b.int2_fsm12
| fsm_int2_b.int2_fsm13
| fsm_int2_b.int2_fsm14
| fsm_int2_b.int2_fsm15
| fsm_int2_b.int2_fsm16) != PROPERTY_DISABLE ) {
md2_cfg.int2_emb_func = PROPERTY_ENABLE;
}
else {
md2_cfg.int2_emb_func = PROPERTY_DISABLE;
}
ret = lsm6dso_write_reg(ctx, LSM6DSO_INT2_CTRL,
(uint8_t *)&int2_ctrl, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2,
1);
}
if (ret == 0) {
ret = lsm6dso_pin_int1_route_get(ctx, &pin_int1_route);
}
if (ret == 0) {
if ( ( val.fifo_bdr
| val.drdy_g
| val.drdy_temp
| val.drdy_xl
| val.fifo_full
| val.fifo_ovr
| val.fifo_th
| val.six_d
| val.double_tap
| val.free_fall
| val.wake_up
| val.single_tap
| val.sleep_change
| pin_int1_route.den_flag
| pin_int1_route.boot
| pin_int1_route.fifo_bdr
| pin_int1_route.drdy_g
| pin_int1_route.drdy_xl
| pin_int1_route.fifo_full
| pin_int1_route.fifo_ovr
| pin_int1_route.fifo_th
| pin_int1_route.six_d
| pin_int1_route.double_tap
| pin_int1_route.free_fall
| pin_int1_route.wake_up
| pin_int1_route.single_tap
| pin_int1_route.sleep_change ) != PROPERTY_DISABLE) {
tap_cfg2.interrupts_enable = PROPERTY_ENABLE;
}
else {
tap_cfg2.interrupts_enable = PROPERTY_DISABLE;
}
ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2,
1);
}
}
return ret;
}
/**
* @brief Route interrupt signals on int2 pin.[get]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val the signals that are routed on int2 pin.(ptr)
*
*/
int32_t lsm6dso_pin_int2_route_get(stmdev_ctx_t *ctx,
stmdev_ctx_t *aux_ctx,
lsm6dso_pin_int2_route_t *val)
{
lsm6dso_emb_func_int2_t emb_func_int2;
lsm6dso_fsm_int2_a_t fsm_int2_a;
lsm6dso_fsm_int2_b_t fsm_int2_b;
lsm6dso_int2_ctrl_t int2_ctrl;
lsm6dso_md2_cfg_t md2_cfg;
lsm6dso_ctrl4_c_t ctrl4_c;
lsm6dso_int_ois_t int_ois;
int32_t ret;
ret = 0;
if ( aux_ctx != NULL ) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_INT_OIS,
(uint8_t *)&int_ois, 1);
val->drdy_ois = int_ois.int2_drdy_ois;
}
if ( ctx != NULL ) {
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INT2,
(uint8_t *)&emb_func_int2, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT2_A,
(uint8_t *)&fsm_int2_a, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT2_B,
(uint8_t *)&fsm_int2_b, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL,
(uint8_t *)&int2_ctrl, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG,
(uint8_t *)&md2_cfg, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1);
}
if (ctrl4_c.int2_on_int1 == PROPERTY_DISABLE) {
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL,
(uint8_t *)&int2_ctrl, 1);
val->drdy_temp = int2_ctrl.int2_drdy_temp;
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1);
val->timestamp = md2_cfg.int2_timestamp;
}
}
else {
val->drdy_temp = PROPERTY_DISABLE;
val->timestamp = PROPERTY_DISABLE;
}
val->drdy_xl = int2_ctrl.int2_drdy_xl;
val->drdy_g = int2_ctrl.int2_drdy_g;
val->drdy_temp = int2_ctrl.int2_drdy_temp;
val->fifo_th = int2_ctrl.int2_fifo_th;
val->fifo_ovr = int2_ctrl.int2_fifo_ovr;
val->fifo_full = int2_ctrl.int2_fifo_full;
val->fifo_bdr = int2_ctrl.int2_cnt_bdr;
val->timestamp = md2_cfg.int2_timestamp;
val->six_d = md2_cfg.int2_6d;
val->double_tap = md2_cfg.int2_double_tap;
val->free_fall = md2_cfg.int2_ff;
val->wake_up = md2_cfg.int2_wu;
val->single_tap = md2_cfg.int2_single_tap;
val->sleep_change = md2_cfg.int2_sleep_change;
val->step_detector = emb_func_int2. int2_step_detector;
val->tilt = emb_func_int2.int2_tilt;
val->fsm_lc = emb_func_int2.int2_fsm_lc;
val->fsm1 = fsm_int2_a.int2_fsm1;
val->fsm2 = fsm_int2_a.int2_fsm2;
val->fsm3 = fsm_int2_a.int2_fsm3;
val->fsm4 = fsm_int2_a.int2_fsm4;
val->fsm5 = fsm_int2_a.int2_fsm5;
val->fsm6 = fsm_int2_a.int2_fsm6;
val->fsm7 = fsm_int2_a.int2_fsm7;
val->fsm8 = fsm_int2_a.int2_fsm8;
val->fsm9 = fsm_int2_b.int2_fsm9;
val->fsm10 = fsm_int2_b.int2_fsm10;
val->fsm11 = fsm_int2_b.int2_fsm11;
val->fsm12 = fsm_int2_b.int2_fsm12;
val->fsm13 = fsm_int2_b.int2_fsm13;
val->fsm14 = fsm_int2_b.int2_fsm14;
val->fsm15 = fsm_int2_b.int2_fsm15;
val->fsm16 = fsm_int2_b.int2_fsm16;
}
return ret;
}
/**
* @brief Get the status of all the interrupt sources.[get]
*
* @param ctx communication interface handler.(ptr)
* @param val the status of all the interrupt sources.(ptr)
*
*/
int32_t lsm6dso_all_sources_get(stmdev_ctx_t *ctx,
lsm6dso_all_sources_t *val)
{
lsm6dso_emb_func_status_mainpage_t emb_func_status_mainpage;
lsm6dso_status_master_mainpage_t status_master_mainpage;
lsm6dso_fsm_status_a_mainpage_t fsm_status_a_mainpage;
lsm6dso_fsm_status_b_mainpage_t fsm_status_b_mainpage;
lsm6dso_fifo_status1_t fifo_status1;
lsm6dso_fifo_status2_t fifo_status2;
lsm6dso_all_int_src_t all_int_src;
lsm6dso_wake_up_src_t wake_up_src;
lsm6dso_status_reg_t status_reg;
lsm6dso_tap_src_t tap_src;
lsm6dso_d6d_src_t d6d_src;
uint8_t reg[5];
int32_t ret;
ret = lsm6dso_read_reg(ctx, LSM6DSO_ALL_INT_SRC, reg, 5);
if (ret == 0) {
bytecpy((uint8_t *)&all_int_src, ®[0]);
bytecpy((uint8_t *)&wake_up_src, ®[1]);
bytecpy((uint8_t *)&tap_src, ®[2]);
bytecpy((uint8_t *)&d6d_src, ®[3]);
bytecpy((uint8_t *)&status_reg, ®[4]);
val->timestamp = all_int_src.timestamp_endcount;
val->wake_up_z = wake_up_src.z_wu;
val->wake_up_y = wake_up_src.y_wu;
val->wake_up_x = wake_up_src.x_wu;
val->wake_up = wake_up_src.wu_ia;
val->sleep_state = wake_up_src.sleep_state;
val->free_fall = wake_up_src.ff_ia;
val->sleep_change = wake_up_src.sleep_change_ia;
val->tap_x = tap_src.x_tap;
val->tap_y = tap_src.y_tap;
val->tap_z = tap_src.z_tap;
val->tap_sign = tap_src.tap_sign;
val->double_tap = tap_src.double_tap;
val->single_tap = tap_src.single_tap;
val->six_d_xl = d6d_src.xl;
val->six_d_xh = d6d_src.xh;
val->six_d_yl = d6d_src.yl;
val->six_d_yh = d6d_src.yh;
val->six_d_zl = d6d_src.zl;
val->six_d_zh = d6d_src.zh;
val->six_d = d6d_src.d6d_ia;
val->den_flag = d6d_src.den_drdy;
val->drdy_xl = status_reg.xlda;
val->drdy_g = status_reg.gda;
val->drdy_temp = status_reg.tda;
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS_MAINPAGE, reg, 3);
}
if (ret == 0) {
bytecpy((uint8_t *)&emb_func_status_mainpage, ®[0]);
bytecpy((uint8_t *)&fsm_status_a_mainpage, ®[1]);
bytecpy((uint8_t *)&fsm_status_b_mainpage, ®[2]);
val->step_detector = emb_func_status_mainpage.is_step_det;
val->tilt = emb_func_status_mainpage.is_tilt;
val->sig_mot = emb_func_status_mainpage.is_sigmot;
val->fsm_lc = emb_func_status_mainpage.is_fsm_lc;
val->fsm1 = fsm_status_a_mainpage.is_fsm1;
val->fsm2 = fsm_status_a_mainpage.is_fsm2;
val->fsm3 = fsm_status_a_mainpage.is_fsm3;
val->fsm4 = fsm_status_a_mainpage.is_fsm4;
val->fsm5 = fsm_status_a_mainpage.is_fsm5;
val->fsm6 = fsm_status_a_mainpage.is_fsm6;
val->fsm7 = fsm_status_a_mainpage.is_fsm7;
val->fsm8 = fsm_status_a_mainpage.is_fsm8;
val->fsm9 = fsm_status_b_mainpage.is_fsm9;
val->fsm10 = fsm_status_b_mainpage.is_fsm10;
val->fsm11 = fsm_status_b_mainpage.is_fsm11;
val->fsm12 = fsm_status_b_mainpage.is_fsm12;
val->fsm13 = fsm_status_b_mainpage.is_fsm13;
val->fsm14 = fsm_status_b_mainpage.is_fsm14;
val->fsm15 = fsm_status_b_mainpage.is_fsm15;
val->fsm16 = fsm_status_b_mainpage.is_fsm16;
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_MASTER_MAINPAGE, reg, 3);
}
if (ret == 0) {
bytecpy((uint8_t *)&status_master_mainpage, ®[0]);
bytecpy((uint8_t *)&fifo_status1, ®[1]);
bytecpy((uint8_t *)&fifo_status2, ®[2]);
val->sh_endop = status_master_mainpage.sens_hub_endop;
val->sh_slave0_nack = status_master_mainpage.slave0_nack;
val->sh_slave1_nack = status_master_mainpage.slave1_nack;
val->sh_slave2_nack = status_master_mainpage.slave2_nack;
val->sh_slave3_nack = status_master_mainpage.slave3_nack;
val->sh_wr_once = status_master_mainpage.wr_once_done;
val->fifo_diff = (256U * fifo_status2.diff_fifo) +
fifo_status1.diff_fifo;
val->fifo_ovr_latched = fifo_status2.over_run_latched;
val->fifo_bdr = fifo_status2.counter_bdr_ia;
val->fifo_full = fifo_status2.fifo_full_ia;
val->fifo_ovr = fifo_status2.fifo_ovr_ia;
val->fifo_th = fifo_status2.fifo_wtm_ia;
}
return ret;
}
/**
* @brief Sensor conversion parameters selection.[set]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val set the sensor conversion parameters by checking
* the constraints of the device.(ptr)
*
*/
int32_t lsm6dso_mode_set(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx,
lsm6dso_md_t *val)
{
lsm6dso_func_cfg_access_t func_cfg_access;
lsm6dso_ctrl1_ois_t ctrl1_ois;
lsm6dso_ctrl2_ois_t ctrl2_ois;
lsm6dso_ctrl3_ois_t ctrl3_ois;
lsm6dso_ctrl1_xl_t ctrl1_xl;
lsm6dso_ctrl8_xl_t ctrl8_xl;
lsm6dso_ctrl2_g_t ctrl2_g;
lsm6dso_ctrl3_c_t ctrl3_c;
lsm6dso_ctrl4_c_t ctrl4_c;
lsm6dso_ctrl5_c_t ctrl5_c;
lsm6dso_ctrl6_c_t ctrl6_c;
lsm6dso_ctrl7_g_t ctrl7_g;
uint8_t xl_hm_mode;
uint8_t g_hm_mode;
uint8_t xl_ulp_en;
uint8_t odr_gy;
uint8_t odr_xl;
uint8_t reg[8];
int32_t ret;
ret = 0;
/* FIXME: Remove warnings with STM32CubeIDE */
ctrl3_c.not_used_01 = 0;
ctrl4_c.not_used_01 = 0;
/* reading input configuration */
xl_hm_mode = ( (uint8_t)val->ui.xl.odr & 0x10U ) >> 4;
xl_ulp_en = ( (uint8_t)val->ui.xl.odr & 0x20U ) >> 5;
odr_xl = (uint8_t)val->ui.xl.odr & 0x0FU;
/* if enable xl ultra low power mode disable gy and OIS chain */
if (xl_ulp_en == PROPERTY_ENABLE) {
val->ois.xl.odr = LSM6DSO_XL_OIS_OFF;
val->ois.gy.odr = LSM6DSO_GY_OIS_OFF;
val->ui.gy.odr = LSM6DSO_GY_UI_OFF;
}
/* if OIS xl is enabled also gyro OIS is enabled */
if (val->ois.xl.odr == LSM6DSO_XL_OIS_6667Hz_HP) {
val->ois.gy.odr = LSM6DSO_GY_OIS_6667Hz_HP;
}
g_hm_mode = ( (uint8_t)val->ui.gy.odr & 0x10U ) >> 4;
odr_gy = (uint8_t)val->ui.gy.odr & 0x0FU;
/* reading registers to be configured */
if ( ctx != NULL ) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, reg, 8);
bytecpy(( uint8_t *)&ctrl1_xl, ®[0]);
bytecpy(( uint8_t *)&ctrl2_g, ®[1]);
bytecpy(( uint8_t *)&ctrl3_c, ®[2]);
bytecpy(( uint8_t *)&ctrl4_c, ®[3]);
bytecpy(( uint8_t *)&ctrl5_c, ®[4]);
bytecpy(( uint8_t *)&ctrl6_c, ®[5]);
bytecpy(( uint8_t *)&ctrl7_g, ®[6]);
bytecpy(( uint8_t *)&ctrl8_xl, ®[7]);
if ( ret == 0 ) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS,
(uint8_t *)&func_cfg_access, 1);
}
/* if toggle xl ultra low power mode, turn off xl before reconfigure */
if (ctrl5_c.xl_ulp_en != xl_ulp_en) {
ctrl1_xl.odr_xl = (uint8_t) 0x00U;
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL,
(uint8_t *)&ctrl1_xl, 1);
}
}
/* reading OIS registers to be configured */
if ( aux_ctx != NULL ) {
if (ret == 0) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS, reg, 3);
}
bytecpy(( uint8_t *)&ctrl1_ois, ®[0]);
bytecpy(( uint8_t *)&ctrl2_ois, ®[1]);
bytecpy(( uint8_t *)&ctrl3_ois, ®[2]);
}
else {
if ( ctx != NULL ) {
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, reg, 3);
}
bytecpy(( uint8_t *)&ctrl1_ois, ®[0]);
bytecpy(( uint8_t *)&ctrl2_ois, ®[1]);
bytecpy(( uint8_t *)&ctrl3_ois, ®[2]);
}
}
/* Check the Finite State Machine data rate constraints */
if (val->fsm.sens != LSM6DSO_FSM_DISABLE) {
switch (val->fsm.odr) {
case LSM6DSO_FSM_12Hz5:
if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl == 0x00U) ) {
odr_xl = 0x01U;
}
if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy == 0x00U) ) {
xl_ulp_en = PROPERTY_DISABLE;
odr_gy = 0x01U;
}
break;
case LSM6DSO_FSM_26Hz:
if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl < 0x02U) ) {
odr_xl = 0x02U;
}
if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy < 0x02U) ) {
xl_ulp_en = PROPERTY_DISABLE;
odr_gy = 0x02U;
}
break;
case LSM6DSO_FSM_52Hz:
if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl < 0x03U) ) {
odr_xl = 0x03U;
}
if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy < 0x03U) ) {
xl_ulp_en = PROPERTY_DISABLE;
odr_gy = 0x03U;
}
break;
case LSM6DSO_FSM_104Hz:
if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl < 0x04U) ) {
odr_xl = 0x04U;
}
if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy < 0x04U) ) {
xl_ulp_en = PROPERTY_DISABLE;
odr_gy = 0x04U;
}
break;
default:
odr_xl = 0x00U;
odr_gy = 0x00U;
break;
}
}
/* Updating the accelerometer data rate configuration */
switch ( ( ctrl5_c.xl_ulp_en << 5 ) | ( ctrl6_c.xl_hm_mode << 4 ) |
ctrl1_xl.odr_xl ) {
case LSM6DSO_XL_UI_OFF:
val->ui.xl.odr = LSM6DSO_XL_UI_OFF;
break;
case LSM6DSO_XL_UI_12Hz5_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_HP;
break;
case LSM6DSO_XL_UI_26Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_HP;
break;
case LSM6DSO_XL_UI_52Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_HP;
break;
case LSM6DSO_XL_UI_104Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_HP;
break;
case LSM6DSO_XL_UI_208Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_HP;
break;
case LSM6DSO_XL_UI_416Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_416Hz_HP;
break;
case LSM6DSO_XL_UI_833Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_833Hz_HP;
break;
case LSM6DSO_XL_UI_1667Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_1667Hz_HP;
break;
case LSM6DSO_XL_UI_3333Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_3333Hz_HP;
break;
case LSM6DSO_XL_UI_6667Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_6667Hz_HP;
break;
case LSM6DSO_XL_UI_1Hz6_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_LP;
break;
case LSM6DSO_XL_UI_12Hz5_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_LP;
break;
case LSM6DSO_XL_UI_26Hz_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_LP;
break;
case LSM6DSO_XL_UI_52Hz_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_LP;
break;
case LSM6DSO_XL_UI_104Hz_NM:
val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_NM;
break;
case LSM6DSO_XL_UI_208Hz_NM:
val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_NM;
break;
case LSM6DSO_XL_UI_1Hz6_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_ULP;
break;
case LSM6DSO_XL_UI_12Hz5_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_ULP;
break;
case LSM6DSO_XL_UI_26Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_ULP;
break;
case LSM6DSO_XL_UI_52Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_ULP;
break;
case LSM6DSO_XL_UI_104Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_ULP;
break;
case LSM6DSO_XL_UI_208Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_ULP;
break;
default:
val->ui.xl.odr = LSM6DSO_XL_UI_OFF;
break;
}
/* Updating the accelerometer data rate configuration */
switch ( (ctrl7_g.g_hm_mode << 4) | ctrl2_g.odr_g) {
case LSM6DSO_GY_UI_OFF:
val->ui.gy.odr = LSM6DSO_GY_UI_OFF;
break;
case LSM6DSO_GY_UI_12Hz5_LP:
val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_LP;
break;
case LSM6DSO_GY_UI_12Hz5_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_HP;
break;
case LSM6DSO_GY_UI_26Hz_LP:
val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_LP;
break;
case LSM6DSO_GY_UI_26Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_HP;
break;
case LSM6DSO_GY_UI_52Hz_LP:
val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_LP;
break;
case LSM6DSO_GY_UI_52Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_HP;
break;
case LSM6DSO_GY_UI_104Hz_NM:
val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_NM;
break;
case LSM6DSO_GY_UI_104Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_HP;
break;
case LSM6DSO_GY_UI_208Hz_NM:
val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_NM;
break;
case LSM6DSO_GY_UI_208Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_HP;
break;
case LSM6DSO_GY_UI_416Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_416Hz_HP;
break;
case LSM6DSO_GY_UI_833Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_833Hz_HP;
break;
case LSM6DSO_GY_UI_1667Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_1667Hz_HP;
break;
case LSM6DSO_GY_UI_3333Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_3333Hz_HP;
break;
case LSM6DSO_GY_UI_6667Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_6667Hz_HP;
break;
default:
val->ui.gy.odr = LSM6DSO_GY_UI_OFF;
break;
}
/* Check accelerometer full scale constraints */
/* Full scale of 16g must be the same for UI and OIS */
if ( (val->ui.xl.fs == LSM6DSO_XL_UI_16g) ||
(val->ois.xl.fs == LSM6DSO_XL_OIS_16g) ) {
val->ui.xl.fs = LSM6DSO_XL_UI_16g;
val->ois.xl.fs = LSM6DSO_XL_OIS_16g;
}
/* prapare new configuration */
/* Full scale of 16g must be the same for UI and OIS */
if (val->ui.xl.fs == LSM6DSO_XL_UI_16g) {
ctrl8_xl.xl_fs_mode = PROPERTY_DISABLE;
}
else {
ctrl8_xl.xl_fs_mode = PROPERTY_ENABLE;
}
/* OIS new configuration */
ctrl7_g.ois_on_en = val->ois.ctrl_md & 0x01U;
switch (val->ois.ctrl_md) {
case LSM6DSO_OIS_ONLY_AUX:
ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs;
ctrl1_ois.ois_en_spi2 = (uint8_t)val->ois.gy.odr |
(uint8_t)val->ois.xl.odr;
ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr;
ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs;
break;
case LSM6DSO_OIS_MIXED:
ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs;
ctrl7_g.ois_on = (uint8_t)val->ois.gy.odr | (uint8_t)val->ois.xl.odr;
ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr;
ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs;
break;
default:
ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs;
ctrl1_ois.ois_en_spi2 = (uint8_t)val->ois.gy.odr |
(uint8_t)val->ois.xl.odr;
ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr;
ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs;
break;
}
/* UI new configuration */
ctrl1_xl.odr_xl = odr_xl;
ctrl1_xl.fs_xl = (uint8_t)val->ui.xl.fs;
ctrl5_c.xl_ulp_en = xl_ulp_en;
ctrl6_c.xl_hm_mode = xl_hm_mode;
ctrl7_g.g_hm_mode = g_hm_mode;
ctrl2_g.odr_g = odr_gy;
ctrl2_g.fs_g = (uint8_t) val->ui.gy.fs;
/* writing checked configuration */
if ( ctx != NULL ) {
bytecpy(®[0], ( uint8_t *)&ctrl1_xl);
bytecpy(®[1], ( uint8_t *)&ctrl2_g);
bytecpy(®[2], ( uint8_t *)&ctrl3_c);
bytecpy(®[3], ( uint8_t *)&ctrl4_c);
bytecpy(®[4], ( uint8_t *)&ctrl5_c);
bytecpy(®[5], ( uint8_t *)&ctrl6_c);
bytecpy(®[6], ( uint8_t *)&ctrl7_g);
bytecpy(®[7], ( uint8_t *)&ctrl8_xl);
if ( ret == 0 ) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 8);
}
if ( ret == 0 ) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS,
(uint8_t *)&func_cfg_access, 1);
}
}
/* writing OIS checked configuration */
if ( aux_ctx != NULL ) {
bytecpy(®[0], ( uint8_t *)&ctrl1_ois);
bytecpy(®[1], ( uint8_t *)&ctrl2_ois);
bytecpy(®[2], ( uint8_t *)&ctrl3_ois);
if (ret == 0) {
ret = lsm6dso_write_reg(aux_ctx, LSM6DSO_CTRL1_OIS, reg, 3);
}
}
return ret;
}
/**
* @brief Sensor conversion parameters selection.[get]
*
* @param ctx communication interface handler. Use NULL to ignore
* this interface.(ptr)
* @param aux_ctx auxiliary communication interface handler. Use NULL
* to ignore this interface.(ptr)
* @param val get the sensor conversion parameters.(ptr)
*
*/
int32_t lsm6dso_mode_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx,
lsm6dso_md_t *val)
{
lsm6dso_emb_func_odr_cfg_b_t emb_func_odr_cfg_b;
lsm6dso_func_cfg_access_t func_cfg_access;
lsm6dso_emb_func_en_b_t emb_func_en_b;
lsm6dso_fsm_enable_a_t fsm_enable_a;
lsm6dso_fsm_enable_b_t fsm_enable_b;
lsm6dso_ctrl1_ois_t ctrl1_ois;
lsm6dso_ctrl2_ois_t ctrl2_ois;
lsm6dso_ctrl3_ois_t ctrl3_ois;
lsm6dso_ctrl1_xl_t ctrl1_xl;
lsm6dso_ctrl2_g_t ctrl2_g;
lsm6dso_ctrl3_c_t ctrl3_c;
lsm6dso_ctrl4_c_t ctrl4_c;
lsm6dso_ctrl5_c_t ctrl5_c;
lsm6dso_ctrl6_c_t ctrl6_c;
lsm6dso_ctrl7_g_t ctrl7_g;
uint8_t reg[8];
int32_t ret;
ret = 0;
/* reading the registers of the device */
if ( ctx != NULL ) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, reg, 7);
bytecpy(( uint8_t *)&ctrl1_xl, ®[0]);
bytecpy(( uint8_t *)&ctrl2_g, ®[1]);
bytecpy(( uint8_t *)&ctrl3_c, ®[2]);
bytecpy(( uint8_t *)&ctrl4_c, ®[3]);
bytecpy(( uint8_t *)&ctrl5_c, ®[4]);
bytecpy(( uint8_t *)&ctrl6_c, ®[5]);
bytecpy(( uint8_t *)&ctrl7_g, ®[6]);
if ( ret == 0 ) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS,
(uint8_t *)&func_cfg_access, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B, reg, 1);
bytecpy(( uint8_t *)&emb_func_odr_cfg_b, ®[0]);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B,
(uint8_t *)&emb_func_en_b, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_ENABLE_A, reg, 2);
bytecpy(( uint8_t *)&fsm_enable_a, ®[0]);
bytecpy(( uint8_t *)&fsm_enable_b, ®[1]);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
}
if ( aux_ctx != NULL ) {
if (ret == 0) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS, reg, 3);
}
bytecpy(( uint8_t *)&ctrl1_ois, ®[0]);
bytecpy(( uint8_t *)&ctrl2_ois, ®[1]);
bytecpy(( uint8_t *)&ctrl3_ois, ®[2]);
}
else {
if ( ctx != NULL ) {
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, reg, 3);
}
bytecpy(( uint8_t *)&ctrl1_ois, ®[0]);
bytecpy(( uint8_t *)&ctrl2_ois, ®[1]);
bytecpy(( uint8_t *)&ctrl3_ois, ®[2]);
}
}
/* fill the input structure */
/* get accelerometer configuration */
switch ( (ctrl5_c.xl_ulp_en << 5) | (ctrl6_c.xl_hm_mode << 4) |
ctrl1_xl.odr_xl ) {
case LSM6DSO_XL_UI_OFF:
val->ui.xl.odr = LSM6DSO_XL_UI_OFF;
break;
case LSM6DSO_XL_UI_12Hz5_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_HP;
break;
case LSM6DSO_XL_UI_26Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_HP;
break;
case LSM6DSO_XL_UI_52Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_HP;
break;
case LSM6DSO_XL_UI_104Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_HP;
break;
case LSM6DSO_XL_UI_208Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_HP;
break;
case LSM6DSO_XL_UI_416Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_416Hz_HP;
break;
case LSM6DSO_XL_UI_833Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_833Hz_HP;
break;
case LSM6DSO_XL_UI_1667Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_1667Hz_HP;
break;
case LSM6DSO_XL_UI_3333Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_3333Hz_HP;
break;
case LSM6DSO_XL_UI_6667Hz_HP:
val->ui.xl.odr = LSM6DSO_XL_UI_6667Hz_HP;
break;
case LSM6DSO_XL_UI_1Hz6_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_LP;
break;
case LSM6DSO_XL_UI_12Hz5_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_LP;
break;
case LSM6DSO_XL_UI_26Hz_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_LP;
break;
case LSM6DSO_XL_UI_52Hz_LP:
val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_LP;
break;
case LSM6DSO_XL_UI_104Hz_NM:
val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_NM;
break;
case LSM6DSO_XL_UI_208Hz_NM:
val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_NM;
break;
case LSM6DSO_XL_UI_1Hz6_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_ULP;
break;
case LSM6DSO_XL_UI_12Hz5_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_ULP;
break;
case LSM6DSO_XL_UI_26Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_ULP;
break;
case LSM6DSO_XL_UI_52Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_ULP;
break;
case LSM6DSO_XL_UI_104Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_ULP;
break;
case LSM6DSO_XL_UI_208Hz_ULP:
val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_ULP;
break;
default:
val->ui.xl.odr = LSM6DSO_XL_UI_OFF;
break;
}
switch ( ctrl1_xl.fs_xl ) {
case LSM6DSO_XL_UI_2g:
val->ui.xl.fs = LSM6DSO_XL_UI_2g;
break;
case LSM6DSO_XL_UI_4g:
val->ui.xl.fs = LSM6DSO_XL_UI_4g;
break;
case LSM6DSO_XL_UI_8g:
val->ui.xl.fs = LSM6DSO_XL_UI_8g;
break;
case LSM6DSO_XL_UI_16g:
val->ui.xl.fs = LSM6DSO_XL_UI_16g;
break;
default:
val->ui.xl.fs = LSM6DSO_XL_UI_2g;
break;
}
/* get gyroscope configuration */
switch ( (ctrl7_g.g_hm_mode << 4) | ctrl2_g.odr_g) {
case LSM6DSO_GY_UI_OFF:
val->ui.gy.odr = LSM6DSO_GY_UI_OFF;
break;
case LSM6DSO_GY_UI_12Hz5_LP:
val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_LP;
break;
case LSM6DSO_GY_UI_12Hz5_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_HP;
break;
case LSM6DSO_GY_UI_26Hz_LP:
val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_LP;
break;
case LSM6DSO_GY_UI_26Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_HP;
break;
case LSM6DSO_GY_UI_52Hz_LP:
val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_LP;
break;
case LSM6DSO_GY_UI_52Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_HP;
break;
case LSM6DSO_GY_UI_104Hz_NM:
val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_NM;
break;
case LSM6DSO_GY_UI_104Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_HP;
break;
case LSM6DSO_GY_UI_208Hz_NM:
val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_NM;
break;
case LSM6DSO_GY_UI_208Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_HP;
break;
case LSM6DSO_GY_UI_416Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_416Hz_HP;
break;
case LSM6DSO_GY_UI_833Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_833Hz_HP;
break;
case LSM6DSO_GY_UI_1667Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_1667Hz_HP;
break;
case LSM6DSO_GY_UI_3333Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_3333Hz_HP;
break;
case LSM6DSO_GY_UI_6667Hz_HP:
val->ui.gy.odr = LSM6DSO_GY_UI_6667Hz_HP;
break;
default:
val->ui.gy.odr = LSM6DSO_GY_UI_OFF;
break;
}
switch (ctrl2_g.fs_g) {
case LSM6DSO_GY_UI_125dps:
val->ui.gy.fs = LSM6DSO_GY_UI_125dps;
break;
case LSM6DSO_GY_UI_250dps:
val->ui.gy.fs = LSM6DSO_GY_UI_250dps;
break;
case LSM6DSO_GY_UI_500dps:
val->ui.gy.fs = LSM6DSO_GY_UI_500dps;
break;
case LSM6DSO_GY_UI_1000dps:
val->ui.gy.fs = LSM6DSO_GY_UI_1000dps;
break;
case LSM6DSO_GY_UI_2000dps:
val->ui.gy.fs = LSM6DSO_GY_UI_2000dps;
break;
default:
val->ui.gy.fs = LSM6DSO_GY_UI_125dps;
break;
}
/* get finite state machine configuration */
if ( (fsm_enable_a.fsm1_en | fsm_enable_a.fsm2_en |
fsm_enable_a.fsm3_en |
fsm_enable_a.fsm4_en | fsm_enable_a.fsm5_en | fsm_enable_a.fsm6_en |
fsm_enable_a.fsm7_en | fsm_enable_a.fsm8_en | fsm_enable_b.fsm9_en |
fsm_enable_b.fsm10_en | fsm_enable_b.fsm11_en |
fsm_enable_b.fsm12_en | fsm_enable_b.fsm13_en |
fsm_enable_b.fsm14_en | fsm_enable_b.fsm15_en |
fsm_enable_b.fsm16_en) == PROPERTY_ENABLE ) {
switch (emb_func_odr_cfg_b.fsm_odr) {
case LSM6DSO_FSM_12Hz5:
val->fsm.odr = LSM6DSO_FSM_12Hz5;
break;
case LSM6DSO_FSM_26Hz:
val->fsm.odr = LSM6DSO_FSM_26Hz;
break;
case LSM6DSO_FSM_52Hz:
val->fsm.odr = LSM6DSO_FSM_52Hz;
break;
case LSM6DSO_FSM_104Hz:
val->fsm.odr = LSM6DSO_FSM_104Hz;
break;
default:
val->fsm.odr = LSM6DSO_FSM_12Hz5;
break;
}
val->fsm.sens = LSM6DSO_FSM_XL_GY;
if (val->ui.gy.odr == LSM6DSO_GY_UI_OFF) {
val->fsm.sens = LSM6DSO_FSM_XL;
}
if (val->ui.xl.odr == LSM6DSO_XL_UI_OFF) {
val->fsm.sens = LSM6DSO_FSM_GY;
}
}
else {
val->fsm.sens = LSM6DSO_FSM_DISABLE;
}
/* get ois configuration */
/* OIS configuration mode */
switch ( ctrl7_g.ois_on_en ) {
case LSM6DSO_OIS_ONLY_AUX:
switch ( ctrl3_ois.fs_xl_ois ) {
case LSM6DSO_XL_OIS_2g:
val->ois.xl.fs = LSM6DSO_XL_OIS_2g;
break;
case LSM6DSO_XL_OIS_4g:
val->ois.xl.fs = LSM6DSO_XL_OIS_4g;
break;
case LSM6DSO_XL_OIS_8g:
val->ois.xl.fs = LSM6DSO_XL_OIS_8g;
break;
case LSM6DSO_XL_OIS_16g:
val->ois.xl.fs = LSM6DSO_XL_OIS_16g;
break;
default:
val->ois.xl.fs = LSM6DSO_XL_OIS_2g;
break;
}
switch ( ctrl1_ois.mode4_en ) {
case LSM6DSO_XL_OIS_OFF:
val->ois.xl.odr = LSM6DSO_XL_OIS_OFF;
break;
case LSM6DSO_XL_OIS_6667Hz_HP:
val->ois.xl.odr = LSM6DSO_XL_OIS_6667Hz_HP;
break;
default:
val->ois.xl.odr = LSM6DSO_XL_OIS_OFF;
break;
}
switch ( ctrl1_ois.fs_g_ois ) {
case LSM6DSO_GY_OIS_250dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_250dps;
break;
case LSM6DSO_GY_OIS_500dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_500dps;
break;
case LSM6DSO_GY_OIS_1000dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_1000dps;
break;
case LSM6DSO_GY_OIS_2000dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_2000dps;
break;
default:
val->ois.gy.fs = LSM6DSO_GY_OIS_250dps;
break;
}
switch ( ctrl1_ois.ois_en_spi2 ) {
case LSM6DSO_GY_OIS_OFF:
val->ois.gy.odr = LSM6DSO_GY_OIS_OFF;
break;
case LSM6DSO_GY_OIS_6667Hz_HP:
val->ois.gy.odr = LSM6DSO_GY_OIS_6667Hz_HP;
break;
default:
val->ois.gy.odr = LSM6DSO_GY_OIS_OFF;
break;
}
val->ois.ctrl_md = LSM6DSO_OIS_ONLY_AUX;
break;
case LSM6DSO_OIS_MIXED:
switch ( ctrl3_ois.fs_xl_ois ) {
case LSM6DSO_XL_OIS_2g:
val->ois.xl.fs = LSM6DSO_XL_OIS_2g;
break;
case LSM6DSO_XL_OIS_4g:
val->ois.xl.fs = LSM6DSO_XL_OIS_4g;
break;
case LSM6DSO_XL_OIS_8g:
val->ois.xl.fs = LSM6DSO_XL_OIS_8g;
break;
case LSM6DSO_XL_OIS_16g:
val->ois.xl.fs = LSM6DSO_XL_OIS_16g;
break;
default:
val->ois.xl.fs = LSM6DSO_XL_OIS_2g;
break;
}
switch ( ctrl1_ois.mode4_en ) {
case LSM6DSO_XL_OIS_OFF:
val->ois.xl.odr = LSM6DSO_XL_OIS_OFF;
break;
case LSM6DSO_XL_OIS_6667Hz_HP:
val->ois.xl.odr = LSM6DSO_XL_OIS_6667Hz_HP;
break;
default:
val->ois.xl.odr = LSM6DSO_XL_OIS_OFF;
break;
}
switch ( ctrl1_ois.fs_g_ois ) {
case LSM6DSO_GY_OIS_250dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_250dps;
break;
case LSM6DSO_GY_OIS_500dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_500dps;
break;
case LSM6DSO_GY_OIS_1000dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_1000dps;
break;
case LSM6DSO_GY_OIS_2000dps:
val->ois.gy.fs = LSM6DSO_GY_OIS_2000dps;
break;
default:
val->ois.gy.fs = LSM6DSO_GY_OIS_250dps;
break;
}
switch ( ctrl1_ois.ois_en_spi2 ) {
case LSM6DSO_GY_OIS_OFF:
val->ois.gy.odr = LSM6DSO_GY_OIS_OFF;
break;
case LSM6DSO_GY_OIS_6667Hz_HP:
val->ois.gy.odr = LSM6DSO_GY_OIS_6667Hz_HP;
break;
default:
val->ois.gy.odr = LSM6DSO_GY_OIS_OFF;
break;
}
val->ois.ctrl_md = LSM6DSO_OIS_MIXED;
break;
default:
ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs;
ctrl1_ois.ois_en_spi2 = (uint8_t)val->ois.gy.odr |
(uint8_t)val->ois.xl.odr;
ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr;
ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs;
val->ois.ctrl_md = LSM6DSO_OIS_ONLY_AUX;
break;
}
return ret;
}
/**
* @brief Read data in engineering unit.[get]
*
* @param ctx communication interface handler.(ptr)
* @param md the sensor conversion parameters.(ptr)
*
*/
int32_t lsm6dso_data_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx,
lsm6dso_md_t *md, lsm6dso_data_t *data)
{
uint8_t buff[14];
int32_t ret;
uint8_t i;
uint8_t j;
ret = 0;
/* read data */
if ( ctx != NULL ) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_OUT_TEMP_L, buff, 14);
}
j = 0;
/* temperature conversion */
data->ui.heat.raw = (int16_t)buff[j + 1U];
data->ui.heat.raw = ( ((int16_t)data->ui.heat.raw * (int16_t)256) +
(int16_t)buff[j] );
j += 2U;
data->ui.heat.deg_c = lsm6dso_from_lsb_to_celsius((
int16_t)data->ui.heat.raw);
/* angular rate conversion */
for (i = 0U; i < 3U; i++) {
data->ui.gy.raw[i] = (int16_t)buff[j + 1U];
data->ui.gy.raw[i] = (data->ui.gy.raw[i] * 256) + (int16_t) buff[j];
j += 2U;
switch ( md->ui.gy.fs ) {
case LSM6DSO_GY_UI_250dps:
data->ui.gy.mdps[i] = lsm6dso_from_fs250_to_mdps(data->ui.gy.raw[i]);
break;
case LSM6DSO_GY_UI_125dps:
data->ui.gy.mdps[i] = lsm6dso_from_fs125_to_mdps(data->ui.gy.raw[i]);
break;
case LSM6DSO_GY_UI_500dps:
data->ui.gy.mdps[i] = lsm6dso_from_fs500_to_mdps(data->ui.gy.raw[i]);
break;
case LSM6DSO_GY_UI_1000dps:
data->ui.gy.mdps[i] = lsm6dso_from_fs1000_to_mdps(data->ui.gy.raw[i]);
break;
case LSM6DSO_GY_UI_2000dps:
data->ui.gy.mdps[i] = lsm6dso_from_fs2000_to_mdps(data->ui.gy.raw[i]);
break;
default:
data->ui.gy.mdps[i] = 0.0f;
break;
}
}
/* acceleration conversion */
for (i = 0U; i < 3U; i++) {
data->ui.xl.raw[i] = (int16_t)buff[j + 1U];
data->ui.xl.raw[i] = (data->ui.xl.raw[i] * 256) + (int16_t) buff[j];
j += 2U;
switch ( md->ui.xl.fs ) {
case LSM6DSO_XL_UI_2g:
data->ui.xl.mg[i] = lsm6dso_from_fs2_to_mg(data->ui.xl.raw[i]);
break;
case LSM6DSO_XL_UI_4g:
data->ui.xl.mg[i] = lsm6dso_from_fs4_to_mg(data->ui.xl.raw[i]);
break;
case LSM6DSO_XL_UI_8g:
data->ui.xl.mg[i] = lsm6dso_from_fs8_to_mg(data->ui.xl.raw[i]);
break;
case LSM6DSO_XL_UI_16g:
data->ui.xl.mg[i] = lsm6dso_from_fs16_to_mg(data->ui.xl.raw[i]);
break;
default:
data->ui.xl.mg[i] = 0.0f;
break;
}
}
/* read data from ois chain */
if (aux_ctx != NULL) {
if (ret == 0) {
ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_OUTX_L_G, buff, 12);
}
}
j = 0;
/* ois angular rate conversion */
for (i = 0U; i < 3U; i++) {
data->ois.gy.raw[i] = (int16_t) buff[j + 1U];
data->ois.gy.raw[i] = (data->ois.gy.raw[i] * 256) + (int16_t) buff[j];
j += 2U;
switch ( md->ois.gy.fs ) {
case LSM6DSO_GY_UI_250dps:
data->ois.gy.mdps[i] = lsm6dso_from_fs250_to_mdps(
data->ois.gy.raw[i]);
break;
case LSM6DSO_GY_UI_125dps:
data->ois.gy.mdps[i] = lsm6dso_from_fs125_to_mdps(
data->ois.gy.raw[i]);
break;
case LSM6DSO_GY_UI_500dps:
data->ois.gy.mdps[i] = lsm6dso_from_fs500_to_mdps(
data->ois.gy.raw[i]);
break;
case LSM6DSO_GY_UI_1000dps:
data->ois.gy.mdps[i] = lsm6dso_from_fs1000_to_mdps(
data->ois.gy.raw[i]);
break;
case LSM6DSO_GY_UI_2000dps:
data->ois.gy.mdps[i] = lsm6dso_from_fs2000_to_mdps(
data->ois.gy.raw[i]);
break;
default:
data->ois.gy.mdps[i] = 0.0f;
break;
}
}
/* ois acceleration conversion */
for (i = 0U; i < 3U; i++) {
data->ois.xl.raw[i] = (int16_t) buff[j + 1U];
data->ois.xl.raw[i] = (data->ois.xl.raw[i] * 256) + (int16_t) buff[j];
j += 2U;
switch ( md->ois.xl.fs ) {
case LSM6DSO_XL_UI_2g:
data->ois.xl.mg[i] = lsm6dso_from_fs2_to_mg(data->ois.xl.raw[i]);
break;
case LSM6DSO_XL_UI_4g:
data->ois.xl.mg[i] = lsm6dso_from_fs4_to_mg(data->ois.xl.raw[i]);
break;
case LSM6DSO_XL_UI_8g:
data->ois.xl.mg[i] = lsm6dso_from_fs8_to_mg(data->ois.xl.raw[i]);
break;
case LSM6DSO_XL_UI_16g:
data->ois.xl.mg[i] = lsm6dso_from_fs16_to_mg(data->ois.xl.raw[i]);
break;
default:
data->ois.xl.mg[i] = 0.0f;
break;
}
}
return ret;
}
/**
* @brief Embedded functions.[set]
*
* @param ctx read / write interface definitions
* @param val change the values of registers
* EMB_FUNC_EN_A e EMB_FUNC_EN_B.
*
*/
int32_t lsm6dso_embedded_sens_set(stmdev_ctx_t *ctx,
lsm6dso_emb_sens_t *val)
{
lsm6dso_emb_func_en_a_t emb_func_en_a;
lsm6dso_emb_func_en_b_t emb_func_en_b;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_A,
(uint8_t *)&emb_func_en_a, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B,
(uint8_t *)&emb_func_en_b, 1);
emb_func_en_b.fsm_en = val->fsm;
emb_func_en_a.tilt_en = val->tilt;
emb_func_en_a.pedo_en = val->step;
emb_func_en_b.pedo_adv_en = val->step_adv;
emb_func_en_a.sign_motion_en = val->sig_mot;
emb_func_en_b.fifo_compr_en = val->fifo_compr;
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_A,
(uint8_t *)&emb_func_en_a, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_B,
(uint8_t *)&emb_func_en_b, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief Embedded functions.[get]
*
* @param ctx read / write interface definitions
* @param val get the values of registers
* EMB_FUNC_EN_A e EMB_FUNC_EN_B.
*
*/
int32_t lsm6dso_embedded_sens_get(stmdev_ctx_t *ctx,
lsm6dso_emb_sens_t *emb_sens)
{
lsm6dso_emb_func_en_a_t emb_func_en_a;
lsm6dso_emb_func_en_b_t emb_func_en_b;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_A,
(uint8_t *)&emb_func_en_a, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B,
(uint8_t *)&emb_func_en_b, 1);
emb_sens->fsm = emb_func_en_b.fsm_en;
emb_sens->tilt = emb_func_en_a.tilt_en;
emb_sens->step = emb_func_en_a.pedo_en;
emb_sens->step_adv = emb_func_en_b.pedo_adv_en;
emb_sens->sig_mot = emb_func_en_a.sign_motion_en;
emb_sens->fifo_compr = emb_func_en_b.fifo_compr_en;
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @brief turn off all embedded functions.[get]
*
* @param ctx read / write interface definitions
* @param val get the values of registers
* EMB_FUNC_EN_A e EMB_FUNC_EN_B.
*
*/
int32_t lsm6dso_embedded_sens_off(stmdev_ctx_t *ctx)
{
lsm6dso_emb_func_en_a_t emb_func_en_a;
lsm6dso_emb_func_en_b_t emb_func_en_b;
int32_t ret;
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK);
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_A,
(uint8_t *)&emb_func_en_a, 1);
}
if (ret == 0) {
ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B,
(uint8_t *)&emb_func_en_b, 1);
emb_func_en_b.fsm_en = PROPERTY_DISABLE;
emb_func_en_a.tilt_en = PROPERTY_DISABLE;
emb_func_en_a.pedo_en = PROPERTY_DISABLE;
emb_func_en_b.pedo_adv_en = PROPERTY_DISABLE;
emb_func_en_a.sign_motion_en = PROPERTY_DISABLE;
emb_func_en_b.fifo_compr_en = PROPERTY_DISABLE;
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_A,
(uint8_t *)&emb_func_en_a, 1);
}
if (ret == 0) {
ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_B,
(uint8_t *)&emb_func_en_b, 1);
}
if (ret == 0) {
ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK);
}
return ret;
}
/**
* @}
*
*/
/**
* @}
*
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/