/* ****************************************************************************** * @file lsm6dso_reg.c * @author Sensors Software Solution Team * @brief LSM6DSO driver file ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ #include "lsm6dso_reg.h" #include /** * @defgroup LSM6DSO * @brief This file provides a set of functions needed to drive the * lsm6dso enhanced inertial module. * @{ * */ /** * @defgroup LSM6DSO_Interfaces_Functions * @brief This section provide a set of functions used to read and * write a generic register of the device. * MANDATORY: return 0 -> no Error. * @{ * */ /** * @brief Read generic device register * * @param ctx read / write interface definitions(ptr) * @param reg register to read * @param data pointer to buffer that store the data read(ptr) * @param len number of consecutive register to read * @retval interface status (MANDATORY: return 0 -> no Error) * */ int32_t lsm6dso_read_reg(stmdev_ctx_t *ctx, uint8_t reg, uint8_t *data, uint16_t len) { int32_t ret; ret = ctx->read_reg(ctx->handle, reg, data, len); return ret; } /** * @brief Write generic device register * * @param ctx read / write interface definitions(ptr) * @param reg register to write * @param data pointer to data to write in register reg(ptr) * @param len number of consecutive register to write * @retval interface status (MANDATORY: return 0 -> no Error) * */ int32_t lsm6dso_write_reg(stmdev_ctx_t *ctx, uint8_t reg, uint8_t *data, uint16_t len) { int32_t ret; ret = ctx->write_reg(ctx->handle, reg, data, len); return ret; } /** * @} * */ /** * @defgroup LSM6DSOX_Private_functions * @brief Section collect all the utility functions needed by APIs. * @{ * */ static void bytecpy(uint8_t *target, uint8_t *source) { if ( (target != NULL) && (source != NULL) ) { *target = *source; } } /** * @defgroup LSM6DSO_Sensitivity * @brief These functions convert raw-data into engineering units. * @{ * */ float_t lsm6dso_from_fs2_to_mg(int16_t lsb) { return ((float_t)lsb) * 0.061f; } float_t lsm6dso_from_fs4_to_mg(int16_t lsb) { return ((float_t)lsb) * 0.122f; } float_t lsm6dso_from_fs8_to_mg(int16_t lsb) { return ((float_t)lsb) * 0.244f; } float_t lsm6dso_from_fs16_to_mg(int16_t lsb) { return ((float_t)lsb) * 0.488f; } float_t lsm6dso_from_fs125_to_mdps(int16_t lsb) { return ((float_t)lsb) * 4.375f; } float_t lsm6dso_from_fs500_to_mdps(int16_t lsb) { return ((float_t)lsb) * 17.50f; } float_t lsm6dso_from_fs250_to_mdps(int16_t lsb) { return ((float_t)lsb) * 8.750f; } float_t lsm6dso_from_fs1000_to_mdps(int16_t lsb) { return ((float_t)lsb) * 35.0f; } float_t lsm6dso_from_fs2000_to_mdps(int16_t lsb) { return ((float_t)lsb) * 70.0f; } float_t lsm6dso_from_lsb_to_celsius(int16_t lsb) { return (((float_t)lsb / 256.0f) + 25.0f); } float_t lsm6dso_from_lsb_to_nsec(int16_t lsb) { return ((float_t)lsb * 25000.0f); } /** * @} * */ /** * @defgroup LSM6DSO_Data_Generation * @brief This section groups all the functions concerning * data generation. * */ /** * @brief Accelerometer full-scale selection.[set] * * @param ctx read / write interface definitions * @param val change the values of fs_xl in reg CTRL1_XL * */ int32_t lsm6dso_xl_full_scale_set(stmdev_ctx_t *ctx, lsm6dso_fs_xl_t val) { lsm6dso_ctrl1_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); if (ret == 0) { reg.fs_xl = (uint8_t) val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); } return ret; } /** * @brief Accelerometer full-scale selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of fs_xl in reg CTRL1_XL * */ int32_t lsm6dso_xl_full_scale_get(stmdev_ctx_t *ctx, lsm6dso_fs_xl_t *val) { lsm6dso_ctrl1_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); switch (reg.fs_xl) { case LSM6DSO_2g: *val = LSM6DSO_2g; break; case LSM6DSO_16g: *val = LSM6DSO_16g; break; case LSM6DSO_4g: *val = LSM6DSO_4g; break; case LSM6DSO_8g: *val = LSM6DSO_8g; break; default: *val = LSM6DSO_2g; break; } return ret; } /** * @brief Accelerometer UI data rate selection.[set] * * @param ctx read / write interface definitions * @param val change the values of odr_xl in reg CTRL1_XL * */ int32_t lsm6dso_xl_data_rate_set(stmdev_ctx_t *ctx, lsm6dso_odr_xl_t val) { lsm6dso_odr_xl_t odr_xl = val; lsm6dso_emb_fsm_enable_t fsm_enable; lsm6dso_fsm_odr_t fsm_odr; lsm6dso_ctrl1_xl_t reg; int32_t ret; /* Check the Finite State Machine data rate constraints */ ret = lsm6dso_fsm_enable_get(ctx, &fsm_enable); if (ret == 0) { if ( (fsm_enable.fsm_enable_a.fsm1_en | fsm_enable.fsm_enable_a.fsm2_en | fsm_enable.fsm_enable_a.fsm3_en | fsm_enable.fsm_enable_a.fsm4_en | fsm_enable.fsm_enable_a.fsm5_en | fsm_enable.fsm_enable_a.fsm6_en | fsm_enable.fsm_enable_a.fsm7_en | fsm_enable.fsm_enable_a.fsm8_en | fsm_enable.fsm_enable_b.fsm9_en | fsm_enable.fsm_enable_b.fsm10_en | fsm_enable.fsm_enable_b.fsm11_en | fsm_enable.fsm_enable_b.fsm12_en | fsm_enable.fsm_enable_b.fsm13_en | fsm_enable.fsm_enable_b.fsm14_en | fsm_enable.fsm_enable_b.fsm15_en | fsm_enable.fsm_enable_b.fsm16_en ) == PROPERTY_ENABLE ) { ret = lsm6dso_fsm_data_rate_get(ctx, &fsm_odr); if (ret == 0) { switch (fsm_odr) { case LSM6DSO_ODR_FSM_12Hz5: if (val == LSM6DSO_XL_ODR_OFF) { odr_xl = LSM6DSO_XL_ODR_12Hz5; } else { odr_xl = val; } break; case LSM6DSO_ODR_FSM_26Hz: if (val == LSM6DSO_XL_ODR_OFF) { odr_xl = LSM6DSO_XL_ODR_26Hz; } else if (val == LSM6DSO_XL_ODR_12Hz5) { odr_xl = LSM6DSO_XL_ODR_26Hz; } else { odr_xl = val; } break; case LSM6DSO_ODR_FSM_52Hz: if (val == LSM6DSO_XL_ODR_OFF) { odr_xl = LSM6DSO_XL_ODR_52Hz; } else if (val == LSM6DSO_XL_ODR_12Hz5) { odr_xl = LSM6DSO_XL_ODR_52Hz; } else if (val == LSM6DSO_XL_ODR_26Hz) { odr_xl = LSM6DSO_XL_ODR_52Hz; } else { odr_xl = val; } break; case LSM6DSO_ODR_FSM_104Hz: if (val == LSM6DSO_XL_ODR_OFF) { odr_xl = LSM6DSO_XL_ODR_104Hz; } else if (val == LSM6DSO_XL_ODR_12Hz5) { odr_xl = LSM6DSO_XL_ODR_104Hz; } else if (val == LSM6DSO_XL_ODR_26Hz) { odr_xl = LSM6DSO_XL_ODR_104Hz; } else if (val == LSM6DSO_XL_ODR_52Hz) { odr_xl = LSM6DSO_XL_ODR_104Hz; } else { odr_xl = val; } break; default: odr_xl = val; break; } } } } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); } if (ret == 0) { reg.odr_xl = (uint8_t) odr_xl; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); } return ret; } /** * @brief Accelerometer UI data rate selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of odr_xl in reg CTRL1_XL * */ int32_t lsm6dso_xl_data_rate_get(stmdev_ctx_t *ctx, lsm6dso_odr_xl_t *val) { lsm6dso_ctrl1_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); switch (reg.odr_xl) { case LSM6DSO_XL_ODR_OFF: *val = LSM6DSO_XL_ODR_OFF; break; case LSM6DSO_XL_ODR_12Hz5: *val = LSM6DSO_XL_ODR_12Hz5; break; case LSM6DSO_XL_ODR_26Hz: *val = LSM6DSO_XL_ODR_26Hz; break; case LSM6DSO_XL_ODR_52Hz: *val = LSM6DSO_XL_ODR_52Hz; break; case LSM6DSO_XL_ODR_104Hz: *val = LSM6DSO_XL_ODR_104Hz; break; case LSM6DSO_XL_ODR_208Hz: *val = LSM6DSO_XL_ODR_208Hz; break; case LSM6DSO_XL_ODR_417Hz: *val = LSM6DSO_XL_ODR_417Hz; break; case LSM6DSO_XL_ODR_833Hz: *val = LSM6DSO_XL_ODR_833Hz; break; case LSM6DSO_XL_ODR_1667Hz: *val = LSM6DSO_XL_ODR_1667Hz; break; case LSM6DSO_XL_ODR_3333Hz: *val = LSM6DSO_XL_ODR_3333Hz; break; case LSM6DSO_XL_ODR_6667Hz: *val = LSM6DSO_XL_ODR_6667Hz; break; case LSM6DSO_XL_ODR_1Hz6: *val = LSM6DSO_XL_ODR_1Hz6; break; default: *val = LSM6DSO_XL_ODR_OFF; break; } return ret; } /** * @brief Gyroscope UI chain full-scale selection.[set] * * @param ctx read / write interface definitions * @param val change the values of fs_g in reg CTRL2_G * */ int32_t lsm6dso_gy_full_scale_set(stmdev_ctx_t *ctx, lsm6dso_fs_g_t val) { lsm6dso_ctrl2_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1); if (ret == 0) { reg.fs_g = (uint8_t) val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1); } return ret; } /** * @brief Gyroscope UI chain full-scale selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of fs_g in reg CTRL2_G * */ int32_t lsm6dso_gy_full_scale_get(stmdev_ctx_t *ctx, lsm6dso_fs_g_t *val) { lsm6dso_ctrl2_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1); switch (reg.fs_g) { case LSM6DSO_250dps: *val = LSM6DSO_250dps; break; case LSM6DSO_125dps: *val = LSM6DSO_125dps; break; case LSM6DSO_500dps: *val = LSM6DSO_500dps; break; case LSM6DSO_1000dps: *val = LSM6DSO_1000dps; break; case LSM6DSO_2000dps: *val = LSM6DSO_2000dps; break; default: *val = LSM6DSO_250dps; break; } return ret; } /** * @brief Gyroscope UI data rate selection.[set] * * @param ctx read / write interface definitions * @param val change the values of odr_g in reg CTRL2_G * */ int32_t lsm6dso_gy_data_rate_set(stmdev_ctx_t *ctx, lsm6dso_odr_g_t val) { lsm6dso_odr_g_t odr_gy = val; lsm6dso_emb_fsm_enable_t fsm_enable; lsm6dso_fsm_odr_t fsm_odr; lsm6dso_ctrl2_g_t reg; int32_t ret; /* Check the Finite State Machine data rate constraints */ ret = lsm6dso_fsm_enable_get(ctx, &fsm_enable); if (ret == 0) { if ( (fsm_enable.fsm_enable_a.fsm1_en | fsm_enable.fsm_enable_a.fsm2_en | fsm_enable.fsm_enable_a.fsm3_en | fsm_enable.fsm_enable_a.fsm4_en | fsm_enable.fsm_enable_a.fsm5_en | fsm_enable.fsm_enable_a.fsm6_en | fsm_enable.fsm_enable_a.fsm7_en | fsm_enable.fsm_enable_a.fsm8_en | fsm_enable.fsm_enable_b.fsm9_en | fsm_enable.fsm_enable_b.fsm10_en | fsm_enable.fsm_enable_b.fsm11_en | fsm_enable.fsm_enable_b.fsm12_en | fsm_enable.fsm_enable_b.fsm13_en | fsm_enable.fsm_enable_b.fsm14_en | fsm_enable.fsm_enable_b.fsm15_en | fsm_enable.fsm_enable_b.fsm16_en ) == PROPERTY_ENABLE ) { ret = lsm6dso_fsm_data_rate_get(ctx, &fsm_odr); if (ret == 0) { switch (fsm_odr) { case LSM6DSO_ODR_FSM_12Hz5: if (val == LSM6DSO_GY_ODR_OFF) { odr_gy = LSM6DSO_GY_ODR_12Hz5; } else { odr_gy = val; } break; case LSM6DSO_ODR_FSM_26Hz: if (val == LSM6DSO_GY_ODR_OFF) { odr_gy = LSM6DSO_GY_ODR_26Hz; } else if (val == LSM6DSO_GY_ODR_12Hz5) { odr_gy = LSM6DSO_GY_ODR_26Hz; } else { odr_gy = val; } break; case LSM6DSO_ODR_FSM_52Hz: if (val == LSM6DSO_GY_ODR_OFF) { odr_gy = LSM6DSO_GY_ODR_52Hz; } else if (val == LSM6DSO_GY_ODR_12Hz5) { odr_gy = LSM6DSO_GY_ODR_52Hz; } else if (val == LSM6DSO_GY_ODR_26Hz) { odr_gy = LSM6DSO_GY_ODR_52Hz; } else { odr_gy = val; } break; case LSM6DSO_ODR_FSM_104Hz: if (val == LSM6DSO_GY_ODR_OFF) { odr_gy = LSM6DSO_GY_ODR_104Hz; } else if (val == LSM6DSO_GY_ODR_12Hz5) { odr_gy = LSM6DSO_GY_ODR_104Hz; } else if (val == LSM6DSO_GY_ODR_26Hz) { odr_gy = LSM6DSO_GY_ODR_104Hz; } else if (val == LSM6DSO_GY_ODR_52Hz) { odr_gy = LSM6DSO_GY_ODR_104Hz; } else { odr_gy = val; } break; default: odr_gy = val; break; } } } } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1); } if (ret == 0) { reg.odr_g = (uint8_t) odr_gy; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1); } return ret; } /** * @brief Gyroscope UI data rate selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of odr_g in reg CTRL2_G * */ int32_t lsm6dso_gy_data_rate_get(stmdev_ctx_t *ctx, lsm6dso_odr_g_t *val) { lsm6dso_ctrl2_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_G, (uint8_t *)®, 1); switch (reg.odr_g) { case LSM6DSO_GY_ODR_OFF: *val = LSM6DSO_GY_ODR_OFF; break; case LSM6DSO_GY_ODR_12Hz5: *val = LSM6DSO_GY_ODR_12Hz5; break; case LSM6DSO_GY_ODR_26Hz: *val = LSM6DSO_GY_ODR_26Hz; break; case LSM6DSO_GY_ODR_52Hz: *val = LSM6DSO_GY_ODR_52Hz; break; case LSM6DSO_GY_ODR_104Hz: *val = LSM6DSO_GY_ODR_104Hz; break; case LSM6DSO_GY_ODR_208Hz: *val = LSM6DSO_GY_ODR_208Hz; break; case LSM6DSO_GY_ODR_417Hz: *val = LSM6DSO_GY_ODR_417Hz; break; case LSM6DSO_GY_ODR_833Hz: *val = LSM6DSO_GY_ODR_833Hz; break; case LSM6DSO_GY_ODR_1667Hz: *val = LSM6DSO_GY_ODR_1667Hz; break; case LSM6DSO_GY_ODR_3333Hz: *val = LSM6DSO_GY_ODR_3333Hz; break; case LSM6DSO_GY_ODR_6667Hz: *val = LSM6DSO_GY_ODR_6667Hz; break; default: *val = LSM6DSO_GY_ODR_OFF; break; } return ret; } /** * @brief Block data update.[set] * * @param ctx read / write interface definitions * @param val change the values of bdu in reg CTRL3_C * */ int32_t lsm6dso_block_data_update_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); if (ret == 0) { reg.bdu = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); } return ret; } /** * @brief Block data update.[get] * * @param ctx read / write interface definitions * @param val change the values of bdu in reg CTRL3_C * */ int32_t lsm6dso_block_data_update_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); *val = reg.bdu; return ret; } /** * @brief Weight of XL user offset bits of registers X_OFS_USR (73h), * Y_OFS_USR (74h), Z_OFS_USR (75h).[set] * * @param ctx read / write interface definitions * @param val change the values of usr_off_w in reg CTRL6_C * */ int32_t lsm6dso_xl_offset_weight_set(stmdev_ctx_t *ctx, lsm6dso_usr_off_w_t val) { lsm6dso_ctrl6_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); if (ret == 0) { reg.usr_off_w = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); } return ret; } /** * @brief Weight of XL user offset bits of registers X_OFS_USR (73h), * Y_OFS_USR (74h), Z_OFS_USR (75h).[get] * * @param ctx read / write interface definitions * @param val Get the values of usr_off_w in reg CTRL6_C * */ int32_t lsm6dso_xl_offset_weight_get(stmdev_ctx_t *ctx, lsm6dso_usr_off_w_t *val) { lsm6dso_ctrl6_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); switch (reg.usr_off_w) { case LSM6DSO_LSb_1mg: *val = LSM6DSO_LSb_1mg; break; case LSM6DSO_LSb_16mg: *val = LSM6DSO_LSb_16mg; break; default: *val = LSM6DSO_LSb_1mg; break; } return ret; } /** * @brief Accelerometer power mode.[set] * * @param ctx read / write interface definitions * @param val change the values of xl_hm_mode in * reg CTRL6_C * */ int32_t lsm6dso_xl_power_mode_set(stmdev_ctx_t *ctx, lsm6dso_xl_hm_mode_t val) { lsm6dso_ctrl5_c_t ctrl5_c; lsm6dso_ctrl6_c_t ctrl6_c; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *) &ctrl5_c, 1); if (ret == 0) { ctrl5_c.xl_ulp_en = ((uint8_t)val & 0x02U) >> 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *) &ctrl5_c, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *) &ctrl6_c, 1); } if (ret == 0) { ctrl6_c.xl_hm_mode = (uint8_t)val & 0x01U; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *) &ctrl6_c, 1); } return ret; } /** * @brief Accelerometer power mode.[get] * * @param ctx read / write interface definitions * @param val Get the values of xl_hm_mode in reg CTRL6_C * */ int32_t lsm6dso_xl_power_mode_get(stmdev_ctx_t *ctx, lsm6dso_xl_hm_mode_t *val) { lsm6dso_ctrl5_c_t ctrl5_c; lsm6dso_ctrl6_c_t ctrl6_c; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *) &ctrl5_c, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *) &ctrl6_c, 1); switch ( (ctrl5_c.xl_ulp_en << 1) | ctrl6_c.xl_hm_mode) { case LSM6DSO_HIGH_PERFORMANCE_MD: *val = LSM6DSO_HIGH_PERFORMANCE_MD; break; case LSM6DSO_LOW_NORMAL_POWER_MD: *val = LSM6DSO_LOW_NORMAL_POWER_MD; break; case LSM6DSO_ULTRA_LOW_POWER_MD: *val = LSM6DSO_ULTRA_LOW_POWER_MD; break; default: *val = LSM6DSO_HIGH_PERFORMANCE_MD; break; } } return ret; } /** * @brief Operating mode for gyroscope.[set] * * @param ctx read / write interface definitions * @param val change the values of g_hm_mode in reg CTRL7_G * */ int32_t lsm6dso_gy_power_mode_set(stmdev_ctx_t *ctx, lsm6dso_g_hm_mode_t val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); if (ret == 0) { reg.g_hm_mode = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); } return ret; } /** * @brief Operating mode for gyroscope.[get] * * @param ctx read / write interface definitions * @param val Get the values of g_hm_mode in reg CTRL7_G * */ int32_t lsm6dso_gy_power_mode_get(stmdev_ctx_t *ctx, lsm6dso_g_hm_mode_t *val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); switch (reg.g_hm_mode) { case LSM6DSO_GY_HIGH_PERFORMANCE: *val = LSM6DSO_GY_HIGH_PERFORMANCE; break; case LSM6DSO_GY_NORMAL: *val = LSM6DSO_GY_NORMAL; break; default: *val = LSM6DSO_GY_HIGH_PERFORMANCE; break; } return ret; } /** * @brief The STATUS_REG register is read by the primary interface.[get] * * @param ctx read / write interface definitions * @param val register STATUS_REG * */ int32_t lsm6dso_status_reg_get(stmdev_ctx_t *ctx, lsm6dso_status_reg_t *val) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *) val, 1); return ret; } /** * @brief Accelerometer new data available.[get] * * @param ctx read / write interface definitions * @param val change the values of xlda in reg STATUS_REG * */ int32_t lsm6dso_xl_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_status_reg_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *)®, 1); *val = reg.xlda; return ret; } /** * @brief Gyroscope new data available.[get] * * @param ctx read / write interface definitions * @param val change the values of gda in reg STATUS_REG * */ int32_t lsm6dso_gy_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_status_reg_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *)®, 1); *val = reg.gda; return ret; } /** * @brief Temperature new data available.[get] * * @param ctx read / write interface definitions * @param val change the values of tda in reg STATUS_REG * */ int32_t lsm6dso_temp_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_status_reg_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *)®, 1); *val = reg.tda; return ret; } /** * @brief Accelerometer X-axis user offset correction expressed in * two’s complement, weight depends on USR_OFF_W in CTRL6_C (15h). * The value must be in the range [-127 127].[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_xl_usr_offset_x_set(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_write_reg(ctx, LSM6DSO_X_OFS_USR, buff, 1); return ret; } /** * @brief Accelerometer X-axis user offset correction expressed in two’s * complement, weight depends on USR_OFF_W in CTRL6_C (15h). * The value must be in the range [-127 127].[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_xl_usr_offset_x_get(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_X_OFS_USR, buff, 1); return ret; } /** * @brief Accelerometer Y-axis user offset correction expressed in two’s * complement, weight depends on USR_OFF_W in CTRL6_C (15h). * The value must be in the range [-127 127].[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_xl_usr_offset_y_set(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_write_reg(ctx, LSM6DSO_Y_OFS_USR, buff, 1); return ret; } /** * @brief Accelerometer Y-axis user offset correction expressed in two’s * complement, weight depends on USR_OFF_W in CTRL6_C (15h). * The value must be in the range [-127 127].[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_xl_usr_offset_y_get(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_Y_OFS_USR, buff, 1); return ret; } /** * @brief Accelerometer Z-axis user offset correction expressed in two’s * complement, weight depends on USR_OFF_W in CTRL6_C (15h). * The value must be in the range [-127 127].[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_xl_usr_offset_z_set(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_write_reg(ctx, LSM6DSO_Z_OFS_USR, buff, 1); return ret; } /** * @brief Accelerometer Z-axis user offset correction expressed in two’s * complement, weight depends on USR_OFF_W in CTRL6_C (15h). * The value must be in the range [-127 127].[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_xl_usr_offset_z_get(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_Z_OFS_USR, buff, 1); return ret; } /** * @brief Enables user offset on out.[set] * * @param ctx read / write interface definitions * @param val change the values of usr_off_on_out in reg CTRL7_G * */ int32_t lsm6dso_xl_usr_offset_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); if (ret == 0) { reg.usr_off_on_out = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); } return ret; } /** * @brief User offset on out flag.[get] * * @param ctx read / write interface definitions * @param val values of usr_off_on_out in reg CTRL7_G * */ int32_t lsm6dso_xl_usr_offset_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); *val = reg.usr_off_on_out; return ret; } /** * @} * */ /** * @defgroup LSM6DSO_Timestamp * @brief This section groups all the functions that manage the * timestamp generation. * @{ * */ /** * @brief Reset timestamp counter.[set] * * @param ctx Read / write interface definitions.(ptr) * @retval Interface status (MANDATORY: return 0 -> no Error). * */ int32_t lsm6dso_timestamp_rst(stmdev_ctx_t *ctx) { uint8_t rst_val = 0xAA; return lsm6dso_write_reg(ctx, LSM6DSO_TIMESTAMP2, &rst_val, 1); } /** * @brief Enables timestamp counter.[set] * * @param ctx read / write interface definitions * @param val change the values of timestamp_en in reg CTRL10_C * */ int32_t lsm6dso_timestamp_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl10_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL10_C, (uint8_t *)®, 1); if (ret == 0) { reg.timestamp_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL10_C, (uint8_t *)®, 1); } return ret; } /** * @brief Enables timestamp counter.[get] * * @param ctx read / write interface definitions * @param val change the values of timestamp_en in reg CTRL10_C * */ int32_t lsm6dso_timestamp_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl10_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL10_C, (uint8_t *)®, 1); *val = reg.timestamp_en; return ret; } /** * @brief Timestamp first data output register (r). * The value is expressed as a 32-bit word and the bit * resolution is 25 μs.[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_timestamp_raw_get(stmdev_ctx_t *ctx, uint32_t *val) { uint8_t buff[4]; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TIMESTAMP0, buff, 4); *val = buff[3]; *val = (*val * 256U) + buff[2]; *val = (*val * 256U) + buff[1]; *val = (*val * 256U) + buff[0]; return ret; } /** * @} * */ /** * @defgroup LSM6DSO_Data output * @brief This section groups all the data output functions. * @{ * */ /** * @brief Circular burst-mode (rounding) read of the output * registers.[set] * * @param ctx read / write interface definitions * @param val change the values of rounding in reg CTRL5_C * */ int32_t lsm6dso_rounding_mode_set(stmdev_ctx_t *ctx, lsm6dso_rounding_t val) { lsm6dso_ctrl5_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); if (ret == 0) { reg.rounding = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); } return ret; } /** * @brief Gyroscope UI chain full-scale selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of rounding in reg CTRL5_C * */ int32_t lsm6dso_rounding_mode_get(stmdev_ctx_t *ctx, lsm6dso_rounding_t *val) { lsm6dso_ctrl5_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); switch (reg.rounding) { case LSM6DSO_NO_ROUND: *val = LSM6DSO_NO_ROUND; break; case LSM6DSO_ROUND_XL: *val = LSM6DSO_ROUND_XL; break; case LSM6DSO_ROUND_GY: *val = LSM6DSO_ROUND_GY; break; case LSM6DSO_ROUND_GY_XL: *val = LSM6DSO_ROUND_GY_XL; break; default: *val = LSM6DSO_NO_ROUND; break; } return ret; } /** * @brief Temperature data output register (r). * L and H registers together express a 16-bit word in two’s * complement.[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_temperature_raw_get(stmdev_ctx_t *ctx, int16_t *val) { uint8_t buff[2]; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_OUT_TEMP_L, buff, 2); val[0] = (int16_t)buff[1]; val[0] = (val[0] * 256) + (int16_t)buff[0]; return ret; } /** * @brief Angular rate sensor. The value is expressed as a 16-bit * word in two’s complement.[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_angular_rate_raw_get(stmdev_ctx_t *ctx, int16_t *val) { uint8_t buff[6]; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_OUTX_L_G, buff, 6); val[0] = (int16_t)buff[1]; val[0] = (val[0] * 256) + (int16_t)buff[0]; val[1] = (int16_t)buff[3]; val[1] = (val[1] * 256) + (int16_t)buff[2]; val[2] = (int16_t)buff[5]; val[2] = (val[2] * 256) + (int16_t)buff[4]; return ret; } /** * @brief Linear acceleration output register. * The value is expressed as a 16-bit word in two’s complement.[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_acceleration_raw_get(stmdev_ctx_t *ctx, int16_t *val) { uint8_t buff[6]; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_OUTX_L_A, buff, 6); val[0] = (int16_t)buff[1]; val[0] = (val[0] * 256) + (int16_t)buff[0]; val[1] = (int16_t)buff[3]; val[1] = (val[1] * 256) + (int16_t)buff[2]; val[2] = (int16_t)buff[5]; val[2] = (val[2] * 256) + (int16_t)buff[4]; return ret; } /** * @brief FIFO data output [get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_fifo_out_raw_get(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_DATA_OUT_X_L, buff, 6); return ret; } /** * @brief Step counter output register.[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_number_of_steps_get(stmdev_ctx_t *ctx, uint16_t *val) { uint8_t buff[2]; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_STEP_COUNTER_L, buff, 2); } if (ret == 0) { *val = buff[1]; *val = (*val * 256U) + buff[0]; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Reset step counter register.[get] * * @param ctx read / write interface definitions * */ int32_t lsm6dso_steps_reset(stmdev_ctx_t *ctx) { lsm6dso_emb_func_src_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_SRC, (uint8_t *)®, 1); } if (ret == 0) { reg.pedo_rst_step = PROPERTY_ENABLE; ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_SRC, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_common * @brief This section groups common useful functions. * @{ * */ /** * @brief Difference in percentage of the effective ODR(and timestamp rate) * with respect to the typical. * Step: 0.15%. 8-bit format, 2's complement.[set] * * @param ctx read / write interface definitions * @param val change the values of freq_fine in reg * INTERNAL_FREQ_FINE * */ int32_t lsm6dso_odr_cal_reg_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_internal_freq_fine_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INTERNAL_FREQ_FINE, (uint8_t *)®, 1); if (ret == 0) { reg.freq_fine = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_INTERNAL_FREQ_FINE, (uint8_t *)®, 1); } return ret; } /** * @brief Difference in percentage of the effective ODR(and timestamp rate) * with respect to the typical. * Step: 0.15%. 8-bit format, 2's complement.[get] * * @param ctx read / write interface definitions * @param val change the values of freq_fine in reg INTERNAL_FREQ_FINE * */ int32_t lsm6dso_odr_cal_reg_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_internal_freq_fine_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INTERNAL_FREQ_FINE, (uint8_t *)®, 1); *val = reg.freq_fine; return ret; } /** * @brief Enable access to the embedded functions/sensor * hub configuration registers.[set] * * @param ctx read / write interface definitions * @param val change the values of reg_access in * reg FUNC_CFG_ACCESS * */ int32_t lsm6dso_mem_bank_set(stmdev_ctx_t *ctx, lsm6dso_reg_access_t val) { lsm6dso_func_cfg_access_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)®, 1); if (ret == 0) { reg.reg_access = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)®, 1); } return ret; } /** * @brief Enable access to the embedded functions/sensor * hub configuration registers.[get] * * @param ctx read / write interface definitions * @param val Get the values of reg_access in * reg FUNC_CFG_ACCESS * */ int32_t lsm6dso_mem_bank_get(stmdev_ctx_t *ctx, lsm6dso_reg_access_t *val) { lsm6dso_func_cfg_access_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)®, 1); switch (reg.reg_access) { case LSM6DSO_USER_BANK: *val = LSM6DSO_USER_BANK; break; case LSM6DSO_SENSOR_HUB_BANK: *val = LSM6DSO_SENSOR_HUB_BANK; break; case LSM6DSO_EMBEDDED_FUNC_BANK: *val = LSM6DSO_EMBEDDED_FUNC_BANK; break; default: *val = LSM6DSO_USER_BANK; break; } return ret; } /** * @brief Write a line(byte) in a page.[set] * * @param ctx read / write interface definitions * @param uint8_t address: page line address * @param val value to write * */ int32_t lsm6dso_ln_pg_write_byte(stmdev_ctx_t *ctx, uint16_t address, uint8_t *val) { lsm6dso_page_rw_t page_rw; lsm6dso_page_sel_t page_sel; lsm6dso_page_address_t page_address; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.page_rw = 0x02; /* page_write enable */ ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel, 1); } if (ret == 0) { page_sel.page_sel = ((uint8_t)(address >> 8) & 0x0FU); page_sel.not_used_01 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel, 1); } if (ret == 0) { page_address.page_addr = (uint8_t)address & 0xFFU; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_ADDRESS, (uint8_t *)&page_address, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_VALUE, val, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.page_rw = 0x00; /* page_write disable */ ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Write buffer in a page.[set] * * @param ctx read / write interface definitions * @param uint8_t address: page line address * @param uint8_t *buf: buffer to write * @param uint8_t len: buffer len * */ int32_t lsm6dso_ln_pg_write(stmdev_ctx_t *ctx, uint16_t address, uint8_t *buf, uint8_t len) { lsm6dso_page_rw_t page_rw; lsm6dso_page_sel_t page_sel; lsm6dso_page_address_t page_address; uint16_t addr_pointed; int32_t ret; uint8_t i ; addr_pointed = address; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.page_rw = 0x02; /* page_write enable*/ ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel, 1); } if (ret == 0) { page_sel.page_sel = ((uint8_t)(addr_pointed >> 8) & 0x0FU); page_sel.not_used_01 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel, 1); } if (ret == 0) { page_address.page_addr = (uint8_t)(addr_pointed & 0x00FFU); ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_ADDRESS, (uint8_t *)&page_address, 1); } if (ret == 0) { for (i = 0; ( (i < len) && (ret == 0) ); i++) { ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_VALUE, &buf[i], 1); addr_pointed++; /* Check if page wrap */ if ( ( (addr_pointed % 0x0100U) == 0x00U ) && (ret == 0) ) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *)&page_sel, 1); if (ret == 0) { page_sel.page_sel = ((uint8_t)(addr_pointed >> 8) & 0x0FU); page_sel.not_used_01 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *)&page_sel, 1); } } } page_sel.page_sel = 0; page_sel.not_used_01 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.page_rw = 0x00; /* page_write disable */ ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Read a line(byte) in a page.[get] * * @param ctx read / write interface definitions * @param uint8_t address: page line address * @param val read value * */ int32_t lsm6dso_ln_pg_read_byte(stmdev_ctx_t *ctx, uint16_t address, uint8_t *val) { lsm6dso_page_rw_t page_rw; lsm6dso_page_sel_t page_sel; lsm6dso_page_address_t page_address; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.page_rw = 0x01; /* page_read enable*/ ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel, 1); } if (ret == 0) { page_sel.page_sel = ((uint8_t)(address >> 8) & 0x0FU); page_sel.not_used_01 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_SEL, (uint8_t *) &page_sel, 1); } if (ret == 0) { page_address.page_addr = (uint8_t)address & 0x00FFU; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_ADDRESS, (uint8_t *)&page_address, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_VALUE, val, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.page_rw = 0x00; /* page_read disable */ ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Data-ready pulsed / letched mode.[set] * * @param ctx read / write interface definitions * @param val change the values of * dataready_pulsed in * reg COUNTER_BDR_REG1 * */ int32_t lsm6dso_data_ready_mode_set(stmdev_ctx_t *ctx, lsm6dso_dataready_pulsed_t val) { lsm6dso_counter_bdr_reg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); if (ret == 0) { reg.dataready_pulsed = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); } return ret; } /** * @brief Data-ready pulsed / letched mode.[get] * * @param ctx read / write interface definitions * @param val Get the values of * dataready_pulsed in * reg COUNTER_BDR_REG1 * */ int32_t lsm6dso_data_ready_mode_get(stmdev_ctx_t *ctx, lsm6dso_dataready_pulsed_t *val) { lsm6dso_counter_bdr_reg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); switch (reg.dataready_pulsed) { case LSM6DSO_DRDY_LATCHED: *val = LSM6DSO_DRDY_LATCHED; break; case LSM6DSO_DRDY_PULSED: *val = LSM6DSO_DRDY_PULSED; break; default: *val = LSM6DSO_DRDY_LATCHED; break; } return ret; } /** * @brief Device "Who am I".[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_device_id_get(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WHO_AM_I, buff, 1); return ret; } /** * @brief Software reset. Restore the default values * in user registers[set] * * @param ctx read / write interface definitions * @param val change the values of sw_reset in reg CTRL3_C * */ int32_t lsm6dso_reset_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); if (ret == 0) { reg.sw_reset = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); } return ret; } /** * @brief Software reset. Restore the default values in user registers.[get] * * @param ctx read / write interface definitions * @param val change the values of sw_reset in reg CTRL3_C * */ int32_t lsm6dso_reset_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); *val = reg.sw_reset; return ret; } /** * @brief Register address automatically incremented during a multiple byte * access with a serial interface.[set] * * @param ctx read / write interface definitions * @param val change the values of if_inc in reg CTRL3_C * */ int32_t lsm6dso_auto_increment_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); if (ret == 0) { reg.if_inc = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); } return ret; } /** * @brief Register address automatically incremented during a multiple byte * access with a serial interface.[get] * * @param ctx read / write interface definitions * @param val change the values of if_inc in reg CTRL3_C * */ int32_t lsm6dso_auto_increment_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); *val = reg.if_inc; return ret; } /** * @brief Reboot memory content. Reload the calibration parameters.[set] * * @param ctx read / write interface definitions * @param val change the values of boot in reg CTRL3_C * */ int32_t lsm6dso_boot_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); if (ret == 0) { reg.boot = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); } return ret; } /** * @brief Reboot memory content. Reload the calibration parameters.[get] * * @param ctx read / write interface definitions * @param val change the values of boot in reg CTRL3_C * */ int32_t lsm6dso_boot_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); *val = reg.boot; return ret; } /** * @brief Linear acceleration sensor self-test enable.[set] * * @param ctx read / write interface definitions * @param val change the values of st_xl in reg CTRL5_C * */ int32_t lsm6dso_xl_self_test_set(stmdev_ctx_t *ctx, lsm6dso_st_xl_t val) { lsm6dso_ctrl5_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); if (ret == 0) { reg.st_xl = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); } return ret; } /** * @brief Linear acceleration sensor self-test enable.[get] * * @param ctx read / write interface definitions * @param val Get the values of st_xl in reg CTRL5_C * */ int32_t lsm6dso_xl_self_test_get(stmdev_ctx_t *ctx, lsm6dso_st_xl_t *val) { lsm6dso_ctrl5_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); switch (reg.st_xl) { case LSM6DSO_XL_ST_DISABLE: *val = LSM6DSO_XL_ST_DISABLE; break; case LSM6DSO_XL_ST_POSITIVE: *val = LSM6DSO_XL_ST_POSITIVE; break; case LSM6DSO_XL_ST_NEGATIVE: *val = LSM6DSO_XL_ST_NEGATIVE; break; default: *val = LSM6DSO_XL_ST_DISABLE; break; } return ret; } /** * @brief Angular rate sensor self-test enable.[set] * * @param ctx read / write interface definitions * @param val change the values of st_g in reg CTRL5_C * */ int32_t lsm6dso_gy_self_test_set(stmdev_ctx_t *ctx, lsm6dso_st_g_t val) { lsm6dso_ctrl5_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); if (ret == 0) { reg.st_g = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); } return ret; } /** * @brief Angular rate sensor self-test enable.[get] * * @param ctx read / write interface definitions * @param val Get the values of st_g in reg CTRL5_C * */ int32_t lsm6dso_gy_self_test_get(stmdev_ctx_t *ctx, lsm6dso_st_g_t *val) { lsm6dso_ctrl5_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL5_C, (uint8_t *)®, 1); switch (reg.st_g) { case LSM6DSO_GY_ST_DISABLE: *val = LSM6DSO_GY_ST_DISABLE; break; case LSM6DSO_GY_ST_POSITIVE: *val = LSM6DSO_GY_ST_POSITIVE; break; case LSM6DSO_GY_ST_NEGATIVE: *val = LSM6DSO_GY_ST_NEGATIVE; break; default: *val = LSM6DSO_GY_ST_DISABLE; break; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_filters * @brief This section group all the functions concerning the * filters configuration * @{ * */ /** * @brief Accelerometer output from LPF2 filtering stage selection.[set] * * @param ctx read / write interface definitions * @param val change the values of lpf2_xl_en in reg CTRL1_XL * */ int32_t lsm6dso_xl_filter_lp2_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl1_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); if (ret == 0) { reg.lpf2_xl_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); } return ret; } /** * @brief Accelerometer output from LPF2 filtering stage selection.[get] * * @param ctx read / write interface definitions * @param val change the values of lpf2_xl_en in reg CTRL1_XL * */ int32_t lsm6dso_xl_filter_lp2_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl1_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 1); *val = reg.lpf2_xl_en; return ret; } /** * @brief Enables gyroscope digital LPF1 if auxiliary SPI is disabled; * the bandwidth can be selected through FTYPE [2:0] * in CTRL6_C (15h).[set] * * @param ctx read / write interface definitions * @param val change the values of lpf1_sel_g in reg CTRL4_C * */ int32_t lsm6dso_gy_filter_lp1_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); if (ret == 0) { reg.lpf1_sel_g = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); } return ret; } /** * @brief Enables gyroscope digital LPF1 if auxiliary SPI is disabled; * the bandwidth can be selected through FTYPE [2:0] * in CTRL6_C (15h).[get] * * @param ctx read / write interface definitions * @param val change the values of lpf1_sel_g in reg CTRL4_C * */ int32_t lsm6dso_gy_filter_lp1_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); *val = reg.lpf1_sel_g; return ret; } /** * @brief Mask DRDY on pin (both XL & Gyro) until filter settling ends * (XL and Gyro independently masked).[set] * * @param ctx read / write interface definitions * @param val change the values of drdy_mask in reg CTRL4_C * */ int32_t lsm6dso_filter_settling_mask_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); if (ret == 0) { reg.drdy_mask = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); } return ret; } /** * @brief Mask DRDY on pin (both XL & Gyro) until filter settling ends * (XL and Gyro independently masked).[get] * * @param ctx read / write interface definitions * @param val change the values of drdy_mask in reg CTRL4_C * */ int32_t lsm6dso_filter_settling_mask_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); *val = reg.drdy_mask; return ret; } /** * @brief Gyroscope lp1 bandwidth.[set] * * @param ctx read / write interface definitions * @param val change the values of ftype in reg CTRL6_C * */ int32_t lsm6dso_gy_lp1_bandwidth_set(stmdev_ctx_t *ctx, lsm6dso_ftype_t val) { lsm6dso_ctrl6_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); if (ret == 0) { reg.ftype = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); } return ret; } /** * @brief Gyroscope lp1 bandwidth.[get] * * @param ctx read / write interface definitions * @param val Get the values of ftype in reg CTRL6_C * */ int32_t lsm6dso_gy_lp1_bandwidth_get(stmdev_ctx_t *ctx, lsm6dso_ftype_t *val) { lsm6dso_ctrl6_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); switch (reg.ftype) { case LSM6DSO_ULTRA_LIGHT: *val = LSM6DSO_ULTRA_LIGHT; break; case LSM6DSO_VERY_LIGHT: *val = LSM6DSO_VERY_LIGHT; break; case LSM6DSO_LIGHT: *val = LSM6DSO_LIGHT; break; case LSM6DSO_MEDIUM: *val = LSM6DSO_MEDIUM; break; case LSM6DSO_STRONG: *val = LSM6DSO_STRONG; break; case LSM6DSO_VERY_STRONG: *val = LSM6DSO_VERY_STRONG; break; case LSM6DSO_AGGRESSIVE: *val = LSM6DSO_AGGRESSIVE; break; case LSM6DSO_XTREME: *val = LSM6DSO_XTREME; break; default: *val = LSM6DSO_ULTRA_LIGHT; break; } return ret; } /** * @brief Low pass filter 2 on 6D function selection.[set] * * @param ctx read / write interface definitions * @param val change the values of low_pass_on_6d in reg CTRL8_XL * */ int32_t lsm6dso_xl_lp2_on_6d_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); if (ret == 0) { reg.low_pass_on_6d = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); } return ret; } /** * @brief Low pass filter 2 on 6D function selection.[get] * * @param ctx read / write interface definitions * @param val change the values of low_pass_on_6d in reg CTRL8_XL * */ int32_t lsm6dso_xl_lp2_on_6d_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); *val = reg.low_pass_on_6d; return ret; } /** * @brief Accelerometer slope filter / high-pass filter selection * on output.[set] * * @param ctx read / write interface definitions * @param val change the values of hp_slope_xl_en * in reg CTRL8_XL * */ int32_t lsm6dso_xl_hp_path_on_out_set(stmdev_ctx_t *ctx, lsm6dso_hp_slope_xl_en_t val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); if (ret == 0) { reg.hp_slope_xl_en = ((uint8_t)val & 0x10U) >> 4; reg.hp_ref_mode_xl = ((uint8_t)val & 0x20U) >> 5; reg.hpcf_xl = (uint8_t)val & 0x07U; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); } return ret; } /** * @brief Accelerometer slope filter / high-pass filter selection * on output.[get] * * @param ctx read / write interface definitions * @param val Get the values of hp_slope_xl_en * in reg CTRL8_XL * */ int32_t lsm6dso_xl_hp_path_on_out_get(stmdev_ctx_t *ctx, lsm6dso_hp_slope_xl_en_t *val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); switch ((reg.hp_ref_mode_xl << 5) | (reg.hp_slope_xl_en << 4) | reg.hpcf_xl) { case LSM6DSO_HP_PATH_DISABLE_ON_OUT: *val = LSM6DSO_HP_PATH_DISABLE_ON_OUT; break; case LSM6DSO_SLOPE_ODR_DIV_4: *val = LSM6DSO_SLOPE_ODR_DIV_4; break; case LSM6DSO_HP_ODR_DIV_10: *val = LSM6DSO_HP_ODR_DIV_10; break; case LSM6DSO_HP_ODR_DIV_20: *val = LSM6DSO_HP_ODR_DIV_20; break; case LSM6DSO_HP_ODR_DIV_45: *val = LSM6DSO_HP_ODR_DIV_45; break; case LSM6DSO_HP_ODR_DIV_100: *val = LSM6DSO_HP_ODR_DIV_100; break; case LSM6DSO_HP_ODR_DIV_200: *val = LSM6DSO_HP_ODR_DIV_200; break; case LSM6DSO_HP_ODR_DIV_400: *val = LSM6DSO_HP_ODR_DIV_400; break; case LSM6DSO_HP_ODR_DIV_800: *val = LSM6DSO_HP_ODR_DIV_800; break; case LSM6DSO_HP_REF_MD_ODR_DIV_10: *val = LSM6DSO_HP_REF_MD_ODR_DIV_10; break; case LSM6DSO_HP_REF_MD_ODR_DIV_20: *val = LSM6DSO_HP_REF_MD_ODR_DIV_20; break; case LSM6DSO_HP_REF_MD_ODR_DIV_45: *val = LSM6DSO_HP_REF_MD_ODR_DIV_45; break; case LSM6DSO_HP_REF_MD_ODR_DIV_100: *val = LSM6DSO_HP_REF_MD_ODR_DIV_100; break; case LSM6DSO_HP_REF_MD_ODR_DIV_200: *val = LSM6DSO_HP_REF_MD_ODR_DIV_200; break; case LSM6DSO_HP_REF_MD_ODR_DIV_400: *val = LSM6DSO_HP_REF_MD_ODR_DIV_400; break; case LSM6DSO_HP_REF_MD_ODR_DIV_800: *val = LSM6DSO_HP_REF_MD_ODR_DIV_800; break; case LSM6DSO_LP_ODR_DIV_10: *val = LSM6DSO_LP_ODR_DIV_10; break; case LSM6DSO_LP_ODR_DIV_20: *val = LSM6DSO_LP_ODR_DIV_20; break; case LSM6DSO_LP_ODR_DIV_45: *val = LSM6DSO_LP_ODR_DIV_45; break; case LSM6DSO_LP_ODR_DIV_100: *val = LSM6DSO_LP_ODR_DIV_100; break; case LSM6DSO_LP_ODR_DIV_200: *val = LSM6DSO_LP_ODR_DIV_200; break; case LSM6DSO_LP_ODR_DIV_400: *val = LSM6DSO_LP_ODR_DIV_400; break; case LSM6DSO_LP_ODR_DIV_800: *val = LSM6DSO_LP_ODR_DIV_800; break; default: *val = LSM6DSO_HP_PATH_DISABLE_ON_OUT; break; } return ret; } /** * @brief Enables accelerometer LPF2 and HPF fast-settling mode. * The filter sets the second samples after writing this bit. * Active only during device exit from power-down mode.[set] * * @param ctx read / write interface definitions * @param val change the values of fastsettl_mode_xl in * reg CTRL8_XL * */ int32_t lsm6dso_xl_fast_settling_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); if (ret == 0) { reg.fastsettl_mode_xl = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); } return ret; } /** * @brief Enables accelerometer LPF2 and HPF fast-settling mode. * The filter sets the second samples after writing this bit. * Active only during device exit from power-down mode.[get] * * @param ctx read / write interface definitions * @param val change the values of fastsettl_mode_xl in reg CTRL8_XL * */ int32_t lsm6dso_xl_fast_settling_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); *val = reg.fastsettl_mode_xl; return ret; } /** * @brief HPF or SLOPE filter selection on wake-up and Activity/Inactivity * functions.[set] * * @param ctx read / write interface definitions * @param val change the values of slope_fds in reg TAP_CFG0 * */ int32_t lsm6dso_xl_hp_path_internal_set(stmdev_ctx_t *ctx, lsm6dso_slope_fds_t val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); if (ret == 0) { reg.slope_fds = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); } return ret; } /** * @brief HPF or SLOPE filter selection on wake-up and Activity/Inactivity * functions.[get] * * @param ctx read / write interface definitions * @param val Get the values of slope_fds in reg TAP_CFG0 * */ int32_t lsm6dso_xl_hp_path_internal_get(stmdev_ctx_t *ctx, lsm6dso_slope_fds_t *val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); switch (reg.slope_fds) { case LSM6DSO_USE_SLOPE: *val = LSM6DSO_USE_SLOPE; break; case LSM6DSO_USE_HPF: *val = LSM6DSO_USE_HPF; break; default: *val = LSM6DSO_USE_SLOPE; break; } return ret; } /** * @brief Enables gyroscope digital high-pass filter. The filter is * enabled only if the gyro is in HP mode.[set] * * @param ctx read / write interface definitions * @param val Get the values of hp_en_g and hp_en_g * in reg CTRL7_G * */ int32_t lsm6dso_gy_hp_path_internal_set(stmdev_ctx_t *ctx, lsm6dso_hpm_g_t val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); if (ret == 0) { reg.hp_en_g = ((uint8_t)val & 0x80U) >> 7; reg.hpm_g = (uint8_t)val & 0x03U; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); } return ret; } /** * @brief Enables gyroscope digital high-pass filter. The filter is * enabled only if the gyro is in HP mode.[get] * * @param ctx read / write interface definitions * @param val Get the values of hp_en_g and hp_en_g * in reg CTRL7_G * */ int32_t lsm6dso_gy_hp_path_internal_get(stmdev_ctx_t *ctx, lsm6dso_hpm_g_t *val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); switch ((reg.hp_en_g << 7) + reg.hpm_g) { case LSM6DSO_HP_FILTER_NONE: *val = LSM6DSO_HP_FILTER_NONE; break; case LSM6DSO_HP_FILTER_16mHz: *val = LSM6DSO_HP_FILTER_16mHz; break; case LSM6DSO_HP_FILTER_65mHz: *val = LSM6DSO_HP_FILTER_65mHz; break; case LSM6DSO_HP_FILTER_260mHz: *val = LSM6DSO_HP_FILTER_260mHz; break; case LSM6DSO_HP_FILTER_1Hz04: *val = LSM6DSO_HP_FILTER_1Hz04; break; default: *val = LSM6DSO_HP_FILTER_NONE; break; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_ Auxiliary_interface * @brief This section groups all the functions concerning * auxiliary interface. * @{ * */ /** * @brief aOn auxiliary interface connect/disconnect SDO and OCS * internal pull-up.[set] * * @param ctx read / write interface definitions * @param val change the values of ois_pu_dis in * reg PIN_CTRL * */ int32_t lsm6dso_aux_sdo_ocs_mode_set(stmdev_ctx_t *ctx, lsm6dso_ois_pu_dis_t val) { lsm6dso_pin_ctrl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1); if (ret == 0) { reg.ois_pu_dis = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1); } return ret; } /** * @brief On auxiliary interface connect/disconnect SDO and OCS * internal pull-up.[get] * * @param ctx read / write interface definitions * @param val Get the values of ois_pu_dis in reg PIN_CTRL * */ int32_t lsm6dso_aux_sdo_ocs_mode_get(stmdev_ctx_t *ctx, lsm6dso_ois_pu_dis_t *val) { lsm6dso_pin_ctrl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1); switch (reg.ois_pu_dis) { case LSM6DSO_AUX_PULL_UP_DISC: *val = LSM6DSO_AUX_PULL_UP_DISC; break; case LSM6DSO_AUX_PULL_UP_CONNECT: *val = LSM6DSO_AUX_PULL_UP_CONNECT; break; default: *val = LSM6DSO_AUX_PULL_UP_DISC; break; } return ret; } /** * @brief OIS chain on aux interface power on mode.[set] * * @param ctx read / write interface definitions * @param val change the values of ois_on in reg CTRL7_G * */ int32_t lsm6dso_aux_pw_on_ctrl_set(stmdev_ctx_t *ctx, lsm6dso_ois_on_t val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); if (ret == 0) { reg.ois_on_en = (uint8_t)val & 0x01U; reg.ois_on = (uint8_t)val & 0x01U; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); } return ret; } /** * @brief aux_pw_on_ctrl: [get] OIS chain on aux interface power on mode * * @param ctx read / write interface definitions * @param val Get the values of ois_on in reg CTRL7_G * */ int32_t lsm6dso_aux_pw_on_ctrl_get(stmdev_ctx_t *ctx, lsm6dso_ois_on_t *val) { lsm6dso_ctrl7_g_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL7_G, (uint8_t *)®, 1); switch (reg.ois_on) { case LSM6DSO_AUX_ON: *val = LSM6DSO_AUX_ON; break; case LSM6DSO_AUX_ON_BY_AUX_INTERFACE: *val = LSM6DSO_AUX_ON_BY_AUX_INTERFACE; break; default: *val = LSM6DSO_AUX_ON; break; } return ret; } /** * @brief Accelerometer full-scale management between UI chain and * OIS chain. When XL UI is on, the full scale is the same * between UI/OIS and is chosen by the UI CTRL registers; * when XL UI is in PD, the OIS can choose the FS. * Full scales are independent between the UI/OIS chain * but both bound to 8 g.[set] * * @param ctx read / write interface definitions * @param val change the values of xl_fs_mode in * reg CTRL8_XL * */ int32_t lsm6dso_aux_xl_fs_mode_set(stmdev_ctx_t *ctx, lsm6dso_xl_fs_mode_t val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); if (ret == 0) { reg.xl_fs_mode = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); } return ret; } /** * @brief Accelerometer full-scale management between UI chain and * OIS chain. When XL UI is on, the full scale is the same * between UI/OIS and is chosen by the UI CTRL registers; * when XL UI is in PD, the OIS can choose the FS. * Full scales are independent between the UI/OIS chain * but both bound to 8 g.[get] * * @param ctx read / write interface definitions * @param val Get the values of xl_fs_mode in reg CTRL8_XL * */ int32_t lsm6dso_aux_xl_fs_mode_get(stmdev_ctx_t *ctx, lsm6dso_xl_fs_mode_t *val) { lsm6dso_ctrl8_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL8_XL, (uint8_t *)®, 1); switch (reg.xl_fs_mode) { case LSM6DSO_USE_SAME_XL_FS: *val = LSM6DSO_USE_SAME_XL_FS; break; case LSM6DSO_USE_DIFFERENT_XL_FS: *val = LSM6DSO_USE_DIFFERENT_XL_FS; break; default: *val = LSM6DSO_USE_SAME_XL_FS; break; } return ret; } /** * @brief The STATUS_SPIAux register is read by the auxiliary SPI.[get] * * @param ctx read / write interface definitions * @param lsm6dso_status_spiaux_t: registers STATUS_SPIAUX * */ int32_t lsm6dso_aux_status_reg_get(stmdev_ctx_t *ctx, lsm6dso_status_spiaux_t *val) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *) val, 1); return ret; } /** * @brief aux_xl_flag_data_ready: [get] AUX accelerometer data available * * @param ctx read / write interface definitions * @param val change the values of xlda in reg STATUS_SPIAUX * */ int32_t lsm6dso_aux_xl_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_status_spiaux_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *)®, 1); *val = reg.xlda; return ret; } /** * @brief aux_gy_flag_data_ready: [get] AUX gyroscope data available. * * @param ctx read / write interface definitions * @param val change the values of gda in reg STATUS_SPIAUX * */ int32_t lsm6dso_aux_gy_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_status_spiaux_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *)®, 1); *val = reg.gda; return ret; } /** * @brief High when the gyroscope output is in the settling phase.[get] * * @param ctx read / write interface definitions * @param val change the values of gyro_settling in reg STATUS_SPIAUX * */ int32_t lsm6dso_aux_gy_flag_settling_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_status_spiaux_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *)®, 1); *val = reg.gyro_settling; return ret; } /** * @brief Selects accelerometer self-test. Effective only if XL OIS * chain is enabled.[set] * * @param ctx read / write interface definitions * @param val change the values of st_xl_ois in reg INT_OIS * */ int32_t lsm6dso_aux_xl_self_test_set(stmdev_ctx_t *ctx, lsm6dso_st_xl_ois_t val) { lsm6dso_int_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.st_xl_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Selects accelerometer self-test. Effective only if XL OIS * chain is enabled.[get] * * @param ctx read / write interface definitions * @param val Get the values of st_xl_ois in reg INT_OIS * */ int32_t lsm6dso_aux_xl_self_test_get(stmdev_ctx_t *ctx, lsm6dso_st_xl_ois_t *val) { lsm6dso_int_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); switch (reg.st_xl_ois) { case LSM6DSO_AUX_XL_DISABLE: *val = LSM6DSO_AUX_XL_DISABLE; break; case LSM6DSO_AUX_XL_POS: *val = LSM6DSO_AUX_XL_POS; break; case LSM6DSO_AUX_XL_NEG: *val = LSM6DSO_AUX_XL_NEG; break; default: *val = LSM6DSO_AUX_XL_DISABLE; break; } return ret; } /** * @brief Indicates polarity of DEN signal on OIS chain.[set] * * @param ctx read / write interface definitions * @param val change the values of den_lh_ois in * reg INT_OIS * */ int32_t lsm6dso_aux_den_polarity_set(stmdev_ctx_t *ctx, lsm6dso_den_lh_ois_t val) { lsm6dso_int_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.den_lh_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Indicates polarity of DEN signal on OIS chain.[get] * * @param ctx read / write interface definitions * @param val Get the values of den_lh_ois in reg INT_OIS * */ int32_t lsm6dso_aux_den_polarity_get(stmdev_ctx_t *ctx, lsm6dso_den_lh_ois_t *val) { lsm6dso_int_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); switch (reg.den_lh_ois) { case LSM6DSO_AUX_DEN_ACTIVE_LOW: *val = LSM6DSO_AUX_DEN_ACTIVE_LOW; break; case LSM6DSO_AUX_DEN_ACTIVE_HIGH: *val = LSM6DSO_AUX_DEN_ACTIVE_HIGH; break; default: *val = LSM6DSO_AUX_DEN_ACTIVE_LOW; break; } return ret; } /** * @brief Configure DEN mode on the OIS chain.[set] * * @param ctx read / write interface definitions * @param val change the values of lvl2_ois in reg INT_OIS * */ int32_t lsm6dso_aux_den_mode_set(stmdev_ctx_t *ctx, lsm6dso_lvl2_ois_t val) { lsm6dso_ctrl1_ois_t ctrl1_ois; lsm6dso_int_ois_t int_ois; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *) &int_ois, 1); if (ret == 0) { int_ois.lvl2_ois = (uint8_t)val & 0x01U; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *) &int_ois, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *) &ctrl1_ois, 1); } if (ret == 0) { ctrl1_ois.lvl1_ois = ((uint8_t)val & 0x02U) >> 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *) &ctrl1_ois, 1); } return ret; } /** * @brief Configure DEN mode on the OIS chain.[get] * * @param ctx read / write interface definitions * @param val Get the values of lvl2_ois in reg INT_OIS * */ int32_t lsm6dso_aux_den_mode_get(stmdev_ctx_t *ctx, lsm6dso_lvl2_ois_t *val) { lsm6dso_ctrl1_ois_t ctrl1_ois; lsm6dso_int_ois_t int_ois; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *) &int_ois, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *) &ctrl1_ois, 1); switch ((ctrl1_ois.lvl1_ois << 1) + int_ois.lvl2_ois) { case LSM6DSO_AUX_DEN_DISABLE: *val = LSM6DSO_AUX_DEN_DISABLE; break; case LSM6DSO_AUX_DEN_LEVEL_LATCH: *val = LSM6DSO_AUX_DEN_LEVEL_LATCH; break; case LSM6DSO_AUX_DEN_LEVEL_TRIG: *val = LSM6DSO_AUX_DEN_LEVEL_TRIG; break; default: *val = LSM6DSO_AUX_DEN_DISABLE; break; } } return ret; } /** * @brief Enables/Disable OIS chain DRDY on INT2 pin. * This setting has priority over all other INT2 settings.[set] * * @param ctx read / write interface definitions * @param val change the values of int2_drdy_ois in reg INT_OIS * */ int32_t lsm6dso_aux_drdy_on_int2_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_int_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.int2_drdy_ois = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Enables/Disable OIS chain DRDY on INT2 pin. * This setting has priority over all other INT2 settings.[get] * * @param ctx read / write interface definitions * @param val change the values of int2_drdy_ois in reg INT_OIS * */ int32_t lsm6dso_aux_drdy_on_int2_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_int_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_OIS, (uint8_t *)®, 1); *val = reg.int2_drdy_ois; return ret; } /** * @brief Enables OIS chain data processing for gyro in Mode 3 and Mode 4 * (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1). * When the OIS chain is enabled, the OIS outputs are available * through the SPI2 in registers OUTX_L_G (22h) through * OUTZ_H_G (27h) and STATUS_REG (1Eh) / STATUS_SPIAux, and * LPF1 is dedicated to this chain.[set] * * @param ctx read / write interface definitions * @param val change the values of ois_en_spi2 in * reg CTRL1_OIS * */ int32_t lsm6dso_aux_mode_set(stmdev_ctx_t *ctx, lsm6dso_ois_en_spi2_t val) { lsm6dso_ctrl1_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.ois_en_spi2 = (uint8_t)val & 0x01U; reg.mode4_en = ((uint8_t)val & 0x02U) >> 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Enables OIS chain data processing for gyro in Mode 3 and Mode 4 * (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1). * When the OIS chain is enabled, the OIS outputs are available * through the SPI2 in registers OUTX_L_G (22h) through * OUTZ_H_G (27h) and STATUS_REG (1Eh) / STATUS_SPIAux, and * LPF1 is dedicated to this chain.[get] * * @param ctx read / write interface definitions * @param val Get the values of ois_en_spi2 in * reg CTRL1_OIS * */ int32_t lsm6dso_aux_mode_get(stmdev_ctx_t *ctx, lsm6dso_ois_en_spi2_t *val) { lsm6dso_ctrl1_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); switch ((reg.mode4_en << 1) | reg.ois_en_spi2) { case LSM6DSO_AUX_DISABLE: *val = LSM6DSO_AUX_DISABLE; break; case LSM6DSO_MODE_3_GY: *val = LSM6DSO_MODE_3_GY; break; case LSM6DSO_MODE_4_GY_XL: *val = LSM6DSO_MODE_4_GY_XL; break; default: *val = LSM6DSO_AUX_DISABLE; break; } return ret; } /** * @brief Selects gyroscope OIS chain full-scale.[set] * * @param ctx read / write interface definitions * @param val change the values of fs_g_ois in reg CTRL1_OIS * */ int32_t lsm6dso_aux_gy_full_scale_set(stmdev_ctx_t *ctx, lsm6dso_fs_g_ois_t val) { lsm6dso_ctrl1_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.fs_g_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Selects gyroscope OIS chain full-scale.[get] * * @param ctx read / write interface definitions * @param val Get the values of fs_g_ois in reg CTRL1_OIS * */ int32_t lsm6dso_aux_gy_full_scale_get(stmdev_ctx_t *ctx, lsm6dso_fs_g_ois_t *val) { lsm6dso_ctrl1_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); switch (reg.fs_g_ois) { case LSM6DSO_250dps_AUX: *val = LSM6DSO_250dps_AUX; break; case LSM6DSO_125dps_AUX: *val = LSM6DSO_125dps_AUX; break; case LSM6DSO_500dps_AUX: *val = LSM6DSO_500dps_AUX; break; case LSM6DSO_1000dps_AUX: *val = LSM6DSO_1000dps_AUX; break; case LSM6DSO_2000dps_AUX: *val = LSM6DSO_2000dps_AUX; break; default: *val = LSM6DSO_250dps_AUX; break; } return ret; } /** * @brief SPI2 3- or 4-wire interface.[set] * * @param ctx read / write interface definitions * @param val change the values of sim_ois in reg CTRL1_OIS * */ int32_t lsm6dso_aux_spi_mode_set(stmdev_ctx_t *ctx, lsm6dso_sim_ois_t val) { lsm6dso_ctrl1_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.sim_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief SPI2 3- or 4-wire interface.[get] * * @param ctx read / write interface definitions * @param val Get the values of sim_ois in reg CTRL1_OIS * */ int32_t lsm6dso_aux_spi_mode_get(stmdev_ctx_t *ctx, lsm6dso_sim_ois_t *val) { lsm6dso_ctrl1_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)®, 1); switch (reg.sim_ois) { case LSM6DSO_AUX_SPI_4_WIRE: *val = LSM6DSO_AUX_SPI_4_WIRE; break; case LSM6DSO_AUX_SPI_3_WIRE: *val = LSM6DSO_AUX_SPI_3_WIRE; break; default: *val = LSM6DSO_AUX_SPI_4_WIRE; break; } return ret; } /** * @brief Selects gyroscope digital LPF1 filter bandwidth.[set] * * @param ctx read / write interface definitions * @param val change the values of ftype_ois in * reg CTRL2_OIS * */ int32_t lsm6dso_aux_gy_lp1_bandwidth_set(stmdev_ctx_t *ctx, lsm6dso_ftype_ois_t val) { lsm6dso_ctrl2_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.ftype_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Selects gyroscope digital LPF1 filter bandwidth.[get] * * @param ctx read / write interface definitions * @param val Get the values of ftype_ois in reg CTRL2_OIS * */ int32_t lsm6dso_aux_gy_lp1_bandwidth_get(stmdev_ctx_t *ctx, lsm6dso_ftype_ois_t *val) { lsm6dso_ctrl2_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1); switch (reg.ftype_ois) { case LSM6DSO_351Hz39: *val = LSM6DSO_351Hz39; break; case LSM6DSO_236Hz63: *val = LSM6DSO_236Hz63; break; case LSM6DSO_172Hz70: *val = LSM6DSO_172Hz70; break; case LSM6DSO_937Hz91: *val = LSM6DSO_937Hz91; break; default: *val = LSM6DSO_351Hz39; break; } return ret; } /** * @brief Selects gyroscope OIS chain digital high-pass filter cutoff.[set] * * @param ctx read / write interface definitions * @param val change the values of hpm_ois in reg CTRL2_OIS * */ int32_t lsm6dso_aux_gy_hp_bandwidth_set(stmdev_ctx_t *ctx, lsm6dso_hpm_ois_t val) { lsm6dso_ctrl2_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.hpm_ois = (uint8_t)val & 0x03U; reg.hp_en_ois = ((uint8_t)val & 0x10U) >> 4; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Selects gyroscope OIS chain digital high-pass filter cutoff.[get] * * @param ctx read / write interface definitions * @param val Get the values of hpm_ois in reg CTRL2_OIS * */ int32_t lsm6dso_aux_gy_hp_bandwidth_get(stmdev_ctx_t *ctx, lsm6dso_hpm_ois_t *val) { lsm6dso_ctrl2_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL2_OIS, (uint8_t *)®, 1); switch ((reg.hp_en_ois << 4) | reg.hpm_ois) { case LSM6DSO_AUX_HP_DISABLE: *val = LSM6DSO_AUX_HP_DISABLE; break; case LSM6DSO_AUX_HP_Hz016: *val = LSM6DSO_AUX_HP_Hz016; break; case LSM6DSO_AUX_HP_Hz065: *val = LSM6DSO_AUX_HP_Hz065; break; case LSM6DSO_AUX_HP_Hz260: *val = LSM6DSO_AUX_HP_Hz260; break; case LSM6DSO_AUX_HP_1Hz040: *val = LSM6DSO_AUX_HP_1Hz040; break; default: *val = LSM6DSO_AUX_HP_DISABLE; break; } return ret; } /** * @brief Enable / Disables OIS chain clamp. * Enable: All OIS chain outputs = 8000h * during self-test; Disable: OIS chain self-test * outputs dependent from the aux gyro full * scale selected.[set] * * @param ctx read / write interface definitions * @param val change the values of st_ois_clampdis in * reg CTRL3_OIS * */ int32_t lsm6dso_aux_gy_clamp_set(stmdev_ctx_t *ctx, lsm6dso_st_ois_clampdis_t val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.st_ois_clampdis = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Enable / Disables OIS chain clamp. * Enable: All OIS chain outputs = 8000h * during self-test; Disable: OIS chain self-test * outputs dependent from the aux gyro full * scale selected.[set] * * @param ctx read / write interface definitions * @param val Get the values of st_ois_clampdis in * reg CTRL3_OIS * */ int32_t lsm6dso_aux_gy_clamp_get(stmdev_ctx_t *ctx, lsm6dso_st_ois_clampdis_t *val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); switch (reg.st_ois_clampdis) { case LSM6DSO_ENABLE_CLAMP: *val = LSM6DSO_ENABLE_CLAMP; break; case LSM6DSO_DISABLE_CLAMP: *val = LSM6DSO_DISABLE_CLAMP; break; default: *val = LSM6DSO_ENABLE_CLAMP; break; } return ret; } /** * @brief Selects gyroscope OIS chain self-test.[set] * * @param ctx read / write interface definitions * @param val change the values of st_ois in reg CTRL3_OIS * */ int32_t lsm6dso_aux_gy_self_test_set(stmdev_ctx_t *ctx, lsm6dso_st_ois_t val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.st_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Selects gyroscope OIS chain self-test.[get] * * @param ctx read / write interface definitions * @param val Get the values of st_ois in reg CTRL3_OIS * */ int32_t lsm6dso_aux_gy_self_test_get(stmdev_ctx_t *ctx, lsm6dso_st_ois_t *val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); switch (reg.st_ois) { case LSM6DSO_AUX_GY_DISABLE: *val = LSM6DSO_AUX_GY_DISABLE; break; case LSM6DSO_AUX_GY_POS: *val = LSM6DSO_AUX_GY_POS; break; case LSM6DSO_AUX_GY_NEG: *val = LSM6DSO_AUX_GY_NEG; break; default: *val = LSM6DSO_AUX_GY_DISABLE; break; } return ret; } /** * @brief Selects accelerometer OIS channel bandwidth.[set] * * @param ctx read / write interface definitions * @param val change the values of * filter_xl_conf_ois in reg CTRL3_OIS * */ int32_t lsm6dso_aux_xl_bandwidth_set(stmdev_ctx_t *ctx, lsm6dso_filter_xl_conf_ois_t val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.filter_xl_conf_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Selects accelerometer OIS channel bandwidth.[get] * * @param ctx read / write interface definitions * @param val Get the values of * filter_xl_conf_ois in reg CTRL3_OIS * */ int32_t lsm6dso_aux_xl_bandwidth_get(stmdev_ctx_t *ctx, lsm6dso_filter_xl_conf_ois_t *val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); switch (reg.filter_xl_conf_ois) { case LSM6DSO_289Hz: *val = LSM6DSO_289Hz; break; case LSM6DSO_258Hz: *val = LSM6DSO_258Hz; break; case LSM6DSO_120Hz: *val = LSM6DSO_120Hz; break; case LSM6DSO_65Hz2: *val = LSM6DSO_65Hz2; break; case LSM6DSO_33Hz2: *val = LSM6DSO_33Hz2; break; case LSM6DSO_16Hz6: *val = LSM6DSO_16Hz6; break; case LSM6DSO_8Hz30: *val = LSM6DSO_8Hz30; break; case LSM6DSO_4Hz15: *val = LSM6DSO_4Hz15; break; default: *val = LSM6DSO_289Hz; break; } return ret; } /** * @brief Selects accelerometer OIS channel full-scale.[set] * * @param ctx read / write interface definitions * @param val change the values of fs_xl_ois in * reg CTRL3_OIS * */ int32_t lsm6dso_aux_xl_full_scale_set(stmdev_ctx_t *ctx, lsm6dso_fs_xl_ois_t val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); if (ret == 0) { reg.fs_xl_ois = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); } return ret; } /** * @brief Selects accelerometer OIS channel full-scale.[get] * * @param ctx read / write interface definitions * @param val Get the values of fs_xl_ois in reg CTRL3_OIS * */ int32_t lsm6dso_aux_xl_full_scale_get(stmdev_ctx_t *ctx, lsm6dso_fs_xl_ois_t *val) { lsm6dso_ctrl3_ois_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_OIS, (uint8_t *)®, 1); switch (reg.fs_xl_ois) { case LSM6DSO_AUX_2g: *val = LSM6DSO_AUX_2g; break; case LSM6DSO_AUX_16g: *val = LSM6DSO_AUX_16g; break; case LSM6DSO_AUX_4g: *val = LSM6DSO_AUX_4g; break; case LSM6DSO_AUX_8g: *val = LSM6DSO_AUX_8g; break; default: *val = LSM6DSO_AUX_2g; break; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_ main_serial_interface * @brief This section groups all the functions concerning main * serial interface management (not auxiliary) * @{ * */ /** * @brief Connect/Disconnect SDO/SA0 internal pull-up.[set] * * @param ctx read / write interface definitions * @param val change the values of sdo_pu_en in * reg PIN_CTRL * */ int32_t lsm6dso_sdo_sa0_mode_set(stmdev_ctx_t *ctx, lsm6dso_sdo_pu_en_t val) { lsm6dso_pin_ctrl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1); if (ret == 0) { reg.sdo_pu_en = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1); } return ret; } /** * @brief Connect/Disconnect SDO/SA0 internal pull-up.[get] * * @param ctx read / write interface definitions * @param val Get the values of sdo_pu_en in reg PIN_CTRL * */ int32_t lsm6dso_sdo_sa0_mode_get(stmdev_ctx_t *ctx, lsm6dso_sdo_pu_en_t *val) { lsm6dso_pin_ctrl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)®, 1); switch (reg.sdo_pu_en) { case LSM6DSO_PULL_UP_DISC: *val = LSM6DSO_PULL_UP_DISC; break; case LSM6DSO_PULL_UP_CONNECT: *val = LSM6DSO_PULL_UP_CONNECT; break; default: *val = LSM6DSO_PULL_UP_DISC; break; } return ret; } /** * @brief SPI Serial Interface Mode selection.[set] * * @param ctx read / write interface definitions * @param val change the values of sim in reg CTRL3_C * */ int32_t lsm6dso_spi_mode_set(stmdev_ctx_t *ctx, lsm6dso_sim_t val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); if (ret == 0) { reg.sim = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); } return ret; } /** * @brief SPI Serial Interface Mode selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of sim in reg CTRL3_C * */ int32_t lsm6dso_spi_mode_get(stmdev_ctx_t *ctx, lsm6dso_sim_t *val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); switch (reg.sim) { case LSM6DSO_SPI_4_WIRE: *val = LSM6DSO_SPI_4_WIRE; break; case LSM6DSO_SPI_3_WIRE: *val = LSM6DSO_SPI_3_WIRE; break; default: *val = LSM6DSO_SPI_4_WIRE; break; } return ret; } /** * @brief Disable / Enable I2C interface.[set] * * @param ctx read / write interface definitions * @param val change the values of i2c_disable in * reg CTRL4_C * */ int32_t lsm6dso_i2c_interface_set(stmdev_ctx_t *ctx, lsm6dso_i2c_disable_t val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); if (ret == 0) { reg.i2c_disable = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); } return ret; } /** * @brief Disable / Enable I2C interface.[get] * * @param ctx read / write interface definitions * @param val Get the values of i2c_disable in * reg CTRL4_C * */ int32_t lsm6dso_i2c_interface_get(stmdev_ctx_t *ctx, lsm6dso_i2c_disable_t *val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); switch (reg.i2c_disable) { case LSM6DSO_I2C_ENABLE: *val = LSM6DSO_I2C_ENABLE; break; case LSM6DSO_I2C_DISABLE: *val = LSM6DSO_I2C_DISABLE; break; default: *val = LSM6DSO_I2C_ENABLE; break; } return ret; } /** * @brief I3C Enable/Disable communication protocol[.set] * * @param ctx read / write interface definitions * @param val change the values of i3c_disable * in reg CTRL9_XL * */ int32_t lsm6dso_i3c_disable_set(stmdev_ctx_t *ctx, lsm6dso_i3c_disable_t val) { lsm6dso_i3c_bus_avb_t i3c_bus_avb; lsm6dso_ctrl9_xl_t ctrl9_xl; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl, 1); if (ret == 0) { ctrl9_xl.i3c_disable = ((uint8_t)val & 0x80U) >> 7; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } if (ret == 0) { i3c_bus_avb.i3c_bus_avb_sel = (uint8_t)val & 0x03U; ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } return ret; } /** * @brief I3C Enable/Disable communication protocol.[get] * * @param ctx read / write interface definitions * @param val change the values of i3c_disable in * reg CTRL9_XL * */ int32_t lsm6dso_i3c_disable_get(stmdev_ctx_t *ctx, lsm6dso_i3c_disable_t *val) { lsm6dso_ctrl9_xl_t ctrl9_xl; lsm6dso_i3c_bus_avb_t i3c_bus_avb; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); switch ((ctrl9_xl.i3c_disable << 7) | i3c_bus_avb.i3c_bus_avb_sel) { case LSM6DSO_I3C_DISABLE: *val = LSM6DSO_I3C_DISABLE; break; case LSM6DSO_I3C_ENABLE_T_50us: *val = LSM6DSO_I3C_ENABLE_T_50us; break; case LSM6DSO_I3C_ENABLE_T_2us: *val = LSM6DSO_I3C_ENABLE_T_2us; break; case LSM6DSO_I3C_ENABLE_T_1ms: *val = LSM6DSO_I3C_ENABLE_T_1ms; break; case LSM6DSO_I3C_ENABLE_T_25ms: *val = LSM6DSO_I3C_ENABLE_T_25ms; break; default: *val = LSM6DSO_I3C_DISABLE; break; } } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_interrupt_pins * @brief This section groups all the functions that manage interrupt pins * @{ * */ /** * @brief Connect/Disconnect INT1 internal pull-down.[set] * * @param ctx read / write interface definitions * @param val change the values of pd_dis_int1 in reg I3C_BUS_AVB * */ int32_t lsm6dso_int1_mode_set(stmdev_ctx_t *ctx, lsm6dso_int1_pd_en_t val) { lsm6dso_i3c_bus_avb_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)®, 1); if (ret == 0) { reg.pd_dis_int1 = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)®, 1); } return ret; } /** * @brief Connect/Disconnect INT1 internal pull-down.[get] * * @param ctx read / write interface definitions * @param val Get the values of pd_dis_int1 in reg I3C_BUS_AVB * */ int32_t lsm6dso_int1_mode_get(stmdev_ctx_t *ctx, lsm6dso_int1_pd_en_t *val) { lsm6dso_i3c_bus_avb_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)®, 1); switch (reg.pd_dis_int1) { case LSM6DSO_PULL_DOWN_DISC: *val = LSM6DSO_PULL_DOWN_DISC; break; case LSM6DSO_PULL_DOWN_CONNECT: *val = LSM6DSO_PULL_DOWN_CONNECT; break; default: *val = LSM6DSO_PULL_DOWN_DISC; break; } return ret; } /** * @brief Push-pull/open drain selection on interrupt pads.[set] * * @param ctx read / write interface definitions * @param val change the values of pp_od in reg CTRL3_C * */ int32_t lsm6dso_pin_mode_set(stmdev_ctx_t *ctx, lsm6dso_pp_od_t val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); if (ret == 0) { reg.pp_od = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); } return ret; } /** * @brief Push-pull/open drain selection on interrupt pads.[get] * * @param ctx read / write interface definitions * @param val Get the values of pp_od in reg CTRL3_C * */ int32_t lsm6dso_pin_mode_get(stmdev_ctx_t *ctx, lsm6dso_pp_od_t *val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); switch (reg.pp_od) { case LSM6DSO_PUSH_PULL: *val = LSM6DSO_PUSH_PULL; break; case LSM6DSO_OPEN_DRAIN: *val = LSM6DSO_OPEN_DRAIN; break; default: *val = LSM6DSO_PUSH_PULL; break; } return ret; } /** * @brief Interrupt active-high/low.[set] * * @param ctx read / write interface definitions * @param val change the values of h_lactive in reg CTRL3_C * */ int32_t lsm6dso_pin_polarity_set(stmdev_ctx_t *ctx, lsm6dso_h_lactive_t val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); if (ret == 0) { reg.h_lactive = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); } return ret; } /** * @brief Interrupt active-high/low.[get] * * @param ctx read / write interface definitions * @param val Get the values of h_lactive in reg CTRL3_C * */ int32_t lsm6dso_pin_polarity_get(stmdev_ctx_t *ctx, lsm6dso_h_lactive_t *val) { lsm6dso_ctrl3_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)®, 1); switch (reg.h_lactive) { case LSM6DSO_ACTIVE_HIGH: *val = LSM6DSO_ACTIVE_HIGH; break; case LSM6DSO_ACTIVE_LOW: *val = LSM6DSO_ACTIVE_LOW; break; default: *val = LSM6DSO_ACTIVE_HIGH; break; } return ret; } /** * @brief All interrupt signals become available on INT1 pin.[set] * * @param ctx read / write interface definitions * @param val change the values of int2_on_int1 in reg CTRL4_C * */ int32_t lsm6dso_all_on_int1_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); if (ret == 0) { reg.int2_on_int1 = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); } return ret; } /** * @brief All interrupt signals become available on INT1 pin.[get] * * @param ctx read / write interface definitions * @param val change the values of int2_on_int1 in reg CTRL4_C * */ int32_t lsm6dso_all_on_int1_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); *val = reg.int2_on_int1; return ret; } /** * @brief Interrupt notification mode.[set] * * @param ctx read / write interface definitions * @param val change the values of lir in reg TAP_CFG0 * */ int32_t lsm6dso_int_notification_set(stmdev_ctx_t *ctx, lsm6dso_lir_t val) { lsm6dso_tap_cfg0_t tap_cfg0; lsm6dso_page_rw_t page_rw; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0, 1); if (ret == 0) { tap_cfg0.lir = (uint8_t)val & 0x01U; tap_cfg0.int_clr_on_read = (uint8_t)val & 0x01U; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.emb_func_lir = ((uint8_t)val & 0x02U) >> 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Interrupt notification mode.[get] * * @param ctx read / write interface definitions * @param val Get the values of lir in reg TAP_CFG0 * */ int32_t lsm6dso_int_notification_get(stmdev_ctx_t *ctx, lsm6dso_lir_t *val) { lsm6dso_tap_cfg0_t tap_cfg0; lsm6dso_page_rw_t page_rw; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0, 1); if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } if (ret == 0) { switch ((page_rw.emb_func_lir << 1) | tap_cfg0.lir) { case LSM6DSO_ALL_INT_PULSED: *val = LSM6DSO_ALL_INT_PULSED; break; case LSM6DSO_BASE_LATCHED_EMB_PULSED: *val = LSM6DSO_BASE_LATCHED_EMB_PULSED; break; case LSM6DSO_BASE_PULSED_EMB_LATCHED: *val = LSM6DSO_BASE_PULSED_EMB_LATCHED; break; case LSM6DSO_ALL_INT_LATCHED: *val = LSM6DSO_ALL_INT_LATCHED; break; default: *val = LSM6DSO_ALL_INT_PULSED; break; } ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_Wake_Up_event * @brief This section groups all the functions that manage the Wake Up * event generation. * @{ * */ /** * @brief Weight of 1 LSB of wakeup threshold.[set] * 0: 1 LSB =FS_XL / 64 * 1: 1 LSB = FS_XL / 256 * * @param ctx read / write interface definitions * @param val change the values of wake_ths_w in * reg WAKE_UP_DUR * */ int32_t lsm6dso_wkup_ths_weight_set(stmdev_ctx_t *ctx, lsm6dso_wake_ths_w_t val) { lsm6dso_wake_up_dur_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); if (ret == 0) { reg.wake_ths_w = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); } return ret; } /** * @brief Weight of 1 LSB of wakeup threshold.[get] * 0: 1 LSB =FS_XL / 64 * 1: 1 LSB = FS_XL / 256 * * @param ctx read / write interface definitions * @param val Get the values of wake_ths_w in * reg WAKE_UP_DUR * */ int32_t lsm6dso_wkup_ths_weight_get(stmdev_ctx_t *ctx, lsm6dso_wake_ths_w_t *val) { lsm6dso_wake_up_dur_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); switch (reg.wake_ths_w) { case LSM6DSO_LSb_FS_DIV_64: *val = LSM6DSO_LSb_FS_DIV_64; break; case LSM6DSO_LSb_FS_DIV_256: *val = LSM6DSO_LSb_FS_DIV_256; break; default: *val = LSM6DSO_LSb_FS_DIV_64; break; } return ret; } /** * @brief Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in * WAKE_UP_DUR.[set] * * @param ctx read / write interface definitions * @param val change the values of wk_ths in reg WAKE_UP_THS * */ int32_t lsm6dso_wkup_threshold_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_wake_up_ths_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); if (ret == 0) { reg.wk_ths = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); } return ret; } /** * @brief Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in * WAKE_UP_DUR.[get] * * @param ctx read / write interface definitions * @param val change the values of wk_ths in reg WAKE_UP_THS * */ int32_t lsm6dso_wkup_threshold_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_wake_up_ths_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); *val = reg.wk_ths; return ret; } /** * @brief Wake up duration event.[set] * 1LSb = 1 / ODR * * @param ctx read / write interface definitions * @param val change the values of usr_off_on_wu in reg WAKE_UP_THS * */ int32_t lsm6dso_xl_usr_offset_on_wkup_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_wake_up_ths_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); if (ret == 0) { reg.usr_off_on_wu = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); } return ret; } /** * @brief Wake up duration event.[get] * 1LSb = 1 / ODR * * @param ctx read / write interface definitions * @param val change the values of usr_off_on_wu in reg WAKE_UP_THS * */ int32_t lsm6dso_xl_usr_offset_on_wkup_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_wake_up_ths_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); *val = reg.usr_off_on_wu; return ret; } /** * @brief Wake up duration event.[set] * 1LSb = 1 / ODR * * @param ctx read / write interface definitions * @param val change the values of wake_dur in reg WAKE_UP_DUR * */ int32_t lsm6dso_wkup_dur_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_wake_up_dur_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); if (ret == 0) { reg.wake_dur = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); } return ret; } /** * @brief Wake up duration event.[get] * 1LSb = 1 / ODR * * @param ctx read / write interface definitions * @param val change the values of wake_dur in reg WAKE_UP_DUR * */ int32_t lsm6dso_wkup_dur_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_wake_up_dur_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); *val = reg.wake_dur; return ret; } /** * @} * */ /** * @defgroup LSM6DSO_ Activity/Inactivity_detection * @brief This section groups all the functions concerning * activity/inactivity detection. * @{ * */ /** * @brief Enables gyroscope Sleep mode.[set] * * @param ctx read / write interface definitions * @param val change the values of sleep_g in reg CTRL4_C * */ int32_t lsm6dso_gy_sleep_mode_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); if (ret == 0) { reg.sleep_g = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); } return ret; } /** * @brief Enables gyroscope Sleep mode.[get] * * @param ctx read / write interface definitions * @param val change the values of sleep_g in reg CTRL4_C * */ int32_t lsm6dso_gy_sleep_mode_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl4_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)®, 1); *val = reg.sleep_g; return ret; } /** * @brief Drives the sleep status instead of * sleep change on INT pins * (only if INT1_SLEEP_CHANGE or * INT2_SLEEP_CHANGE bits are enabled).[set] * * @param ctx read / write interface definitions * @param val change the values of sleep_status_on_int in reg TAP_CFG0 * */ int32_t lsm6dso_act_pin_notification_set(stmdev_ctx_t *ctx, lsm6dso_sleep_status_on_int_t val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); if (ret == 0) { reg.sleep_status_on_int = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); } return ret; } /** * @brief Drives the sleep status instead of * sleep change on INT pins (only if * INT1_SLEEP_CHANGE or * INT2_SLEEP_CHANGE bits are enabled).[get] * * @param ctx read / write interface definitions * @param val Get the values of sleep_status_on_int in reg TAP_CFG0 * */ int32_t lsm6dso_act_pin_notification_get(stmdev_ctx_t *ctx, lsm6dso_sleep_status_on_int_t *val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); switch (reg.sleep_status_on_int) { case LSM6DSO_DRIVE_SLEEP_CHG_EVENT: *val = LSM6DSO_DRIVE_SLEEP_CHG_EVENT; break; case LSM6DSO_DRIVE_SLEEP_STATUS: *val = LSM6DSO_DRIVE_SLEEP_STATUS; break; default: *val = LSM6DSO_DRIVE_SLEEP_CHG_EVENT; break; } return ret; } /** * @brief Enable inactivity function.[set] * * @param ctx read / write interface definitions * @param val change the values of inact_en in reg TAP_CFG2 * */ int32_t lsm6dso_act_mode_set(stmdev_ctx_t *ctx, lsm6dso_inact_en_t val) { lsm6dso_tap_cfg2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1); if (ret == 0) { reg.inact_en = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1); } return ret; } /** * @brief Enable inactivity function.[get] * * @param ctx read / write interface definitions * @param val Get the values of inact_en in reg TAP_CFG2 * */ int32_t lsm6dso_act_mode_get(stmdev_ctx_t *ctx, lsm6dso_inact_en_t *val) { lsm6dso_tap_cfg2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1); switch (reg.inact_en) { case LSM6DSO_XL_AND_GY_NOT_AFFECTED: *val = LSM6DSO_XL_AND_GY_NOT_AFFECTED; break; case LSM6DSO_XL_12Hz5_GY_NOT_AFFECTED: *val = LSM6DSO_XL_12Hz5_GY_NOT_AFFECTED; break; case LSM6DSO_XL_12Hz5_GY_SLEEP: *val = LSM6DSO_XL_12Hz5_GY_SLEEP; break; case LSM6DSO_XL_12Hz5_GY_PD: *val = LSM6DSO_XL_12Hz5_GY_PD; break; default: *val = LSM6DSO_XL_AND_GY_NOT_AFFECTED; break; } return ret; } /** * @brief Duration to go in sleep mode.[set] * 1 LSb = 512 / ODR * * @param ctx read / write interface definitions * @param val change the values of sleep_dur in reg WAKE_UP_DUR * */ int32_t lsm6dso_act_sleep_dur_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_wake_up_dur_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); if (ret == 0) { reg.sleep_dur = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); } return ret; } /** * @brief Duration to go in sleep mode.[get] * 1 LSb = 512 / ODR * * @param ctx read / write interface definitions * @param val change the values of sleep_dur in reg WAKE_UP_DUR * */ int32_t lsm6dso_act_sleep_dur_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_wake_up_dur_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)®, 1); *val = reg.sleep_dur; return ret; } /** * @} * */ /** * @defgroup LSM6DSO_tap_generator * @brief This section groups all the functions that manage the * tap and double tap event generation. * @{ * */ /** * @brief Enable Z direction in tap recognition.[set] * * @param ctx read / write interface definitions * @param val change the values of tap_z_en in reg TAP_CFG0 * */ int32_t lsm6dso_tap_detection_on_z_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); if (ret == 0) { reg.tap_z_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); } return ret; } /** * @brief Enable Z direction in tap recognition.[get] * * @param ctx read / write interface definitions * @param val change the values of tap_z_en in reg TAP_CFG0 * */ int32_t lsm6dso_tap_detection_on_z_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); *val = reg.tap_z_en; return ret; } /** * @brief Enable Y direction in tap recognition.[set] * * @param ctx read / write interface definitions * @param val change the values of tap_y_en in reg TAP_CFG0 * */ int32_t lsm6dso_tap_detection_on_y_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); if (ret == 0) { reg.tap_y_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); } return ret; } /** * @brief Enable Y direction in tap recognition.[get] * * @param ctx read / write interface definitions * @param val change the values of tap_y_en in reg TAP_CFG0 * */ int32_t lsm6dso_tap_detection_on_y_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); *val = reg.tap_y_en; return ret; } /** * @brief Enable X direction in tap recognition.[set] * * @param ctx read / write interface definitions * @param val change the values of tap_x_en in reg TAP_CFG0 * */ int32_t lsm6dso_tap_detection_on_x_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); if (ret == 0) { reg.tap_x_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); } return ret; } /** * @brief Enable X direction in tap recognition.[get] * * @param ctx read / write interface definitions * @param val change the values of tap_x_en in reg TAP_CFG0 * */ int32_t lsm6dso_tap_detection_on_x_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_tap_cfg0_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *)®, 1); *val = reg.tap_x_en; return ret; } /** * @brief X-axis tap recognition threshold.[set] * * @param ctx read / write interface definitions * @param val change the values of tap_ths_x in reg TAP_CFG1 * */ int32_t lsm6dso_tap_threshold_x_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_tap_cfg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1); if (ret == 0) { reg.tap_ths_x = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1); } return ret; } /** * @brief X-axis tap recognition threshold.[get] * * @param ctx read / write interface definitions * @param val change the values of tap_ths_x in reg TAP_CFG1 * */ int32_t lsm6dso_tap_threshold_x_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_tap_cfg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1); *val = reg.tap_ths_x; return ret; } /** * @brief Selection of axis priority for TAP detection.[set] * * @param ctx read / write interface definitions * @param val change the values of tap_priority in * reg TAP_CFG1 * */ int32_t lsm6dso_tap_axis_priority_set(stmdev_ctx_t *ctx, lsm6dso_tap_priority_t val) { lsm6dso_tap_cfg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1); if (ret == 0) { reg.tap_priority = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1); } return ret; } /** * @brief Selection of axis priority for TAP detection.[get] * * @param ctx read / write interface definitions * @param val Get the values of tap_priority in * reg TAP_CFG1 * */ int32_t lsm6dso_tap_axis_priority_get(stmdev_ctx_t *ctx, lsm6dso_tap_priority_t *val) { lsm6dso_tap_cfg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG1, (uint8_t *)®, 1); switch (reg.tap_priority) { case LSM6DSO_XYZ: *val = LSM6DSO_XYZ; break; case LSM6DSO_YXZ: *val = LSM6DSO_YXZ; break; case LSM6DSO_XZY: *val = LSM6DSO_XZY; break; case LSM6DSO_ZYX: *val = LSM6DSO_ZYX; break; case LSM6DSO_YZX: *val = LSM6DSO_YZX; break; case LSM6DSO_ZXY: *val = LSM6DSO_ZXY; break; default: *val = LSM6DSO_XYZ; break; } return ret; } /** * @brief Y-axis tap recognition threshold.[set] * * @param ctx read / write interface definitions * @param val change the values of tap_ths_y in reg TAP_CFG2 * */ int32_t lsm6dso_tap_threshold_y_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_tap_cfg2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1); if (ret == 0) { reg.tap_ths_y = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1); } return ret; } /** * @brief Y-axis tap recognition threshold.[get] * * @param ctx read / write interface definitions * @param val change the values of tap_ths_y in reg TAP_CFG2 * */ int32_t lsm6dso_tap_threshold_y_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_tap_cfg2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *)®, 1); *val = reg.tap_ths_y; return ret; } /** * @brief Z-axis recognition threshold.[set] * * @param ctx read / write interface definitions * @param val change the values of tap_ths_z in reg TAP_THS_6D * */ int32_t lsm6dso_tap_threshold_z_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_tap_ths_6d_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); if (ret == 0) { reg.tap_ths_z = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); } return ret; } /** * @brief Z-axis recognition threshold.[get] * * @param ctx read / write interface definitions * @param val change the values of tap_ths_z in reg TAP_THS_6D * */ int32_t lsm6dso_tap_threshold_z_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_tap_ths_6d_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); *val = reg.tap_ths_z; return ret; } /** * @brief Maximum duration is the maximum time of an * over threshold signal detection to be recognized * as a tap event. The default value of these bits * is 00b which corresponds to 4*ODR_XL time. * If the SHOCK[1:0] bits are set to a different * value, 1LSB corresponds to 8*ODR_XL time.[set] * * @param ctx read / write interface definitions * @param val change the values of shock in reg INT_DUR2 * */ int32_t lsm6dso_tap_shock_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_int_dur2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); if (ret == 0) { reg.shock = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); } return ret; } /** * @brief Maximum duration is the maximum time of an * over threshold signal detection to be recognized * as a tap event. The default value of these bits * is 00b which corresponds to 4*ODR_XL time. * If the SHOCK[1:0] bits are set to a different * value, 1LSB corresponds to 8*ODR_XL time.[get] * * @param ctx read / write interface definitions * @param val change the values of shock in reg INT_DUR2 * */ int32_t lsm6dso_tap_shock_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_int_dur2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); *val = reg.shock; return ret; } /** * @brief Quiet time is the time after the first detected * tap in which there must not be any over threshold * event. * The default value of these bits is 00b which * corresponds to 2*ODR_XL time. If the QUIET[1:0] * bits are set to a different value, * 1LSB corresponds to 4*ODR_XL time.[set] * * @param ctx read / write interface definitions * @param val change the values of quiet in reg INT_DUR2 * */ int32_t lsm6dso_tap_quiet_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_int_dur2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); if (ret == 0) { reg.quiet = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); } return ret; } /** * @brief Quiet time is the time after the first detected * tap in which there must not be any over threshold * event. * The default value of these bits is 00b which * corresponds to 2*ODR_XL time. * If the QUIET[1:0] bits are set to a different * value, 1LSB corresponds to 4*ODR_XL time.[get] * * @param ctx read / write interface definitions * @param val change the values of quiet in reg INT_DUR2 * */ int32_t lsm6dso_tap_quiet_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_int_dur2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); *val = reg.quiet; return ret; } /** * @brief When double tap recognition is enabled, * this register expresses the maximum time * between two consecutive detected taps to * determine a double tap event. * The default value of these bits is 0000b which * corresponds to 16*ODR_XL time. * If the DUR[3:0] bits are set to a different value, * 1LSB corresponds to 32*ODR_XL time.[set] * * @param ctx read / write interface definitions * @param val change the values of dur in reg INT_DUR2 * */ int32_t lsm6dso_tap_dur_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_int_dur2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); if (ret == 0) { reg.dur = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); } return ret; } /** * @brief When double tap recognition is enabled, * this register expresses the maximum time * between two consecutive detected taps to * determine a double tap event. * The default value of these bits is 0000b which * corresponds to 16*ODR_XL time. If the DUR[3:0] * bits are set to a different value, * 1LSB corresponds to 32*ODR_XL time.[get] * * @param ctx read / write interface definitions * @param val change the values of dur in reg INT_DUR2 * */ int32_t lsm6dso_tap_dur_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_int_dur2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_INT_DUR2, (uint8_t *)®, 1); *val = reg.dur; return ret; } /** * @brief Single/double-tap event enable.[set] * * @param ctx read / write interface definitions * @param val change the values of single_double_tap in reg WAKE_UP_THS * */ int32_t lsm6dso_tap_mode_set(stmdev_ctx_t *ctx, lsm6dso_single_double_tap_t val) { lsm6dso_wake_up_ths_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); if (ret == 0) { reg.single_double_tap = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); } return ret; } /** * @brief Single/double-tap event enable.[get] * * @param ctx read / write interface definitions * @param val Get the values of single_double_tap in reg WAKE_UP_THS * */ int32_t lsm6dso_tap_mode_get(stmdev_ctx_t *ctx, lsm6dso_single_double_tap_t *val) { lsm6dso_wake_up_ths_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_THS, (uint8_t *)®, 1); switch (reg.single_double_tap) { case LSM6DSO_ONLY_SINGLE: *val = LSM6DSO_ONLY_SINGLE; break; case LSM6DSO_BOTH_SINGLE_DOUBLE: *val = LSM6DSO_BOTH_SINGLE_DOUBLE; break; default: *val = LSM6DSO_ONLY_SINGLE; break; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_ Six_position_detection(6D/4D) * @brief This section groups all the functions concerning six position * detection (6D). * @{ * */ /** * @brief Threshold for 4D/6D function.[set] * * @param ctx read / write interface definitions * @param val change the values of sixd_ths in reg TAP_THS_6D * */ int32_t lsm6dso_6d_threshold_set(stmdev_ctx_t *ctx, lsm6dso_sixd_ths_t val) { lsm6dso_tap_ths_6d_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); if (ret == 0) { reg.sixd_ths = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); } return ret; } /** * @brief Threshold for 4D/6D function.[get] * * @param ctx read / write interface definitions * @param val Get the values of sixd_ths in reg TAP_THS_6D * */ int32_t lsm6dso_6d_threshold_get(stmdev_ctx_t *ctx, lsm6dso_sixd_ths_t *val) { lsm6dso_tap_ths_6d_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); switch (reg.sixd_ths) { case LSM6DSO_DEG_80: *val = LSM6DSO_DEG_80; break; case LSM6DSO_DEG_70: *val = LSM6DSO_DEG_70; break; case LSM6DSO_DEG_60: *val = LSM6DSO_DEG_60; break; case LSM6DSO_DEG_50: *val = LSM6DSO_DEG_50; break; default: *val = LSM6DSO_DEG_80; break; } return ret; } /** * @brief 4D orientation detection enable.[set] * * @param ctx read / write interface definitions * @param val change the values of d4d_en in reg TAP_THS_6D * */ int32_t lsm6dso_4d_mode_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_tap_ths_6d_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); if (ret == 0) { reg.d4d_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); } return ret; } /** * @brief 4D orientation detection enable.[get] * * @param ctx read / write interface definitions * @param val change the values of d4d_en in reg TAP_THS_6D * */ int32_t lsm6dso_4d_mode_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_tap_ths_6d_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_THS_6D, (uint8_t *)®, 1); *val = reg.d4d_en; return ret; } /** * @} * */ /** * @defgroup LSM6DSO_free_fall * @brief This section group all the functions concerning the free * fall detection. * @{ * */ /** * @brief Free fall threshold setting.[set] * * @param ctx read / write interface definitions * @param val change the values of ff_ths in reg FREE_FALL * */ int32_t lsm6dso_ff_threshold_set(stmdev_ctx_t *ctx, lsm6dso_ff_ths_t val) { lsm6dso_free_fall_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)®, 1); if (ret == 0) { reg.ff_ths = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)®, 1); } return ret; } /** * @brief Free fall threshold setting.[get] * * @param ctx read / write interface definitions * @param val Get the values of ff_ths in reg FREE_FALL * */ int32_t lsm6dso_ff_threshold_get(stmdev_ctx_t *ctx, lsm6dso_ff_ths_t *val) { lsm6dso_free_fall_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)®, 1); switch (reg.ff_ths) { case LSM6DSO_FF_TSH_156mg: *val = LSM6DSO_FF_TSH_156mg; break; case LSM6DSO_FF_TSH_219mg: *val = LSM6DSO_FF_TSH_219mg; break; case LSM6DSO_FF_TSH_250mg: *val = LSM6DSO_FF_TSH_250mg; break; case LSM6DSO_FF_TSH_312mg: *val = LSM6DSO_FF_TSH_312mg; break; case LSM6DSO_FF_TSH_344mg: *val = LSM6DSO_FF_TSH_344mg; break; case LSM6DSO_FF_TSH_406mg: *val = LSM6DSO_FF_TSH_406mg; break; case LSM6DSO_FF_TSH_469mg: *val = LSM6DSO_FF_TSH_469mg; break; case LSM6DSO_FF_TSH_500mg: *val = LSM6DSO_FF_TSH_500mg; break; default: *val = LSM6DSO_FF_TSH_156mg; break; } return ret; } /** * @brief Free-fall duration event.[set] * 1LSb = 1 / ODR * * @param ctx read / write interface definitions * @param val change the values of ff_dur in reg FREE_FALL * */ int32_t lsm6dso_ff_dur_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_wake_up_dur_t wake_up_dur; lsm6dso_free_fall_t free_fall; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)&wake_up_dur, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)&free_fall, 1); } if (ret == 0) { wake_up_dur.ff_dur = ((uint8_t)val & 0x20U) >> 5; free_fall.ff_dur = (uint8_t)val & 0x1FU; ret = lsm6dso_write_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)&wake_up_dur, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)&free_fall, 1); } return ret; } /** * @brief Free-fall duration event.[get] * 1LSb = 1 / ODR * * @param ctx read / write interface definitions * @param val change the values of ff_dur in reg FREE_FALL * */ int32_t lsm6dso_ff_dur_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_wake_up_dur_t wake_up_dur; lsm6dso_free_fall_t free_fall; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_WAKE_UP_DUR, (uint8_t *)&wake_up_dur, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FREE_FALL, (uint8_t *)&free_fall, 1); *val = (wake_up_dur.ff_dur << 5) + free_fall.ff_dur; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_fifo * @brief This section group all the functions concerning the fifo usage * @{ * */ /** * @brief FIFO watermark level selection.[set] * * @param ctx read / write interface definitions * @param val change the values of wtm in reg FIFO_CTRL1 * */ int32_t lsm6dso_fifo_watermark_set(stmdev_ctx_t *ctx, uint16_t val) { lsm6dso_fifo_ctrl1_t fifo_ctrl1; lsm6dso_fifo_ctrl2_t fifo_ctrl2; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)&fifo_ctrl2, 1); if (ret == 0) { fifo_ctrl1.wtm = 0x00FFU & (uint8_t)val; fifo_ctrl2.wtm = (uint8_t)(( 0x0100U & val ) >> 8); ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL1, (uint8_t *)&fifo_ctrl1, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)&fifo_ctrl2, 1); } return ret; } /** * @brief FIFO watermark level selection.[get] * * @param ctx read / write interface definitions * @param val change the values of wtm in reg FIFO_CTRL1 * */ int32_t lsm6dso_fifo_watermark_get(stmdev_ctx_t *ctx, uint16_t *val) { lsm6dso_fifo_ctrl1_t fifo_ctrl1; lsm6dso_fifo_ctrl2_t fifo_ctrl2; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL1, (uint8_t *)&fifo_ctrl1, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)&fifo_ctrl2, 1); *val = ((uint16_t)fifo_ctrl2.wtm << 8) + (uint16_t)fifo_ctrl1.wtm; } return ret; } /** * @brief FIFO compression feature initialization request [set]. * * @param ctx read / write interface definitions * @param val change the values of FIFO_COMPR_INIT in * reg EMB_FUNC_INIT_B * */ int32_t lsm6dso_compression_algo_init_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_emb_func_init_b_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®, 1); } if (ret == 0) { reg.fifo_compr_init = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief FIFO compression feature initialization request [get]. * * @param ctx read / write interface definitions * @param val change the values of FIFO_COMPR_INIT in * reg EMB_FUNC_INIT_B * */ int32_t lsm6dso_compression_algo_init_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_emb_func_init_b_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.fifo_compr_init; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable and configure compression algo.[set] * * @param ctx read / write interface definitions * @param val change the values of uncoptr_rate in * reg FIFO_CTRL2 * */ int32_t lsm6dso_compression_algo_set(stmdev_ctx_t *ctx, lsm6dso_uncoptr_rate_t val) { lsm6dso_fifo_ctrl2_t fifo_ctrl2; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)&fifo_ctrl2, 1); if (ret == 0) { fifo_ctrl2.fifo_compr_rt_en = ((uint8_t)val & 0x04U) >> 2; fifo_ctrl2.uncoptr_rate = (uint8_t)val & 0x03U; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)&fifo_ctrl2, 1); } return ret; } /** * @brief Enable and configure compression algo.[get] * * @param ctx read / write interface definitions * @param val Get the values of uncoptr_rate in * reg FIFO_CTRL2 * */ int32_t lsm6dso_compression_algo_get(stmdev_ctx_t *ctx, lsm6dso_uncoptr_rate_t *val) { lsm6dso_fifo_ctrl2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); switch ((reg.fifo_compr_rt_en << 2) | reg.uncoptr_rate) { case LSM6DSO_CMP_DISABLE: *val = LSM6DSO_CMP_DISABLE; break; case LSM6DSO_CMP_ALWAYS: *val = LSM6DSO_CMP_ALWAYS; break; case LSM6DSO_CMP_8_TO_1: *val = LSM6DSO_CMP_8_TO_1; break; case LSM6DSO_CMP_16_TO_1: *val = LSM6DSO_CMP_16_TO_1; break; case LSM6DSO_CMP_32_TO_1: *val = LSM6DSO_CMP_32_TO_1; break; default: *val = LSM6DSO_CMP_DISABLE; break; } return ret; } /** * @brief Enables ODR CHANGE virtual sensor to be batched in FIFO.[set] * * @param ctx read / write interface definitions * @param val change the values of odrchg_en in reg FIFO_CTRL2 * */ int32_t lsm6dso_fifo_virtual_sens_odr_chg_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_fifo_ctrl2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); if (ret == 0) { reg.odrchg_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); } return ret; } /** * @brief Enables ODR CHANGE virtual sensor to be batched in FIFO.[get] * * @param ctx read / write interface definitions * @param val change the values of odrchg_en in reg FIFO_CTRL2 * */ int32_t lsm6dso_fifo_virtual_sens_odr_chg_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_fifo_ctrl2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); *val = reg.odrchg_en; return ret; } /** * @brief Enables/Disables compression algorithm runtime.[set] * * @param ctx read / write interface definitions * @param val change the values of fifo_compr_rt_en in * reg FIFO_CTRL2 * */ int32_t lsm6dso_compression_algo_real_time_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_fifo_ctrl2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); if (ret == 0) { reg.fifo_compr_rt_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); } return ret; } /** * @brief Enables/Disables compression algorithm runtime. [get] * * @param ctx read / write interface definitions * @param val change the values of fifo_compr_rt_en in reg FIFO_CTRL2 * */ int32_t lsm6dso_compression_algo_real_time_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_fifo_ctrl2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); *val = reg.fifo_compr_rt_en; return ret; } /** * @brief Sensing chain FIFO stop values memorization at * threshold level.[set] * * @param ctx read / write interface definitions * @param val change the values of stop_on_wtm in reg FIFO_CTRL2 * */ int32_t lsm6dso_fifo_stop_on_wtm_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_fifo_ctrl2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); if (ret == 0) { reg.stop_on_wtm = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); } return ret; } /** * @brief Sensing chain FIFO stop values memorization at * threshold level.[get] * * @param ctx read / write interface definitions * @param val change the values of stop_on_wtm in reg FIFO_CTRL2 * */ int32_t lsm6dso_fifo_stop_on_wtm_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_fifo_ctrl2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL2, (uint8_t *)®, 1); *val = reg.stop_on_wtm; return ret; } /** * @brief Selects Batching Data Rate (writing frequency in FIFO) * for accelerometer data.[set] * * @param ctx read / write interface definitions * @param val change the values of bdr_xl in reg FIFO_CTRL3 * */ int32_t lsm6dso_fifo_xl_batch_set(stmdev_ctx_t *ctx, lsm6dso_bdr_xl_t val) { lsm6dso_fifo_ctrl3_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1); if (ret == 0) { reg.bdr_xl = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1); } return ret; } /** * @brief Selects Batching Data Rate (writing frequency in FIFO) * for accelerometer data.[get] * * @param ctx read / write interface definitions * @param val Get the values of bdr_xl in reg FIFO_CTRL3 * */ int32_t lsm6dso_fifo_xl_batch_get(stmdev_ctx_t *ctx, lsm6dso_bdr_xl_t *val) { lsm6dso_fifo_ctrl3_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1); switch (reg.bdr_xl) { case LSM6DSO_XL_NOT_BATCHED: *val = LSM6DSO_XL_NOT_BATCHED; break; case LSM6DSO_XL_BATCHED_AT_12Hz5: *val = LSM6DSO_XL_BATCHED_AT_12Hz5; break; case LSM6DSO_XL_BATCHED_AT_26Hz: *val = LSM6DSO_XL_BATCHED_AT_26Hz; break; case LSM6DSO_XL_BATCHED_AT_52Hz: *val = LSM6DSO_XL_BATCHED_AT_52Hz; break; case LSM6DSO_XL_BATCHED_AT_104Hz: *val = LSM6DSO_XL_BATCHED_AT_104Hz; break; case LSM6DSO_XL_BATCHED_AT_208Hz: *val = LSM6DSO_XL_BATCHED_AT_208Hz; break; case LSM6DSO_XL_BATCHED_AT_417Hz: *val = LSM6DSO_XL_BATCHED_AT_417Hz; break; case LSM6DSO_XL_BATCHED_AT_833Hz: *val = LSM6DSO_XL_BATCHED_AT_833Hz; break; case LSM6DSO_XL_BATCHED_AT_1667Hz: *val = LSM6DSO_XL_BATCHED_AT_1667Hz; break; case LSM6DSO_XL_BATCHED_AT_3333Hz: *val = LSM6DSO_XL_BATCHED_AT_3333Hz; break; case LSM6DSO_XL_BATCHED_AT_6667Hz: *val = LSM6DSO_XL_BATCHED_AT_6667Hz; break; case LSM6DSO_XL_BATCHED_AT_6Hz5: *val = LSM6DSO_XL_BATCHED_AT_6Hz5; break; default: *val = LSM6DSO_XL_NOT_BATCHED; break; } return ret; } /** * @brief Selects Batching Data Rate (writing frequency in FIFO) * for gyroscope data.[set] * * @param ctx read / write interface definitions * @param val change the values of bdr_gy in reg FIFO_CTRL3 * */ int32_t lsm6dso_fifo_gy_batch_set(stmdev_ctx_t *ctx, lsm6dso_bdr_gy_t val) { lsm6dso_fifo_ctrl3_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1); if (ret == 0) { reg.bdr_gy = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1); } return ret; } /** * @brief Selects Batching Data Rate (writing frequency in FIFO) * for gyroscope data.[get] * * @param ctx read / write interface definitions * @param val Get the values of bdr_gy in reg FIFO_CTRL3 * */ int32_t lsm6dso_fifo_gy_batch_get(stmdev_ctx_t *ctx, lsm6dso_bdr_gy_t *val) { lsm6dso_fifo_ctrl3_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL3, (uint8_t *)®, 1); switch (reg.bdr_gy) { case LSM6DSO_GY_NOT_BATCHED: *val = LSM6DSO_GY_NOT_BATCHED; break; case LSM6DSO_GY_BATCHED_AT_12Hz5: *val = LSM6DSO_GY_BATCHED_AT_12Hz5; break; case LSM6DSO_GY_BATCHED_AT_26Hz: *val = LSM6DSO_GY_BATCHED_AT_26Hz; break; case LSM6DSO_GY_BATCHED_AT_52Hz: *val = LSM6DSO_GY_BATCHED_AT_52Hz; break; case LSM6DSO_GY_BATCHED_AT_104Hz: *val = LSM6DSO_GY_BATCHED_AT_104Hz; break; case LSM6DSO_GY_BATCHED_AT_208Hz: *val = LSM6DSO_GY_BATCHED_AT_208Hz; break; case LSM6DSO_GY_BATCHED_AT_417Hz: *val = LSM6DSO_GY_BATCHED_AT_417Hz; break; case LSM6DSO_GY_BATCHED_AT_833Hz: *val = LSM6DSO_GY_BATCHED_AT_833Hz; break; case LSM6DSO_GY_BATCHED_AT_1667Hz: *val = LSM6DSO_GY_BATCHED_AT_1667Hz; break; case LSM6DSO_GY_BATCHED_AT_3333Hz: *val = LSM6DSO_GY_BATCHED_AT_3333Hz; break; case LSM6DSO_GY_BATCHED_AT_6667Hz: *val = LSM6DSO_GY_BATCHED_AT_6667Hz; break; case LSM6DSO_GY_BATCHED_AT_6Hz5: *val = LSM6DSO_GY_BATCHED_AT_6Hz5; break; default: *val = LSM6DSO_GY_NOT_BATCHED; break; } return ret; } /** * @brief FIFO mode selection.[set] * * @param ctx read / write interface definitions * @param val change the values of fifo_mode in reg FIFO_CTRL4 * */ int32_t lsm6dso_fifo_mode_set(stmdev_ctx_t *ctx, lsm6dso_fifo_mode_t val) { lsm6dso_fifo_ctrl4_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); if (ret == 0) { reg.fifo_mode = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); } return ret; } /** * @brief FIFO mode selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of fifo_mode in reg FIFO_CTRL4 * */ int32_t lsm6dso_fifo_mode_get(stmdev_ctx_t *ctx, lsm6dso_fifo_mode_t *val) { lsm6dso_fifo_ctrl4_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); switch (reg.fifo_mode) { case LSM6DSO_BYPASS_MODE: *val = LSM6DSO_BYPASS_MODE; break; case LSM6DSO_FIFO_MODE: *val = LSM6DSO_FIFO_MODE; break; case LSM6DSO_STREAM_TO_FIFO_MODE: *val = LSM6DSO_STREAM_TO_FIFO_MODE; break; case LSM6DSO_BYPASS_TO_STREAM_MODE: *val = LSM6DSO_BYPASS_TO_STREAM_MODE; break; case LSM6DSO_STREAM_MODE: *val = LSM6DSO_STREAM_MODE; break; case LSM6DSO_BYPASS_TO_FIFO_MODE: *val = LSM6DSO_BYPASS_TO_FIFO_MODE; break; default: *val = LSM6DSO_BYPASS_MODE; break; } return ret; } /** * @brief Selects Batching Data Rate (writing frequency in FIFO) * for temperature data.[set] * * @param ctx read / write interface definitions * @param val change the values of odr_t_batch in reg FIFO_CTRL4 * */ int32_t lsm6dso_fifo_temp_batch_set(stmdev_ctx_t *ctx, lsm6dso_odr_t_batch_t val) { lsm6dso_fifo_ctrl4_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); if (ret == 0) { reg.odr_t_batch = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); } return ret; } /** * @brief Selects Batching Data Rate (writing frequency in FIFO) * for temperature data.[get] * * @param ctx read / write interface definitions * @param val Get the values of odr_t_batch in reg FIFO_CTRL4 * */ int32_t lsm6dso_fifo_temp_batch_get(stmdev_ctx_t *ctx, lsm6dso_odr_t_batch_t *val) { lsm6dso_fifo_ctrl4_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); switch (reg.odr_t_batch) { case LSM6DSO_TEMP_NOT_BATCHED: *val = LSM6DSO_TEMP_NOT_BATCHED; break; case LSM6DSO_TEMP_BATCHED_AT_1Hz6: *val = LSM6DSO_TEMP_BATCHED_AT_1Hz6; break; case LSM6DSO_TEMP_BATCHED_AT_12Hz5: *val = LSM6DSO_TEMP_BATCHED_AT_12Hz5; break; case LSM6DSO_TEMP_BATCHED_AT_52Hz: *val = LSM6DSO_TEMP_BATCHED_AT_52Hz; break; default: *val = LSM6DSO_TEMP_NOT_BATCHED; break; } return ret; } /** * @brief Selects decimation for timestamp batching in FIFO. * Writing rate will be the maximum rate between XL and * GYRO BDR divided by decimation decoder.[set] * * @param ctx read / write interface definitions * @param val change the values of odr_ts_batch in reg FIFO_CTRL4 * */ int32_t lsm6dso_fifo_timestamp_decimation_set(stmdev_ctx_t *ctx, lsm6dso_odr_ts_batch_t val) { lsm6dso_fifo_ctrl4_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); if (ret == 0) { reg.odr_ts_batch = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); } return ret; } /** * @brief Selects decimation for timestamp batching in FIFO. * Writing rate will be the maximum rate between XL and * GYRO BDR divided by decimation decoder.[get] * * @param ctx read / write interface definitions * @param val Get the values of odr_ts_batch in reg FIFO_CTRL4 * */ int32_t lsm6dso_fifo_timestamp_decimation_get(stmdev_ctx_t *ctx, lsm6dso_odr_ts_batch_t *val) { lsm6dso_fifo_ctrl4_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_CTRL4, (uint8_t *)®, 1); switch (reg.odr_ts_batch) { case LSM6DSO_NO_DECIMATION: *val = LSM6DSO_NO_DECIMATION; break; case LSM6DSO_DEC_1: *val = LSM6DSO_DEC_1; break; case LSM6DSO_DEC_8: *val = LSM6DSO_DEC_8; break; case LSM6DSO_DEC_32: *val = LSM6DSO_DEC_32; break; default: *val = LSM6DSO_NO_DECIMATION; break; } return ret; } /** * @brief Selects the trigger for the internal counter of batching events * between XL and gyro.[set] * * @param ctx read / write interface definitions * @param val change the values of trig_counter_bdr * in reg COUNTER_BDR_REG1 * */ int32_t lsm6dso_fifo_cnt_event_batch_set(stmdev_ctx_t *ctx, lsm6dso_trig_counter_bdr_t val) { lsm6dso_counter_bdr_reg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); if (ret == 0) { reg.trig_counter_bdr = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); } return ret; } /** * @brief Selects the trigger for the internal counter of batching events * between XL and gyro.[get] * * @param ctx read / write interface definitions * @param val Get the values of trig_counter_bdr * in reg COUNTER_BDR_REG1 * */ int32_t lsm6dso_fifo_cnt_event_batch_get(stmdev_ctx_t *ctx, lsm6dso_trig_counter_bdr_t *val) { lsm6dso_counter_bdr_reg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); switch (reg.trig_counter_bdr) { case LSM6DSO_XL_BATCH_EVENT: *val = LSM6DSO_XL_BATCH_EVENT; break; case LSM6DSO_GYRO_BATCH_EVENT: *val = LSM6DSO_GYRO_BATCH_EVENT; break; default: *val = LSM6DSO_XL_BATCH_EVENT; break; } return ret; } /** * @brief Resets the internal counter of batching vents for a single sensor. * This bit is automatically reset to zero if it was set to ‘1’.[set] * * @param ctx read / write interface definitions * @param val change the values of rst_counter_bdr in * reg COUNTER_BDR_REG1 * */ int32_t lsm6dso_rst_batch_counter_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_counter_bdr_reg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); if (ret == 0) { reg.rst_counter_bdr = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); } return ret; } /** * @brief Resets the internal counter of batching events for a single sensor. * This bit is automatically reset to zero if it was set to ‘1’.[get] * * @param ctx read / write interface definitions * @param val change the values of rst_counter_bdr in * reg COUNTER_BDR_REG1 * */ int32_t lsm6dso_rst_batch_counter_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_counter_bdr_reg1_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)®, 1); *val = reg.rst_counter_bdr; return ret; } /** * @brief Batch data rate counter.[set] * * @param ctx read / write interface definitions * @param val change the values of cnt_bdr_th in * reg COUNTER_BDR_REG2 and COUNTER_BDR_REG1. * */ int32_t lsm6dso_batch_counter_threshold_set(stmdev_ctx_t *ctx, uint16_t val) { lsm6dso_counter_bdr_reg1_t counter_bdr_reg1; lsm6dso_counter_bdr_reg2_t counter_bdr_reg2; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)&counter_bdr_reg1, 1); if (ret == 0) { counter_bdr_reg2.cnt_bdr_th = 0x00FFU & (uint8_t)val; counter_bdr_reg1.cnt_bdr_th = (uint8_t)(0x0700U & val) >> 8; ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)&counter_bdr_reg1, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_COUNTER_BDR_REG2, (uint8_t *)&counter_bdr_reg2, 1); } return ret; } /** * @brief Batch data rate counter.[get] * * @param ctx read / write interface definitions * @param val change the values of cnt_bdr_th in * reg COUNTER_BDR_REG2 and COUNTER_BDR_REG1. * */ int32_t lsm6dso_batch_counter_threshold_get(stmdev_ctx_t *ctx, uint16_t *val) { lsm6dso_counter_bdr_reg1_t counter_bdr_reg1; lsm6dso_counter_bdr_reg2_t counter_bdr_reg2; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG1, (uint8_t *)&counter_bdr_reg1, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_COUNTER_BDR_REG2, (uint8_t *)&counter_bdr_reg2, 1); *val = ((uint16_t)counter_bdr_reg1.cnt_bdr_th << 8) + (uint16_t)counter_bdr_reg2.cnt_bdr_th; } return ret; } /** * @brief Number of unread sensor data(TAG + 6 bytes) stored in FIFO.[get] * * @param ctx read / write interface definitions * @param val change the values of diff_fifo in reg FIFO_STATUS1 * */ int32_t lsm6dso_fifo_data_level_get(stmdev_ctx_t *ctx, uint16_t *val) { lsm6dso_fifo_status1_t fifo_status1; lsm6dso_fifo_status2_t fifo_status2; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS1, (uint8_t *)&fifo_status1, 1); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *)&fifo_status2, 1); *val = ((uint16_t)fifo_status2.diff_fifo << 8) + (uint16_t)fifo_status1.diff_fifo; } return ret; } /** * @brief FIFO status.[get] * * @param ctx read / write interface definitions * @param val registers FIFO_STATUS2 * */ int32_t lsm6dso_fifo_status_get(stmdev_ctx_t *ctx, lsm6dso_fifo_status2_t *val) { int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *) val, 1); return ret; } /** * @brief Smart FIFO full status.[get] * * @param ctx read / write interface definitions * @param val change the values of fifo_full_ia in reg FIFO_STATUS2 * */ int32_t lsm6dso_fifo_full_flag_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_fifo_status2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *)®, 1); *val = reg.fifo_full_ia; return ret; } /** * @brief FIFO overrun status.[get] * * @param ctx read / write interface definitions * @param val change the values of fifo_over_run_latched in * reg FIFO_STATUS2 * */ int32_t lsm6dso_fifo_ovr_flag_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_fifo_status2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *)®, 1); *val = reg.fifo_ovr_ia; return ret; } /** * @brief FIFO watermark status.[get] * * @param ctx read / write interface definitions * @param val change the values of fifo_wtm_ia in reg FIFO_STATUS2 * */ int32_t lsm6dso_fifo_wtm_flag_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_fifo_status2_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_STATUS2, (uint8_t *)®, 1); *val = reg.fifo_wtm_ia; return ret; } /** * @brief Identifies the sensor in FIFO_DATA_OUT.[get] * * @param ctx read / write interface definitions * @param val change the values of tag_sensor in reg FIFO_DATA_OUT_TAG * */ int32_t lsm6dso_fifo_sensor_tag_get(stmdev_ctx_t *ctx, lsm6dso_fifo_tag_t *val) { lsm6dso_fifo_data_out_tag_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_FIFO_DATA_OUT_TAG, (uint8_t *)®, 1); switch (reg.tag_sensor) { case LSM6DSO_GYRO_NC_TAG: *val = LSM6DSO_GYRO_NC_TAG; break; case LSM6DSO_XL_NC_TAG: *val = LSM6DSO_XL_NC_TAG; break; case LSM6DSO_TEMPERATURE_TAG: *val = LSM6DSO_TEMPERATURE_TAG; break; case LSM6DSO_CFG_CHANGE_TAG: *val = LSM6DSO_CFG_CHANGE_TAG; break; case LSM6DSO_XL_NC_T_2_TAG: *val = LSM6DSO_XL_NC_T_2_TAG; break; case LSM6DSO_XL_NC_T_1_TAG: *val = LSM6DSO_XL_NC_T_1_TAG; break; case LSM6DSO_XL_2XC_TAG: *val = LSM6DSO_XL_2XC_TAG; break; case LSM6DSO_XL_3XC_TAG: *val = LSM6DSO_XL_3XC_TAG; break; case LSM6DSO_GYRO_NC_T_2_TAG: *val = LSM6DSO_GYRO_NC_T_2_TAG; break; case LSM6DSO_GYRO_NC_T_1_TAG: *val = LSM6DSO_GYRO_NC_T_1_TAG; break; case LSM6DSO_GYRO_2XC_TAG: *val = LSM6DSO_GYRO_2XC_TAG; break; case LSM6DSO_GYRO_3XC_TAG: *val = LSM6DSO_GYRO_3XC_TAG; break; case LSM6DSO_SENSORHUB_SLAVE0_TAG: *val = LSM6DSO_SENSORHUB_SLAVE0_TAG; break; case LSM6DSO_SENSORHUB_SLAVE1_TAG: *val = LSM6DSO_SENSORHUB_SLAVE1_TAG; break; case LSM6DSO_SENSORHUB_SLAVE2_TAG: *val = LSM6DSO_SENSORHUB_SLAVE2_TAG; break; case LSM6DSO_SENSORHUB_SLAVE3_TAG: *val = LSM6DSO_SENSORHUB_SLAVE3_TAG; break; case LSM6DSO_STEP_CPUNTER_TAG: *val = LSM6DSO_STEP_CPUNTER_TAG; break; case LSM6DSO_GAME_ROTATION_TAG: *val = LSM6DSO_GAME_ROTATION_TAG; break; case LSM6DSO_GEOMAG_ROTATION_TAG: *val = LSM6DSO_GEOMAG_ROTATION_TAG; break; case LSM6DSO_ROTATION_TAG: *val = LSM6DSO_ROTATION_TAG; break; case LSM6DSO_SENSORHUB_NACK_TAG: *val = LSM6DSO_SENSORHUB_NACK_TAG; break; default: *val = LSM6DSO_GYRO_NC_TAG; break; } return ret; } /** * @brief : Enable FIFO batching of pedometer embedded * function values.[set] * * @param ctx read / write interface definitions * @param val change the values of gbias_fifo_en in * reg LSM6DSO_EMB_FUNC_FIFO_CFG * */ int32_t lsm6dso_fifo_pedo_batch_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_emb_func_fifo_cfg_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_FIFO_CFG, (uint8_t *)®, 1); } if (ret == 0) { reg.pedo_fifo_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_FIFO_CFG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching of pedometer embedded function values.[get] * * @param ctx read / write interface definitions * @param val change the values of pedo_fifo_en in * reg LSM6DSO_EMB_FUNC_FIFO_CFG * */ int32_t lsm6dso_fifo_pedo_batch_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_emb_func_fifo_cfg_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_FIFO_CFG, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.pedo_fifo_en; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of first slave.[set] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_0_en in * reg SLV0_CONFIG * */ int32_t lsm6dso_sh_batch_slave_0_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_slv0_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.batch_ext_sens_0_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of first slave.[get] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_0_en in * reg SLV0_CONFIG * */ int32_t lsm6dso_sh_batch_slave_0_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_slv0_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.batch_ext_sens_0_en; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of second slave.[set] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_1_en in * reg SLV1_CONFIG * */ int32_t lsm6dso_sh_batch_slave_1_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_slv1_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.batch_ext_sens_1_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of second slave.[get] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_1_en in * reg SLV1_CONFIG * */ int32_t lsm6dso_sh_batch_slave_1_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_slv1_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1); *val = reg.batch_ext_sens_1_en; } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of third slave.[set] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_2_en in * reg SLV2_CONFIG * */ int32_t lsm6dso_sh_batch_slave_2_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_slv2_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.batch_ext_sens_2_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of third slave.[get] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_2_en in * reg SLV2_CONFIG * */ int32_t lsm6dso_sh_batch_slave_2_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_slv2_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.batch_ext_sens_2_en; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of fourth slave.[set] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_3_en * in reg SLV3_CONFIG * */ int32_t lsm6dso_sh_batch_slave_3_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_slv3_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.batch_ext_sens_3_en = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Enable FIFO batching data of fourth slave.[get] * * @param ctx read / write interface definitions * @param val change the values of batch_ext_sens_3_en in * reg SLV3_CONFIG * */ int32_t lsm6dso_sh_batch_slave_3_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_slv3_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.batch_ext_sens_3_en; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_DEN_functionality * @brief This section groups all the functions concerning * DEN functionality. * @{ * */ /** * @brief DEN functionality marking mode.[set] * * @param ctx read / write interface definitions * @param val change the values of den_mode in reg CTRL6_C * */ int32_t lsm6dso_den_mode_set(stmdev_ctx_t *ctx, lsm6dso_den_mode_t val) { lsm6dso_ctrl6_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); if (ret == 0) { reg.den_mode = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); } return ret; } /** * @brief DEN functionality marking mode.[get] * * @param ctx read / write interface definitions * @param val Get the values of den_mode in reg CTRL6_C * */ int32_t lsm6dso_den_mode_get(stmdev_ctx_t *ctx, lsm6dso_den_mode_t *val) { lsm6dso_ctrl6_c_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL6_C, (uint8_t *)®, 1); switch (reg.den_mode) { case LSM6DSO_DEN_DISABLE: *val = LSM6DSO_DEN_DISABLE; break; case LSM6DSO_LEVEL_FIFO: *val = LSM6DSO_LEVEL_FIFO; break; case LSM6DSO_LEVEL_LETCHED: *val = LSM6DSO_LEVEL_LETCHED; break; case LSM6DSO_LEVEL_TRIGGER: *val = LSM6DSO_LEVEL_TRIGGER; break; case LSM6DSO_EDGE_TRIGGER: *val = LSM6DSO_EDGE_TRIGGER; break; default: *val = LSM6DSO_DEN_DISABLE; break; } return ret; } /** * @brief DEN active level configuration.[set] * * @param ctx read / write interface definitions * @param val change the values of den_lh in reg CTRL9_XL * */ int32_t lsm6dso_den_polarity_set(stmdev_ctx_t *ctx, lsm6dso_den_lh_t val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); if (ret == 0) { reg.den_lh = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); } return ret; } /** * @brief DEN active level configuration.[get] * * @param ctx read / write interface definitions * @param val Get the values of den_lh in reg CTRL9_XL * */ int32_t lsm6dso_den_polarity_get(stmdev_ctx_t *ctx, lsm6dso_den_lh_t *val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); switch (reg.den_lh) { case LSM6DSO_DEN_ACT_LOW: *val = LSM6DSO_DEN_ACT_LOW; break; case LSM6DSO_DEN_ACT_HIGH: *val = LSM6DSO_DEN_ACT_HIGH; break; default: *val = LSM6DSO_DEN_ACT_LOW; break; } return ret; } /** * @brief DEN enable.[set] * * @param ctx read / write interface definitions * @param val change the values of den_xl_g in reg CTRL9_XL * */ int32_t lsm6dso_den_enable_set(stmdev_ctx_t *ctx, lsm6dso_den_xl_g_t val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); if (ret == 0) { reg.den_xl_g = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); } return ret; } /** * @brief DEN enable.[get] * * @param ctx read / write interface definitions * @param val Get the values of den_xl_g in reg CTRL9_XL * */ int32_t lsm6dso_den_enable_get(stmdev_ctx_t *ctx, lsm6dso_den_xl_g_t *val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); switch (reg.den_xl_g) { case LSM6DSO_STAMP_IN_GY_DATA: *val = LSM6DSO_STAMP_IN_GY_DATA; break; case LSM6DSO_STAMP_IN_XL_DATA: *val = LSM6DSO_STAMP_IN_XL_DATA; break; case LSM6DSO_STAMP_IN_GY_XL_DATA: *val = LSM6DSO_STAMP_IN_GY_XL_DATA; break; default: *val = LSM6DSO_STAMP_IN_GY_DATA; break; } return ret; } /** * @brief DEN value stored in LSB of X-axis.[set] * * @param ctx read / write interface definitions * @param val change the values of den_z in reg CTRL9_XL * */ int32_t lsm6dso_den_mark_axis_x_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); if (ret == 0) { reg.den_z = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); } return ret; } /** * @brief DEN value stored in LSB of X-axis.[get] * * @param ctx read / write interface definitions * @param val change the values of den_z in reg CTRL9_XL * */ int32_t lsm6dso_den_mark_axis_x_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); *val = reg.den_z; return ret; } /** * @brief DEN value stored in LSB of Y-axis.[set] * * @param ctx read / write interface definitions * @param val change the values of den_y in reg CTRL9_XL * */ int32_t lsm6dso_den_mark_axis_y_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); if (ret == 0) { reg.den_y = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); } return ret; } /** * @brief DEN value stored in LSB of Y-axis.[get] * * @param ctx read / write interface definitions * @param val change the values of den_y in reg CTRL9_XL * */ int32_t lsm6dso_den_mark_axis_y_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); *val = reg.den_y; return ret; } /** * @brief DEN value stored in LSB of Z-axis.[set] * * @param ctx read / write interface definitions * @param val change the values of den_x in reg CTRL9_XL * */ int32_t lsm6dso_den_mark_axis_z_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); if (ret == 0) { reg.den_x = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); } return ret; } /** * @brief DEN value stored in LSB of Z-axis.[get] * * @param ctx read / write interface definitions * @param val change the values of den_x in reg CTRL9_XL * */ int32_t lsm6dso_den_mark_axis_z_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_ctrl9_xl_t reg; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)®, 1); *val = reg.den_x; return ret; } /** * @} * */ /** * @defgroup LSM6DSO_Pedometer * @brief This section groups all the functions that manage pedometer. * @{ * */ /** * @brief Enable pedometer algorithm.[set] * * @param ctx read / write interface definitions * @param val turn on and configure pedometer * */ int32_t lsm6dso_pedo_sens_set(stmdev_ctx_t *ctx, lsm6dso_pedo_md_t val) { lsm6dso_pedo_cmd_reg_t pedo_cmd_reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG, (uint8_t *)&pedo_cmd_reg); if (ret == 0) { pedo_cmd_reg.fp_rejection_en = ((uint8_t)val & 0x10U) >> 4; pedo_cmd_reg.ad_det_en = ((uint8_t)val & 0x20U) >> 5; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_CMD_REG, (uint8_t *)&pedo_cmd_reg); } return ret; } /** * @brief Enable pedometer algorithm.[get] * * @param ctx read / write interface definitions * @param val turn on and configure pedometer * */ int32_t lsm6dso_pedo_sens_get(stmdev_ctx_t *ctx, lsm6dso_pedo_md_t *val) { lsm6dso_pedo_cmd_reg_t pedo_cmd_reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG, (uint8_t *)&pedo_cmd_reg); switch ( (pedo_cmd_reg.ad_det_en << 5) | (pedo_cmd_reg.fp_rejection_en << 4) ) { case LSM6DSO_PEDO_BASE_MODE: *val = LSM6DSO_PEDO_BASE_MODE; break; case LSM6DSO_FALSE_STEP_REJ: *val = LSM6DSO_FALSE_STEP_REJ; break; case LSM6DSO_FALSE_STEP_REJ_ADV_MODE: *val = LSM6DSO_FALSE_STEP_REJ_ADV_MODE; break; default: *val = LSM6DSO_PEDO_BASE_MODE; break; } return ret; } /** * @brief Interrupt status bit for step detection.[get] * * @param ctx read / write interface definitions * @param val change the values of is_step_det in reg EMB_FUNC_STATUS * */ int32_t lsm6dso_pedo_step_detect_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_emb_func_status_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.is_step_det; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Pedometer debounce configuration register (r/w).[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_pedo_debounce_steps_set(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_DEB_STEPS_CONF, buff); return ret; } /** * @brief Pedometer debounce configuration register (r/w).[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_pedo_debounce_steps_get(stmdev_ctx_t *ctx, uint8_t *buff) { int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_DEB_STEPS_CONF, buff); return ret; } /** * @brief Time period register for step detection on delta time (r/w).[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_pedo_steps_period_set(stmdev_ctx_t *ctx, uint16_t val) { uint8_t buff[2]; int32_t ret; buff[1] = (uint8_t) (val / 256U); buff[0] = (uint8_t) (val - (buff[1] * 256U)); ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_H, &buff[1]); } return ret; } /** * @brief Time period register for step detection on delta time (r/w).[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_pedo_steps_period_get(stmdev_ctx_t *ctx, uint16_t *val) { uint8_t buff[2]; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_SC_DELTAT_H, &buff[1]); *val = buff[1]; *val = (*val * 256U) + buff[0]; } return ret; } /** * @brief Set when user wants to generate interrupt on count overflow * event/every step.[set] * * @param ctx read / write interface definitions * @param val change the values of carry_count_en in reg PEDO_CMD_REG * */ int32_t lsm6dso_pedo_int_mode_set(stmdev_ctx_t *ctx, lsm6dso_carry_count_en_t val) { lsm6dso_pedo_cmd_reg_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG, (uint8_t *)®); if (ret == 0) { reg.carry_count_en = (uint8_t)val; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_PEDO_CMD_REG, (uint8_t *)®); } return ret; } /** * @brief Set when user wants to generate interrupt on count overflow * event/every step.[get] * * @param ctx read / write interface definitions * @param val Get the values of carry_count_en in reg PEDO_CMD_REG * */ int32_t lsm6dso_pedo_int_mode_get(stmdev_ctx_t *ctx, lsm6dso_carry_count_en_t *val) { lsm6dso_pedo_cmd_reg_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_PEDO_CMD_REG, (uint8_t *)®); switch (reg.carry_count_en) { case LSM6DSO_EVERY_STEP: *val = LSM6DSO_EVERY_STEP; break; case LSM6DSO_COUNT_OVERFLOW: *val = LSM6DSO_COUNT_OVERFLOW; break; default: *val = LSM6DSO_EVERY_STEP; break; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_significant_motion * @brief This section groups all the functions that manage the * significant motion detection. * @{ * */ /** * @brief Interrupt status bit for significant motion detection.[get] * * @param ctx read / write interface definitions * @param val change the values of is_sigmot in reg EMB_FUNC_STATUS * */ int32_t lsm6dso_motion_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_emb_func_status_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.is_sigmot; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_tilt_detection * @brief This section groups all the functions that manage the tilt * event detection. * @{ * */ /** * @brief Interrupt status bit for tilt detection.[get] * * @param ctx read / write interface definitions * @param val change the values of is_tilt in reg EMB_FUNC_STATUS * */ int32_t lsm6dso_tilt_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_emb_func_status_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.is_tilt; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_ magnetometer_sensor * @brief This section groups all the functions that manage additional * magnetometer sensor. * @{ * */ /** * @brief External magnetometer sensitivity value register.[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_mag_sensitivity_set(stmdev_ctx_t *ctx, uint16_t val) { uint8_t buff[2]; int32_t ret; buff[1] = (uint8_t) (val / 256U); buff[0] = (uint8_t) (val - (buff[1] * 256U)); ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SENSITIVITY_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SENSITIVITY_H, &buff[1]); } return ret; } /** * @brief External magnetometer sensitivity value register.[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_mag_sensitivity_get(stmdev_ctx_t *ctx, uint16_t *val) { uint8_t buff[2]; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SENSITIVITY_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SENSITIVITY_H, &buff[1]); *val = buff[1]; *val = (*val * 256U) + buff[0]; } return ret; } /** * @brief Offset for hard-iron compensation register (r/w).[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_mag_offset_set(stmdev_ctx_t *ctx, int16_t *val) { uint8_t buff[6]; int32_t ret; buff[1] = (uint8_t) ((uint16_t)val[0] / 256U); buff[0] = (uint8_t) ((uint16_t)val[0] - (buff[1] * 256U)); buff[3] = (uint8_t) ((uint16_t)val[1] / 256U); buff[2] = (uint8_t) ((uint16_t)val[1] - (buff[3] * 256U)); buff[5] = (uint8_t) ((uint16_t)val[2] / 256U); buff[4] = (uint8_t) ((uint16_t)val[2] - (buff[5] * 256U)); ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFX_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFX_H, &buff[1]); } if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFY_L, &buff[2]); } if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFY_H, &buff[3]); } if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFZ_L, &buff[4]); } if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_OFFZ_H, &buff[5]); } return ret; } /** * @brief Offset for hard-iron compensation register (r/w).[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_mag_offset_get(stmdev_ctx_t *ctx, int16_t *val) { uint8_t buff[6]; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFX_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFX_H, &buff[1]); } if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFY_L, &buff[2]); } if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFY_H, &buff[3]); } if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFZ_L, &buff[4]); } if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_OFFZ_H, &buff[5]); val[0] = (int16_t)buff[1]; val[0] = (val[0] * 256) + (int16_t)buff[0]; val[1] = (int16_t)buff[3]; val[1] = (val[1] * 256) + (int16_t)buff[2]; val[2] = (int16_t)buff[5]; val[2] = (val[2] * 256) + (int16_t)buff[4]; } return ret; } /** * @brief Soft-iron (3x3 symmetric) matrix correction * register (r/w). The value is expressed as * half-precision floating-point format: * SEEEEEFFFFFFFFFF * S: 1 sign bit; * E: 5 exponent bits; * F: 10 fraction bits).[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_mag_soft_iron_set(stmdev_ctx_t *ctx, int16_t *val) { uint8_t buff[12]; int32_t ret; uint8_t index; buff[1] = (uint8_t) ((uint16_t)val[0] / 256U); buff[0] = (uint8_t) ((uint16_t)val[0] - (buff[1] * 256U)); buff[3] = (uint8_t) ((uint16_t)val[1] / 256U); buff[2] = (uint8_t) ((uint16_t)val[1] - (buff[3] * 256U)); buff[5] = (uint8_t) ((uint16_t)val[2] / 256U); buff[4] = (uint8_t) ((uint16_t)val[2] - (buff[5] * 256U)); buff[7] = (uint8_t) ((uint16_t)val[3] / 256U); buff[6] = (uint8_t) ((uint16_t)val[3] - (buff[7] * 256U)); buff[9] = (uint8_t) ((uint16_t)val[4] / 256U); buff[8] = (uint8_t) ((uint16_t)val[4] - (buff[9] * 256U)); buff[11] = (uint8_t) ((uint16_t)val[5] / 256U); buff[10] = (uint8_t) ((uint16_t)val[5] - (buff[11] * 256U)); index = 0x00U; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XX_L, &buff[index]); if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XX_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XY_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XY_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XZ_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_XZ_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YY_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YY_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YZ_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_YZ_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_ZZ_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_SI_ZZ_H, &buff[index]); } return ret; } /** * @brief Soft-iron (3x3 symmetric) matrix * correction register (r/w). * The value is expressed as half-precision * floating-point format: * SEEEEEFFFFFFFFFF * S: 1 sign bit; * E: 5 exponent bits; * F: 10 fraction bits.[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_mag_soft_iron_get(stmdev_ctx_t *ctx, int16_t *val) { uint8_t buff[12]; int32_t ret; uint8_t index; index = 0x00U; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XX_L, &buff[index]); if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XX_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XY_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XY_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XZ_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_XZ_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YY_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YY_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YZ_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_YZ_H, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_ZZ_L, &buff[index]); } if (ret == 0) { index++; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_SI_ZZ_H, &buff[index]); } val[0] = (int16_t)buff[1]; val[0] = (val[0] * 256) + (int16_t)buff[0]; val[1] = (int16_t)buff[3]; val[1] = (val[1] * 256) + (int16_t)buff[2]; val[2] = (int16_t)buff[5]; val[2] = (val[2] * 256) + (int16_t)buff[4]; val[3] = (int16_t)buff[7]; val[3] = (val[3] * 256) + (int16_t)buff[6]; val[4] = (int16_t)buff[9]; val[4] = (val[4] * 256) + (int16_t)buff[8]; val[5] = (int16_t)buff[11]; val[5] = (val[5] * 256) + (int16_t)buff[10]; return ret; } /** * @brief Magnetometer Z-axis coordinates * rotation (to be aligned to * accelerometer/gyroscope axes * orientation).[set] * * @param ctx read / write interface definitions * @param val change the values of mag_z_axis in reg MAG_CFG_A * */ int32_t lsm6dso_mag_z_orient_set(stmdev_ctx_t *ctx, lsm6dso_mag_z_axis_t val) { lsm6dso_mag_cfg_a_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A, (uint8_t *)®); if (ret == 0) { reg.mag_z_axis = (uint8_t) val; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_CFG_A, (uint8_t *)®); } return ret; } /** * @brief Magnetometer Z-axis coordinates * rotation (to be aligned to * accelerometer/gyroscope axes * orientation).[get] * * @param ctx read / write interface definitions * @param val Get the values of mag_z_axis in reg MAG_CFG_A * */ int32_t lsm6dso_mag_z_orient_get(stmdev_ctx_t *ctx, lsm6dso_mag_z_axis_t *val) { lsm6dso_mag_cfg_a_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A, (uint8_t *)®); switch (reg.mag_z_axis) { case LSM6DSO_Z_EQ_Y: *val = LSM6DSO_Z_EQ_Y; break; case LSM6DSO_Z_EQ_MIN_Y: *val = LSM6DSO_Z_EQ_MIN_Y; break; case LSM6DSO_Z_EQ_X: *val = LSM6DSO_Z_EQ_X; break; case LSM6DSO_Z_EQ_MIN_X: *val = LSM6DSO_Z_EQ_MIN_X; break; case LSM6DSO_Z_EQ_MIN_Z: *val = LSM6DSO_Z_EQ_MIN_Z; break; case LSM6DSO_Z_EQ_Z: *val = LSM6DSO_Z_EQ_Z; break; default: *val = LSM6DSO_Z_EQ_Y; break; } return ret; } /** * @brief Magnetometer Y-axis coordinates * rotation (to be aligned to * accelerometer/gyroscope axes * orientation).[set] * * @param ctx read / write interface definitions * @param val change the values of mag_y_axis in reg MAG_CFG_A * */ int32_t lsm6dso_mag_y_orient_set(stmdev_ctx_t *ctx, lsm6dso_mag_y_axis_t val) { lsm6dso_mag_cfg_a_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A, (uint8_t *)®); if (ret == 0) { reg.mag_y_axis = (uint8_t)val; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_CFG_A, (uint8_t *) ®); } return ret; } /** * @brief Magnetometer Y-axis coordinates * rotation (to be aligned to * accelerometer/gyroscope axes * orientation).[get] * * @param ctx read / write interface definitions * @param val Get the values of mag_y_axis in reg MAG_CFG_A * */ int32_t lsm6dso_mag_y_orient_get(stmdev_ctx_t *ctx, lsm6dso_mag_y_axis_t *val) { lsm6dso_mag_cfg_a_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_A, (uint8_t *)®); switch (reg.mag_y_axis) { case LSM6DSO_Y_EQ_Y: *val = LSM6DSO_Y_EQ_Y; break; case LSM6DSO_Y_EQ_MIN_Y: *val = LSM6DSO_Y_EQ_MIN_Y; break; case LSM6DSO_Y_EQ_X: *val = LSM6DSO_Y_EQ_X; break; case LSM6DSO_Y_EQ_MIN_X: *val = LSM6DSO_Y_EQ_MIN_X; break; case LSM6DSO_Y_EQ_MIN_Z: *val = LSM6DSO_Y_EQ_MIN_Z; break; case LSM6DSO_Y_EQ_Z: *val = LSM6DSO_Y_EQ_Z; break; default: *val = LSM6DSO_Y_EQ_Y; break; } return ret; } /** * @brief Magnetometer X-axis coordinates * rotation (to be aligned to * accelerometer/gyroscope axes * orientation).[set] * * @param ctx read / write interface definitions * @param val change the values of mag_x_axis in reg MAG_CFG_B * */ int32_t lsm6dso_mag_x_orient_set(stmdev_ctx_t *ctx, lsm6dso_mag_x_axis_t val) { lsm6dso_mag_cfg_b_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_B, (uint8_t *)®); if (ret == 0) { reg.mag_x_axis = (uint8_t)val; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_MAG_CFG_B, (uint8_t *)®); } return ret; } /** * @brief Magnetometer X-axis coordinates * rotation (to be aligned to * accelerometer/gyroscope axes * orientation).[get] * * @param ctx read / write interface definitions * @param val Get the values of mag_x_axis in reg MAG_CFG_B * */ int32_t lsm6dso_mag_x_orient_get(stmdev_ctx_t *ctx, lsm6dso_mag_x_axis_t *val) { lsm6dso_mag_cfg_b_t reg; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_MAG_CFG_B, (uint8_t *)®); switch (reg.mag_x_axis) { case LSM6DSO_X_EQ_Y: *val = LSM6DSO_X_EQ_Y; break; case LSM6DSO_X_EQ_MIN_Y: *val = LSM6DSO_X_EQ_MIN_Y; break; case LSM6DSO_X_EQ_X: *val = LSM6DSO_X_EQ_X; break; case LSM6DSO_X_EQ_MIN_X: *val = LSM6DSO_X_EQ_MIN_X; break; case LSM6DSO_X_EQ_MIN_Z: *val = LSM6DSO_X_EQ_MIN_Z; break; case LSM6DSO_X_EQ_Z: *val = LSM6DSO_X_EQ_Z; break; default: *val = LSM6DSO_X_EQ_Y; break; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_finite_state_machine * @brief This section groups all the functions that manage the * state_machine. * @{ * */ /** * @brief Interrupt status bit for FSM long counter * timeout interrupt event.[get] * * @param ctx read / write interface definitions * @param val change the values of is_fsm_lc in reg EMB_FUNC_STATUS * */ int32_t lsm6dso_long_cnt_flag_data_ready_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_emb_func_status_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.is_fsm_lc; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Final State Machine enable.[set] * * @param ctx read / write interface definitions * @param val union of registers from FSM_ENABLE_A to FSM_ENABLE_B * */ int32_t lsm6dso_fsm_enable_set(stmdev_ctx_t *ctx, lsm6dso_emb_fsm_enable_t *val) { int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_ENABLE_A, (uint8_t *)&val->fsm_enable_a, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_ENABLE_B, (uint8_t *)&val->fsm_enable_b, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Final State Machine enable.[get] * * @param ctx read / write interface definitions * @param val union of registers from FSM_ENABLE_A to FSM_ENABLE_B * */ int32_t lsm6dso_fsm_enable_get(stmdev_ctx_t *ctx, lsm6dso_emb_fsm_enable_t *val) { int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_ENABLE_A, (uint8_t *) val, 2); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief FSM long counter status register. Long counter value is an * unsigned integer value (16-bit format).[set] * * @param ctx read / write interface definitions * @param buff buffer that contains data to write * */ int32_t lsm6dso_long_cnt_set(stmdev_ctx_t *ctx, uint16_t val) { uint8_t buff[2]; int32_t ret; buff[1] = (uint8_t) (val / 256U); buff[0] = (uint8_t) (val - (buff[1] * 256U)); ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_L, buff, 2); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief FSM long counter status register. Long counter value is an * unsigned integer value (16-bit format).[get] * * @param ctx read / write interface definitions * @param buff buffer that stores data read * */ int32_t lsm6dso_long_cnt_get(stmdev_ctx_t *ctx, uint16_t *val) { uint8_t buff[2]; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_L, buff, 2); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); *val = buff[1]; *val = (*val * 256U) + buff[0]; } return ret; } /** * @brief Clear FSM long counter value.[set] * * @param ctx read / write interface definitions * @param val change the values of fsm_lc_clr in * reg FSM_LONG_COUNTER_CLEAR * */ int32_t lsm6dso_long_clr_set(stmdev_ctx_t *ctx, lsm6dso_fsm_lc_clr_t val) { lsm6dso_fsm_long_counter_clear_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_CLEAR, (uint8_t *)®, 1); } if (ret == 0) { reg. fsm_lc_clr = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_CLEAR, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Clear FSM long counter value.[get] * * @param ctx read / write interface definitions * @param val Get the values of fsm_lc_clr in * reg FSM_LONG_COUNTER_CLEAR * */ int32_t lsm6dso_long_clr_get(stmdev_ctx_t *ctx, lsm6dso_fsm_lc_clr_t *val) { lsm6dso_fsm_long_counter_clear_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_LONG_COUNTER_CLEAR, (uint8_t *)®, 1); } if (ret == 0) { switch (reg.fsm_lc_clr) { case LSM6DSO_LC_NORMAL: *val = LSM6DSO_LC_NORMAL; break; case LSM6DSO_LC_CLEAR: *val = LSM6DSO_LC_CLEAR; break; case LSM6DSO_LC_CLEAR_DONE: *val = LSM6DSO_LC_CLEAR_DONE; break; default: *val = LSM6DSO_LC_NORMAL; break; } } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief FSM output registers[get] * * @param ctx read / write interface definitions * @param val struct of registers from FSM_OUTS1 to FSM_OUTS16 * */ int32_t lsm6dso_fsm_out_get(stmdev_ctx_t *ctx, lsm6dso_fsm_out_t *val) { int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_OUTS1, (uint8_t *)val, 16); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Finite State Machine ODR configuration.[set] * * @param ctx read / write interface definitions * @param val change the values of fsm_odr in reg EMB_FUNC_ODR_CFG_B * */ int32_t lsm6dso_fsm_data_rate_set(stmdev_ctx_t *ctx, lsm6dso_fsm_odr_t val) { lsm6dso_emb_func_odr_cfg_b_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B, (uint8_t *)®, 1); } if (ret == 0) { reg.not_used_01 = 3; /* set default values */ reg.not_used_02 = 2; /* set default values */ reg.fsm_odr = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Finite State Machine ODR configuration.[get] * * @param ctx read / write interface definitions * @param val Get the values of fsm_odr in reg EMB_FUNC_ODR_CFG_B * */ int32_t lsm6dso_fsm_data_rate_get(stmdev_ctx_t *ctx, lsm6dso_fsm_odr_t *val) { lsm6dso_emb_func_odr_cfg_b_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B, (uint8_t *)®, 1); } if (ret == 0) { switch (reg.fsm_odr) { case LSM6DSO_ODR_FSM_12Hz5: *val = LSM6DSO_ODR_FSM_12Hz5; break; case LSM6DSO_ODR_FSM_26Hz: *val = LSM6DSO_ODR_FSM_26Hz; break; case LSM6DSO_ODR_FSM_52Hz: *val = LSM6DSO_ODR_FSM_52Hz; break; case LSM6DSO_ODR_FSM_104Hz: *val = LSM6DSO_ODR_FSM_104Hz; break; default: *val = LSM6DSO_ODR_FSM_12Hz5; break; } ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief FSM initialization request.[set] * * @param ctx read / write interface definitions * @param val change the values of fsm_init in reg FSM_INIT * */ int32_t lsm6dso_fsm_init_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_emb_func_init_b_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®, 1); } if (ret == 0) { reg.fsm_init = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief FSM initialization request.[get] * * @param ctx read / write interface definitions * @param val change the values of fsm_init in reg FSM_INIT * */ int32_t lsm6dso_fsm_init_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_emb_func_init_b_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.fsm_init; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief FSM long counter timeout register (r/w). The long counter * timeout value is an unsigned integer value (16-bit format). * When the long counter value reached this value, * the FSM generates an interrupt.[set] * * @param ctx read / write interface definitions * @param val the value of long counter * */ int32_t lsm6dso_long_cnt_int_value_set(stmdev_ctx_t *ctx, uint16_t val) { uint8_t buff[2]; int32_t ret; buff[1] = (uint8_t) (val / 256U); buff[0] = (uint8_t) (val - (buff[1] * 256U)); ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_H, &buff[1]); } return ret; } /** * @brief FSM long counter timeout register (r/w). The long counter * timeout value is an unsigned integer value (16-bit format). * When the long counter value reached this value, * the FSM generates an interrupt.[get] * * @param ctx read / write interface definitions * @param val buffer that stores the value of long counter * */ int32_t lsm6dso_long_cnt_int_value_get(stmdev_ctx_t *ctx, uint16_t *val) { uint8_t buff[2]; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_LC_TIMEOUT_H, &buff[1]); *val = buff[1]; *val = (*val * 256U) + buff[0]; } return ret; } /** * @brief FSM number of programs register.[set] * * @param ctx read / write interface definitions * @param val value to write * */ int32_t lsm6dso_fsm_number_of_programs_set(stmdev_ctx_t *ctx, uint8_t val) { int32_t ret; ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_PROGRAMS, &val); return ret; } /** * @brief FSM number of programs register.[get] * * @param ctx read / write interface definitions * @param val buffer that stores data read. * */ int32_t lsm6dso_fsm_number_of_programs_get(stmdev_ctx_t *ctx, uint8_t *val) { int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_PROGRAMS, val); return ret; } /** * @brief FSM start address register (r/w). * First available address is 0x033C.[set] * * @param ctx read / write interface definitions * @param val the value of start address * */ int32_t lsm6dso_fsm_start_address_set(stmdev_ctx_t *ctx, uint16_t val) { uint8_t buff[2]; int32_t ret; buff[1] = (uint8_t) (val / 256U); buff[0] = (uint8_t) (val - (buff[1] * 256U)); ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_START_ADD_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_write_byte(ctx, LSM6DSO_FSM_START_ADD_H, &buff[1]); } return ret; } /** * @brief FSM start address register (r/w). * First available address is 0x033C.[get] * * @param ctx read / write interface definitions * @param val buffer the value of start address. * */ int32_t lsm6dso_fsm_start_address_get(stmdev_ctx_t *ctx, uint16_t *val) { uint8_t buff[2]; int32_t ret; ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_START_ADD_L, &buff[0]); if (ret == 0) { ret = lsm6dso_ln_pg_read_byte(ctx, LSM6DSO_FSM_START_ADD_H, &buff[1]); *val = buff[1]; *val = (*val * 256U) + buff[0]; } return ret; } /** * @} * */ /** * @defgroup LSM6DSO_Sensor_hub * @brief This section groups all the functions that manage the * sensor hub. * @{ * */ /** * @brief Sensor hub output registers.[get] * * @param ctx read / write interface definitions * @param val values read from registers SENSOR_HUB_1 to SENSOR_HUB_18 * @param len number of consecutive register to read (max 18) * */ int32_t lsm6dso_sh_read_data_raw_get(stmdev_ctx_t *ctx, uint8_t *val, uint8_t len) { int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SENSOR_HUB_1, (uint8_t *) val, len); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Number of external sensors to be read by the sensor hub.[set] * * @param ctx read / write interface definitions * @param val change the values of aux_sens_on in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_slave_connected_set(stmdev_ctx_t *ctx, lsm6dso_aux_sens_on_t val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.aux_sens_on = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Number of external sensors to be read by the sensor hub.[get] * * @param ctx read / write interface definitions * @param val Get the values of aux_sens_on in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_slave_connected_get(stmdev_ctx_t *ctx, lsm6dso_aux_sens_on_t *val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { switch (reg.aux_sens_on) { case LSM6DSO_SLV_0: *val = LSM6DSO_SLV_0; break; case LSM6DSO_SLV_0_1: *val = LSM6DSO_SLV_0_1; break; case LSM6DSO_SLV_0_1_2: *val = LSM6DSO_SLV_0_1_2; break; case LSM6DSO_SLV_0_1_2_3: *val = LSM6DSO_SLV_0_1_2_3; break; default: *val = LSM6DSO_SLV_0; break; } ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Sensor hub I2C master enable.[set] * * @param ctx read / write interface definitions * @param val change the values of master_on in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_master_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.master_on = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Sensor hub I2C master enable.[get] * * @param ctx read / write interface definitions * @param val change the values of master_on in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_master_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.master_on; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Master I2C pull-up enable.[set] * * @param ctx read / write interface definitions * @param val change the values of shub_pu_en in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_pin_mode_set(stmdev_ctx_t *ctx, lsm6dso_shub_pu_en_t val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.shub_pu_en = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Master I2C pull-up enable.[get] * * @param ctx read / write interface definitions * @param val Get the values of shub_pu_en in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_pin_mode_get(stmdev_ctx_t *ctx, lsm6dso_shub_pu_en_t *val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { switch (reg.shub_pu_en) { case LSM6DSO_EXT_PULL_UP: *val = LSM6DSO_EXT_PULL_UP; break; case LSM6DSO_INTERNAL_PULL_UP: *val = LSM6DSO_INTERNAL_PULL_UP; break; default: *val = LSM6DSO_EXT_PULL_UP; break; } ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief I2C interface pass-through.[set] * * @param ctx read / write interface definitions * @param val change the values of pass_through_mode in * reg MASTER_CONFIG * */ int32_t lsm6dso_sh_pass_through_set(stmdev_ctx_t *ctx, uint8_t val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.pass_through_mode = val; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief I2C interface pass-through.[get] * * @param ctx read / write interface definitions * @param val change the values of pass_through_mode in * reg MASTER_CONFIG * */ int32_t lsm6dso_sh_pass_through_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.pass_through_mode; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Sensor hub trigger signal selection.[set] * * @param ctx read / write interface definitions * @param val change the values of start_config in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_syncro_mode_set(stmdev_ctx_t *ctx, lsm6dso_start_config_t val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.start_config = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Sensor hub trigger signal selection.[get] * * @param ctx read / write interface definitions * @param val Get the values of start_config in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_syncro_mode_get(stmdev_ctx_t *ctx, lsm6dso_start_config_t *val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { switch (reg.start_config) { case LSM6DSO_EXT_ON_INT2_PIN: *val = LSM6DSO_EXT_ON_INT2_PIN; break; case LSM6DSO_XL_GY_DRDY: *val = LSM6DSO_XL_GY_DRDY; break; default: *val = LSM6DSO_EXT_ON_INT2_PIN; break; } ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Slave 0 write operation is performed only at the first * sensor hub cycle.[set] * * @param ctx read / write interface definitions * @param val change the values of write_once in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_write_mode_set(stmdev_ctx_t *ctx, lsm6dso_write_once_t val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.write_once = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Slave 0 write operation is performed only at the first sensor * hub cycle.[get] * * @param ctx read / write interface definitions * @param val Get the values of write_once in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_write_mode_get(stmdev_ctx_t *ctx, lsm6dso_write_once_t *val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { switch (reg.write_once) { case LSM6DSO_EACH_SH_CYCLE: *val = LSM6DSO_EACH_SH_CYCLE; break; case LSM6DSO_ONLY_FIRST_CYCLE: *val = LSM6DSO_ONLY_FIRST_CYCLE; break; default: *val = LSM6DSO_EACH_SH_CYCLE; break; } ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Reset Master logic and output registers.[set] * * @param ctx read / write interface definitions * */ int32_t lsm6dso_sh_reset_set(stmdev_ctx_t *ctx) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.rst_master_regs = PROPERTY_ENABLE; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.rst_master_regs = PROPERTY_DISABLE; ret = lsm6dso_write_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Reset Master logic and output registers.[get] * * @param ctx read / write interface definitions * @param val change the values of rst_master_regs in reg MASTER_CONFIG * */ int32_t lsm6dso_sh_reset_get(stmdev_ctx_t *ctx, uint8_t *val) { lsm6dso_master_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MASTER_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { *val = reg.rst_master_regs; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Rate at which the master communicates.[set] * * @param ctx read / write interface definitions * @param val change the values of shub_odr in reg slv1_CONFIG * */ int32_t lsm6dso_sh_data_rate_set(stmdev_ctx_t *ctx, lsm6dso_shub_odr_t val) { lsm6dso_slv0_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { reg.shub_odr = (uint8_t)val; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Rate at which the master communicates.[get] * * @param ctx read / write interface definitions * @param val Get the values of shub_odr in reg slv1_CONFIG * */ int32_t lsm6dso_sh_data_rate_get(stmdev_ctx_t *ctx, lsm6dso_shub_odr_t *val) { lsm6dso_slv0_config_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)®, 1); } if (ret == 0) { switch (reg.shub_odr) { case LSM6DSO_SH_ODR_104Hz: *val = LSM6DSO_SH_ODR_104Hz; break; case LSM6DSO_SH_ODR_52Hz: *val = LSM6DSO_SH_ODR_52Hz; break; case LSM6DSO_SH_ODR_26Hz: *val = LSM6DSO_SH_ODR_26Hz; break; case LSM6DSO_SH_ODR_13Hz: *val = LSM6DSO_SH_ODR_13Hz; break; default: *val = LSM6DSO_SH_ODR_104Hz; break; } ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Configure slave 0 for perform a write.[set] * * @param ctx read / write interface definitions * @param val a structure that contain * - uint8_t slv1_add; 8 bit i2c device address * - uint8_t slv1_subadd; 8 bit register device address * - uint8_t slv1_data; 8 bit data to write * */ int32_t lsm6dso_sh_cfg_write(stmdev_ctx_t *ctx, lsm6dso_sh_cfg_write_t *val) { lsm6dso_slv0_add_t reg; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { reg.slave0 = val->slv0_add; reg.rw_0 = 0; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_ADD, (uint8_t *)®, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_SUBADD, &(val->slv0_subadd), 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_DATAWRITE_SLV0, &(val->slv0_data), 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Configure slave 0 for perform a read.[set] * * @param ctx read / write interface definitions * @param val Structure that contain * - uint8_t slv1_add; 8 bit i2c device address * - uint8_t slv1_subadd; 8 bit register device address * - uint8_t slv1_len; num of bit to read * */ int32_t lsm6dso_sh_slv0_cfg_read(stmdev_ctx_t *ctx, lsm6dso_sh_cfg_read_t *val) { lsm6dso_slv0_add_t slv0_add; lsm6dso_slv0_config_t slv0_config; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { slv0_add.slave0 = val->slv_add; slv0_add.rw_0 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_ADD, (uint8_t *)&slv0_add, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_SUBADD, &(val->slv_subadd), 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)&slv0_config, 1); } if (ret == 0) { slv0_config.slave0_numop = val->slv_len; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV0_CONFIG, (uint8_t *)&slv0_config, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Configure slave 0 for perform a write/read.[set] * * @param ctx read / write interface definitions * @param val Structure that contain * - uint8_t slv1_add; 8 bit i2c device address * - uint8_t slv1_subadd; 8 bit register device address * - uint8_t slv1_len; num of bit to read * */ int32_t lsm6dso_sh_slv1_cfg_read(stmdev_ctx_t *ctx, lsm6dso_sh_cfg_read_t *val) { lsm6dso_slv1_add_t slv1_add; lsm6dso_slv1_config_t slv1_config; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { slv1_add.slave1_add = val->slv_add; slv1_add.r_1 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_ADD, (uint8_t *)&slv1_add, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_SUBADD, &(val->slv_subadd), 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)&slv1_config, 1); } if (ret == 0) { slv1_config.slave1_numop = val->slv_len; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV1_CONFIG, (uint8_t *)&slv1_config, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Configure slave 0 for perform a write/read.[set] * * @param ctx read / write interface definitions * @param val Structure that contain * - uint8_t slv2_add; 8 bit i2c device address * - uint8_t slv2_subadd; 8 bit register device address * - uint8_t slv2_len; num of bit to read * */ int32_t lsm6dso_sh_slv2_cfg_read(stmdev_ctx_t *ctx, lsm6dso_sh_cfg_read_t *val) { lsm6dso_slv2_add_t slv2_add; lsm6dso_slv2_config_t slv2_config; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { slv2_add.slave2_add = val->slv_add; slv2_add.r_2 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_ADD, (uint8_t *)&slv2_add, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_SUBADD, &(val->slv_subadd), 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)&slv2_config, 1); } if (ret == 0) { slv2_config.slave2_numop = val->slv_len; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV2_CONFIG, (uint8_t *)&slv2_config, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Configure slave 0 for perform a write/read.[set] * * @param ctx read / write interface definitions * @param val Structure that contain * - uint8_t slv3_add; 8 bit i2c device address * - uint8_t slv3_subadd; 8 bit register device address * - uint8_t slv3_len; num of bit to read * */ int32_t lsm6dso_sh_slv3_cfg_read(stmdev_ctx_t *ctx, lsm6dso_sh_cfg_read_t *val) { lsm6dso_slv3_add_t slv3_add; lsm6dso_slv3_config_t slv3_config; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { slv3_add.slave3_add = val->slv_add; slv3_add.r_3 = 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_ADD, (uint8_t *)&slv3_add, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_SUBADD, &(val->slv_subadd), 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)&slv3_config, 1); } if (ret == 0) { slv3_config.slave3_numop = val->slv_len; ret = lsm6dso_write_reg(ctx, LSM6DSO_SLV3_CONFIG, (uint8_t *)&slv3_config, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Sensor hub source register.[get] * * @param ctx read / write interface definitions * @param val union of registers from STATUS_MASTER to * */ int32_t lsm6dso_sh_status_get(stmdev_ctx_t *ctx, lsm6dso_status_master_t *val) { int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_SENSOR_HUB_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_MASTER, (uint8_t *) val, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @} * */ /** * @defgroup Basic configuration * @brief This section groups all the functions concerning * device basic configuration. * @{ * */ /** * @brief Device "Who am I".[get] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val ID values read from the two interfaces. ID values * will be the same.(ptr) * */ int32_t lsm6dso_id_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_id_t *val) { int32_t ret = 0; if (ctx != NULL) { ret = lsm6dso_read_reg(ctx, LSM6DSO_WHO_AM_I, (uint8_t *) & (val->ui), 1); } if (aux_ctx != NULL) { if (ret == 0) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_WHO_AM_I, (uint8_t *) & (val->aux), 1); } } return ret; } /** * @brief Re-initialize the device.[set] * * @param ctx communication interface handler.(ptr) * @param val re-initialization mode. Refer to datasheet * and application note for more information * about differencies between boot and sw_reset * procedure. * */ int32_t lsm6dso_init_set(stmdev_ctx_t *ctx, lsm6dso_init_t val) { lsm6dso_emb_func_init_a_t emb_func_init_a; lsm6dso_emb_func_init_b_t emb_func_init_b; lsm6dso_ctrl3_c_t ctrl3_c; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)&emb_func_init_b, 1); } if (ret == 0) { emb_func_init_b.fifo_compr_init = (uint8_t)val & ( (uint8_t)LSM6DSO_FIFO_COMP >> 2 ); emb_func_init_b.fsm_init = (uint8_t)val & ( (uint8_t)LSM6DSO_FSM >> 3 ); ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_B, (uint8_t *)&emb_func_init_b, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INIT_A, (uint8_t *)&emb_func_init_a, 1); } if (ret == 0) { emb_func_init_a.step_det_init = ( (uint8_t)val & (uint8_t)LSM6DSO_PEDO ) >> 5; emb_func_init_a.tilt_init = ( (uint8_t)val & (uint8_t)LSM6DSO_TILT ) >> 6; emb_func_init_a.sig_mot_init = ( (uint8_t)val & (uint8_t)LSM6DSO_SMOTION ) >> 7; ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INIT_A, (uint8_t *)&emb_func_init_a, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } if ( ( (val == LSM6DSO_BOOT) || (val == LSM6DSO_RESET) ) && (ret == 0) ) { ctrl3_c.boot = (uint8_t)val & (uint8_t)LSM6DSO_BOOT; ctrl3_c.sw_reset = ( (uint8_t)val & (uint8_t)LSM6DSO_RESET) >> 1; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } if ( ( val == LSM6DSO_DRV_RDY ) && ( (ctrl3_c.bdu == PROPERTY_DISABLE) || (ctrl3_c.if_inc == PROPERTY_DISABLE) ) && (ret == 0) ) { ctrl3_c.bdu = PROPERTY_ENABLE; ctrl3_c.if_inc = PROPERTY_ENABLE; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } return ret; } /** * @brief Configures the bus operating mode.[set] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val configures the bus operating mode for both the * main and the auxiliary interface. * */ int32_t lsm6dso_bus_mode_set(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_bus_mode_t val) { lsm6dso_ctrl1_ois_t ctrl1_ois; lsm6dso_i3c_bus_avb_t i3c_bus_avb; lsm6dso_ctrl9_xl_t ctrl9_xl; lsm6dso_ctrl3_c_t ctrl3_c; lsm6dso_ctrl4_c_t ctrl4_c; uint8_t bit_val; int32_t ret; ret = 0; if (aux_ctx != NULL) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)&ctrl1_ois, 1); bit_val = ( (uint8_t)val.aux_bus_md & 0x04U ) >> 2; if ( ( ret == 0 ) && ( ctrl1_ois.sim_ois != bit_val ) ) { ctrl1_ois.sim_ois = bit_val; ret = lsm6dso_write_reg(aux_ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)&ctrl1_ois, 1); } } if (ctx != NULL) { if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl, 1); } bit_val = ((uint8_t)val.ui_bus_md & 0x04U) >> 2; if ( ( ret == 0 ) && ( ctrl9_xl.i3c_disable != bit_val ) ) { ctrl9_xl.i3c_disable = bit_val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } bit_val = ((uint8_t)val.ui_bus_md & 0x30U) >> 4; if ( ( ret == 0 ) && ( i3c_bus_avb.i3c_bus_avb_sel != bit_val ) ) { i3c_bus_avb.i3c_bus_avb_sel = bit_val; ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); } bit_val = ( (uint8_t)val.ui_bus_md & 0x02U ) >> 1; if ( ( ret == 0 ) && ( ctrl4_c.i2c_disable != bit_val ) ) { ctrl4_c.i2c_disable = bit_val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } bit_val = (uint8_t)val.ui_bus_md & 0x01U; if ( ( ret == 0 ) && ( ctrl3_c.sim != bit_val ) ) { ctrl3_c.sim = bit_val; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } } return ret; } /** * @brief Get the bus operating mode.[get] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val retrieves the bus operating mode for both the main * and the auxiliary interface.(ptr) * */ int32_t lsm6dso_bus_mode_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_bus_mode_t *val) { lsm6dso_ctrl1_ois_t ctrl1_ois; lsm6dso_i3c_bus_avb_t i3c_bus_avb; lsm6dso_ctrl9_xl_t ctrl9_xl; lsm6dso_ctrl3_c_t ctrl3_c; lsm6dso_ctrl4_c_t ctrl4_c; int32_t ret = 0; if (aux_ctx != NULL) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS, (uint8_t *)&ctrl1_ois, 1); switch ( ctrl1_ois.sim_ois ) { case LSM6DSO_SPI_4W_AUX: val->aux_bus_md = LSM6DSO_SPI_4W_AUX; break; case LSM6DSO_SPI_3W_AUX: val->aux_bus_md = LSM6DSO_SPI_3W_AUX; break; default: val->aux_bus_md = LSM6DSO_SPI_4W_AUX; break; } } if (ctx != NULL) { if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL9_XL, (uint8_t *)&ctrl9_xl, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); switch ( ( i3c_bus_avb.i3c_bus_avb_sel << 4 ) & ( ctrl9_xl.i3c_disable << 2 ) & ( ctrl4_c.i2c_disable << 1) & ctrl3_c.sim ) { case LSM6DSO_SEL_BY_HW: val->ui_bus_md = LSM6DSO_SEL_BY_HW; break; case LSM6DSO_SPI_4W: val->ui_bus_md = LSM6DSO_SPI_4W; break; case LSM6DSO_SPI_3W: val->ui_bus_md = LSM6DSO_SPI_3W; break; case LSM6DSO_I2C: val->ui_bus_md = LSM6DSO_I2C; break; case LSM6DSO_I3C_T_50us: val->ui_bus_md = LSM6DSO_I3C_T_50us; break; case LSM6DSO_I3C_T_2us: val->ui_bus_md = LSM6DSO_I3C_T_2us; break; case LSM6DSO_I3C_T_1ms: val->ui_bus_md = LSM6DSO_I3C_T_1ms; break; case LSM6DSO_I3C_T_25ms: val->ui_bus_md = LSM6DSO_I3C_T_25ms; break; default: val->ui_bus_md = LSM6DSO_SEL_BY_HW; break; } } } return ret; } /** * @brief Get the status of the device.[get] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val the status of the device.(ptr) * */ int32_t lsm6dso_status_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_status_t *val) { lsm6dso_status_spiaux_t status_spiaux; lsm6dso_status_reg_t status_reg; lsm6dso_ctrl3_c_t ctrl3_c; int32_t ret; ret = 0; if (aux_ctx != NULL) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_STATUS_SPIAUX, (uint8_t *)&status_spiaux, 1); val->ois_drdy_xl = status_spiaux.xlda; val->ois_drdy_g = status_spiaux.gda; val->ois_gyro_settling = status_spiaux.gyro_settling; } if (ctx != NULL) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); val->sw_reset = ctrl3_c.sw_reset; val->boot = ctrl3_c.boot; if ( (ret == 0) && ( ctrl3_c.sw_reset == PROPERTY_DISABLE ) && ( ctrl3_c.boot == PROPERTY_DISABLE ) ) { ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_REG, (uint8_t *)&status_reg, 1); val->drdy_xl = status_reg.xlda; val->drdy_g = status_reg.gda; val->drdy_temp = status_reg.tda; } } return ret; } /** * @brief Electrical pin configuration.[set] * * @param ctx communication interface handler.(ptr) * @param val the electrical settings for the configurable * pins. * */ int32_t lsm6dso_pin_conf_set(stmdev_ctx_t *ctx, lsm6dso_pin_conf_t val) { lsm6dso_i3c_bus_avb_t i3c_bus_avb; lsm6dso_pin_ctrl_t pin_ctrl; lsm6dso_ctrl3_c_t ctrl3_c; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)&pin_ctrl, 1); if (ret == 0) { pin_ctrl.ois_pu_dis = ~val.aux_sdo_ocs_pull_up; pin_ctrl.sdo_pu_en = val.sdo_sa0_pull_up; ret = lsm6dso_write_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)&pin_ctrl, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } if (ret == 0) { ctrl3_c.pp_od = ~val.int1_int2_push_pull; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } if (ret == 0) { i3c_bus_avb.pd_dis_int1 = ~val.int1_pull_down; ret = lsm6dso_write_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } return ret; } /** * @brief Electrical pin configuration.[get] * * @param ctx communication interface handler.(ptr) * @param val the electrical settings for the configurable * pins.(ptr) * */ int32_t lsm6dso_pin_conf_get(stmdev_ctx_t *ctx, lsm6dso_pin_conf_t *val) { lsm6dso_i3c_bus_avb_t i3c_bus_avb; lsm6dso_pin_ctrl_t pin_ctrl; lsm6dso_ctrl3_c_t ctrl3_c; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_PIN_CTRL, (uint8_t *)&pin_ctrl, 1); if (ret == 0) { val->aux_sdo_ocs_pull_up = ~pin_ctrl.ois_pu_dis; val->aux_sdo_ocs_pull_up = pin_ctrl.sdo_pu_en; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } if (ret == 0) { val->int1_int2_push_pull = ~ctrl3_c.pp_od; ret = lsm6dso_read_reg(ctx, LSM6DSO_I3C_BUS_AVB, (uint8_t *)&i3c_bus_avb, 1); } if (ret == 0) { val->int1_pull_down = ~i3c_bus_avb.pd_dis_int1; } return ret; } /** * @brief Interrupt pins hardware signal configuration.[set] * * @param ctx communication interface handler.(ptr) * @param val the pins hardware signal settings. * */ int32_t lsm6dso_interrupt_mode_set(stmdev_ctx_t *ctx, lsm6dso_int_mode_t val) { lsm6dso_tap_cfg0_t tap_cfg0; lsm6dso_page_rw_t page_rw; lsm6dso_ctrl3_c_t ctrl3_c; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); if (ret == 0) { ctrl3_c.h_lactive = val.active_low; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0, 1); } if (ret == 0) { tap_cfg0.lir = val.base_latched; tap_cfg0.int_clr_on_read = val.base_latched | val.emb_latched; ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.emb_func_lir = val.emb_latched; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Interrupt pins hardware signal configuration.[get] * * @param ctx communication interface handler.(ptr) * @param val the pins hardware signal settings.(ptr) * */ int32_t lsm6dso_interrupt_mode_get(stmdev_ctx_t *ctx, lsm6dso_int_mode_t *val) { lsm6dso_tap_cfg0_t tap_cfg0; lsm6dso_page_rw_t page_rw; lsm6dso_ctrl3_c_t ctrl3_c; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL3_C, (uint8_t *)&ctrl3_c, 1); if (ret == 0) { ctrl3_c.h_lactive = val->active_low; ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG0, (uint8_t *) &tap_cfg0, 1); } if (ret == 0) { tap_cfg0.lir = val->base_latched; tap_cfg0.int_clr_on_read = val->base_latched | val->emb_latched; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { page_rw.emb_func_lir = val->emb_latched; ret = lsm6dso_write_reg(ctx, LSM6DSO_PAGE_RW, (uint8_t *) &page_rw, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Route interrupt signals on int1 pin.[set] * * @param ctx communication interface handler.(ptr) * @param val the signals to route on int1 pin. * */ int32_t lsm6dso_pin_int1_route_set(stmdev_ctx_t *ctx, lsm6dso_pin_int1_route_t val) { lsm6dso_pin_int2_route_t pin_int2_route; lsm6dso_emb_func_int1_t emb_func_int1; lsm6dso_fsm_int1_a_t fsm_int1_a; lsm6dso_fsm_int1_b_t fsm_int1_b; lsm6dso_int1_ctrl_t int1_ctrl; lsm6dso_int2_ctrl_t int2_ctrl; lsm6dso_tap_cfg2_t tap_cfg2; lsm6dso_md2_cfg_t md2_cfg; lsm6dso_md1_cfg_t md1_cfg; lsm6dso_ctrl4_c_t ctrl4_c; int32_t ret; int1_ctrl.int1_drdy_xl = val.drdy_xl; int1_ctrl.int1_drdy_g = val.drdy_g; int1_ctrl.int1_boot = val.boot; int1_ctrl.int1_fifo_th = val.fifo_th; int1_ctrl.int1_fifo_ovr = val.fifo_ovr; int1_ctrl.int1_fifo_full = val.fifo_full; int1_ctrl.int1_cnt_bdr = val.fifo_bdr; int1_ctrl.den_drdy_flag = val.den_flag; md1_cfg.int1_shub = val.sh_endop; md1_cfg.int1_6d = val.six_d; md1_cfg.int1_double_tap = val.double_tap; md1_cfg.int1_ff = val.free_fall; md1_cfg.int1_wu = val.wake_up; md1_cfg.int1_single_tap = val.single_tap; md1_cfg.int1_sleep_change = val.sleep_change; emb_func_int1.not_used_01 = 0; emb_func_int1.int1_step_detector = val.step_detector; emb_func_int1.int1_tilt = val.tilt; emb_func_int1.int1_sig_mot = val.sig_mot; emb_func_int1.not_used_02 = 0; emb_func_int1.int1_fsm_lc = val.fsm_lc; fsm_int1_a.int1_fsm1 = val.fsm1; fsm_int1_a.int1_fsm2 = val.fsm2; fsm_int1_a.int1_fsm3 = val.fsm3; fsm_int1_a.int1_fsm4 = val.fsm4; fsm_int1_a.int1_fsm5 = val.fsm5; fsm_int1_a.int1_fsm6 = val.fsm6; fsm_int1_a.int1_fsm7 = val.fsm7; fsm_int1_a.int1_fsm8 = val.fsm8; fsm_int1_b.int1_fsm9 = val.fsm9 ; fsm_int1_b.int1_fsm10 = val.fsm10; fsm_int1_b.int1_fsm11 = val.fsm11; fsm_int1_b.int1_fsm12 = val.fsm12; fsm_int1_b.int1_fsm13 = val.fsm13; fsm_int1_b.int1_fsm14 = val.fsm14; fsm_int1_b.int1_fsm15 = val.fsm15; fsm_int1_b.int1_fsm16 = val.fsm16; ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); if (ret == 0) { if ( ( val.drdy_temp | val.timestamp ) != PROPERTY_DISABLE) { ctrl4_c.int2_on_int1 = PROPERTY_ENABLE; } else { ctrl4_c.int2_on_int1 = PROPERTY_DISABLE; } ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INT1, (uint8_t *)&emb_func_int1, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT1_A, (uint8_t *)&fsm_int1_a, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT1_B, (uint8_t *)&fsm_int1_b, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } if (ret == 0) { if ( ( emb_func_int1.int1_fsm_lc | emb_func_int1.int1_sig_mot | emb_func_int1.int1_step_detector | emb_func_int1.int1_tilt | fsm_int1_a.int1_fsm1 | fsm_int1_a.int1_fsm2 | fsm_int1_a.int1_fsm3 | fsm_int1_a.int1_fsm4 | fsm_int1_a.int1_fsm5 | fsm_int1_a.int1_fsm6 | fsm_int1_a.int1_fsm7 | fsm_int1_a.int1_fsm8 | fsm_int1_b.int1_fsm9 | fsm_int1_b.int1_fsm10 | fsm_int1_b.int1_fsm11 | fsm_int1_b.int1_fsm12 | fsm_int1_b.int1_fsm13 | fsm_int1_b.int1_fsm14 | fsm_int1_b.int1_fsm15 | fsm_int1_b.int1_fsm16) != PROPERTY_DISABLE) { md1_cfg.int1_emb_func = PROPERTY_ENABLE; } else { md1_cfg.int1_emb_func = PROPERTY_DISABLE; } ret = lsm6dso_write_reg(ctx, LSM6DSO_INT1_CTRL, (uint8_t *)&int1_ctrl, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_MD1_CFG, (uint8_t *)&md1_cfg, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl, 1); } if (ret == 0) { int2_ctrl.int2_drdy_temp = val.drdy_temp; ret = lsm6dso_write_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1); } if (ret == 0) { md2_cfg.int2_timestamp = val.timestamp; ret = lsm6dso_write_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2, 1); } if (ret == 0) { ret = lsm6dso_pin_int2_route_get(ctx, NULL, &pin_int2_route); } if (ret == 0) { if ( ( pin_int2_route.fifo_bdr | pin_int2_route.drdy_g | pin_int2_route.drdy_temp | pin_int2_route.drdy_xl | pin_int2_route.fifo_full | pin_int2_route.fifo_ovr | pin_int2_route.fifo_th | pin_int2_route.six_d | pin_int2_route.double_tap | pin_int2_route.free_fall | pin_int2_route.wake_up | pin_int2_route.single_tap | pin_int2_route.sleep_change | int1_ctrl.den_drdy_flag | int1_ctrl.int1_boot | int1_ctrl.int1_cnt_bdr | int1_ctrl.int1_drdy_g | int1_ctrl.int1_drdy_xl | int1_ctrl.int1_fifo_full | int1_ctrl.int1_fifo_ovr | int1_ctrl.int1_fifo_th | md1_cfg.int1_shub | md1_cfg.int1_6d | md1_cfg.int1_double_tap | md1_cfg.int1_ff | md1_cfg.int1_wu | md1_cfg.int1_single_tap | md1_cfg.int1_sleep_change) != PROPERTY_DISABLE) { tap_cfg2.interrupts_enable = PROPERTY_ENABLE; } else { tap_cfg2.interrupts_enable = PROPERTY_DISABLE; } ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2, 1); } return ret; } /** * @brief Route interrupt signals on int1 pin.[get] * * @param ctx communication interface handler.(ptr) * @param val the signals that are routed on int1 pin.(ptr) * */ int32_t lsm6dso_pin_int1_route_get(stmdev_ctx_t *ctx, lsm6dso_pin_int1_route_t *val) { lsm6dso_emb_func_int1_t emb_func_int1; lsm6dso_fsm_int1_a_t fsm_int1_a; lsm6dso_fsm_int1_b_t fsm_int1_b; lsm6dso_int1_ctrl_t int1_ctrl; lsm6dso_int2_ctrl_t int2_ctrl; lsm6dso_md2_cfg_t md2_cfg; lsm6dso_md1_cfg_t md1_cfg; lsm6dso_ctrl4_c_t ctrl4_c; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INT1, (uint8_t *)&emb_func_int1, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT1_A, (uint8_t *)&fsm_int1_a, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT1_B, (uint8_t *)&fsm_int1_b, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_INT1_CTRL, (uint8_t *)&int1_ctrl, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MD1_CFG, (uint8_t *)&md1_cfg, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); } if (ctrl4_c.int2_on_int1 == PROPERTY_ENABLE) { if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl, 1); val->drdy_temp = int2_ctrl.int2_drdy_temp; } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1); val->timestamp = md2_cfg.int2_timestamp; } } else { val->drdy_temp = PROPERTY_DISABLE; val->timestamp = PROPERTY_DISABLE; } val->drdy_xl = int1_ctrl.int1_drdy_xl; val->drdy_g = int1_ctrl.int1_drdy_g; val->boot = int1_ctrl.int1_boot; val->fifo_th = int1_ctrl.int1_fifo_th; val->fifo_ovr = int1_ctrl.int1_fifo_ovr; val->fifo_full = int1_ctrl.int1_fifo_full; val->fifo_bdr = int1_ctrl.int1_cnt_bdr; val->den_flag = int1_ctrl.den_drdy_flag; val->sh_endop = md1_cfg.int1_shub; val->six_d = md1_cfg.int1_6d; val->double_tap = md1_cfg.int1_double_tap; val->free_fall = md1_cfg.int1_ff; val->wake_up = md1_cfg.int1_wu; val->single_tap = md1_cfg.int1_single_tap; val->sleep_change = md1_cfg.int1_sleep_change; val->step_detector = emb_func_int1.int1_step_detector; val->tilt = emb_func_int1.int1_tilt; val->sig_mot = emb_func_int1.int1_sig_mot; val->fsm_lc = emb_func_int1.int1_fsm_lc; val->fsm1 = fsm_int1_a.int1_fsm1; val->fsm2 = fsm_int1_a.int1_fsm2; val->fsm3 = fsm_int1_a.int1_fsm3; val->fsm4 = fsm_int1_a.int1_fsm4; val->fsm5 = fsm_int1_a.int1_fsm5; val->fsm6 = fsm_int1_a.int1_fsm6; val->fsm7 = fsm_int1_a.int1_fsm7; val->fsm8 = fsm_int1_a.int1_fsm8; val->fsm9 = fsm_int1_b.int1_fsm9; val->fsm10 = fsm_int1_b.int1_fsm10; val->fsm11 = fsm_int1_b.int1_fsm11; val->fsm12 = fsm_int1_b.int1_fsm12; val->fsm13 = fsm_int1_b.int1_fsm13; val->fsm14 = fsm_int1_b.int1_fsm14; val->fsm15 = fsm_int1_b.int1_fsm15; val->fsm16 = fsm_int1_b.int1_fsm16; return ret; } /** * @brief Route interrupt signals on int2 pin.[set] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val the signals to route on int2 pin. * */ int32_t lsm6dso_pin_int2_route_set(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_pin_int2_route_t val) { lsm6dso_pin_int1_route_t pin_int1_route; lsm6dso_emb_func_int2_t emb_func_int2; lsm6dso_fsm_int2_a_t fsm_int2_a; lsm6dso_fsm_int2_b_t fsm_int2_b; lsm6dso_int2_ctrl_t int2_ctrl; lsm6dso_tap_cfg2_t tap_cfg2; lsm6dso_md2_cfg_t md2_cfg; lsm6dso_ctrl4_c_t ctrl4_c; lsm6dso_int_ois_t int_ois; int32_t ret; ret = 0; if ( aux_ctx != NULL ) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_INT_OIS, (uint8_t *)&int_ois, 1); if (ret == 0) { int_ois.int2_drdy_ois = val.drdy_ois; ret = lsm6dso_write_reg(aux_ctx, LSM6DSO_INT_OIS, (uint8_t *)&int_ois, 1); } } if ( ctx != NULL ) { int2_ctrl.int2_drdy_xl = val.drdy_xl; int2_ctrl.int2_drdy_g = val.drdy_g; int2_ctrl.int2_drdy_temp = val.drdy_temp; int2_ctrl.int2_fifo_th = val.fifo_th; int2_ctrl.int2_fifo_ovr = val.fifo_ovr; int2_ctrl.int2_fifo_full = val.fifo_full; int2_ctrl.int2_cnt_bdr = val.fifo_bdr; int2_ctrl.not_used_01 = 0; md2_cfg.int2_timestamp = val.timestamp; md2_cfg.int2_6d = val.six_d; md2_cfg.int2_double_tap = val.double_tap; md2_cfg.int2_ff = val.free_fall; md2_cfg.int2_wu = val.wake_up; md2_cfg.int2_single_tap = val.single_tap; md2_cfg.int2_sleep_change = val.sleep_change; emb_func_int2.not_used_01 = 0; emb_func_int2.int2_step_detector = val.step_detector; emb_func_int2.int2_tilt = val.tilt; emb_func_int2.int2_sig_mot = val.sig_mot; emb_func_int2.not_used_02 = 0; emb_func_int2.int2_fsm_lc = val.fsm_lc; fsm_int2_a.int2_fsm1 = val.fsm1; fsm_int2_a.int2_fsm2 = val.fsm2; fsm_int2_a.int2_fsm3 = val.fsm3; fsm_int2_a.int2_fsm4 = val.fsm4; fsm_int2_a.int2_fsm5 = val.fsm5; fsm_int2_a.int2_fsm6 = val.fsm6; fsm_int2_a.int2_fsm7 = val.fsm7; fsm_int2_a.int2_fsm8 = val.fsm8; fsm_int2_b.int2_fsm9 = val.fsm9 ; fsm_int2_b.int2_fsm10 = val.fsm10; fsm_int2_b.int2_fsm11 = val.fsm11; fsm_int2_b.int2_fsm12 = val.fsm12; fsm_int2_b.int2_fsm13 = val.fsm13; fsm_int2_b.int2_fsm14 = val.fsm14; fsm_int2_b.int2_fsm15 = val.fsm15; fsm_int2_b.int2_fsm16 = val.fsm16; if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); if (ret == 0) { if ( ( val.drdy_temp | val.timestamp ) != PROPERTY_DISABLE ) { ctrl4_c.int2_on_int1 = PROPERTY_DISABLE; } ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); } } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_INT2, (uint8_t *)&emb_func_int2, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT2_A, (uint8_t *)&fsm_int2_a, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FSM_INT2_B, (uint8_t *)&fsm_int2_b, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } if (ret == 0) { if (( emb_func_int2.int2_fsm_lc | emb_func_int2.int2_sig_mot | emb_func_int2.int2_step_detector | emb_func_int2.int2_tilt | fsm_int2_a.int2_fsm1 | fsm_int2_a.int2_fsm2 | fsm_int2_a.int2_fsm3 | fsm_int2_a.int2_fsm4 | fsm_int2_a.int2_fsm5 | fsm_int2_a.int2_fsm6 | fsm_int2_a.int2_fsm7 | fsm_int2_a.int2_fsm8 | fsm_int2_b.int2_fsm9 | fsm_int2_b.int2_fsm10 | fsm_int2_b.int2_fsm11 | fsm_int2_b.int2_fsm12 | fsm_int2_b.int2_fsm13 | fsm_int2_b.int2_fsm14 | fsm_int2_b.int2_fsm15 | fsm_int2_b.int2_fsm16) != PROPERTY_DISABLE ) { md2_cfg.int2_emb_func = PROPERTY_ENABLE; } else { md2_cfg.int2_emb_func = PROPERTY_DISABLE; } ret = lsm6dso_write_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2, 1); } if (ret == 0) { ret = lsm6dso_pin_int1_route_get(ctx, &pin_int1_route); } if (ret == 0) { if ( ( val.fifo_bdr | val.drdy_g | val.drdy_temp | val.drdy_xl | val.fifo_full | val.fifo_ovr | val.fifo_th | val.six_d | val.double_tap | val.free_fall | val.wake_up | val.single_tap | val.sleep_change | pin_int1_route.den_flag | pin_int1_route.boot | pin_int1_route.fifo_bdr | pin_int1_route.drdy_g | pin_int1_route.drdy_xl | pin_int1_route.fifo_full | pin_int1_route.fifo_ovr | pin_int1_route.fifo_th | pin_int1_route.six_d | pin_int1_route.double_tap | pin_int1_route.free_fall | pin_int1_route.wake_up | pin_int1_route.single_tap | pin_int1_route.sleep_change ) != PROPERTY_DISABLE) { tap_cfg2.interrupts_enable = PROPERTY_ENABLE; } else { tap_cfg2.interrupts_enable = PROPERTY_DISABLE; } ret = lsm6dso_write_reg(ctx, LSM6DSO_TAP_CFG2, (uint8_t *) &tap_cfg2, 1); } } return ret; } /** * @brief Route interrupt signals on int2 pin.[get] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val the signals that are routed on int2 pin.(ptr) * */ int32_t lsm6dso_pin_int2_route_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_pin_int2_route_t *val) { lsm6dso_emb_func_int2_t emb_func_int2; lsm6dso_fsm_int2_a_t fsm_int2_a; lsm6dso_fsm_int2_b_t fsm_int2_b; lsm6dso_int2_ctrl_t int2_ctrl; lsm6dso_md2_cfg_t md2_cfg; lsm6dso_ctrl4_c_t ctrl4_c; lsm6dso_int_ois_t int_ois; int32_t ret; ret = 0; if ( aux_ctx != NULL ) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_INT_OIS, (uint8_t *)&int_ois, 1); val->drdy_ois = int_ois.int2_drdy_ois; } if ( ctx != NULL ) { if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_INT2, (uint8_t *)&emb_func_int2, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT2_A, (uint8_t *)&fsm_int2_a, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_INT2_B, (uint8_t *)&fsm_int2_b, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL4_C, (uint8_t *)&ctrl4_c, 1); } if (ctrl4_c.int2_on_int1 == PROPERTY_DISABLE) { if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_INT2_CTRL, (uint8_t *)&int2_ctrl, 1); val->drdy_temp = int2_ctrl.int2_drdy_temp; } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1); val->timestamp = md2_cfg.int2_timestamp; } } else { val->drdy_temp = PROPERTY_DISABLE; val->timestamp = PROPERTY_DISABLE; } val->drdy_xl = int2_ctrl.int2_drdy_xl; val->drdy_g = int2_ctrl.int2_drdy_g; val->drdy_temp = int2_ctrl.int2_drdy_temp; val->fifo_th = int2_ctrl.int2_fifo_th; val->fifo_ovr = int2_ctrl.int2_fifo_ovr; val->fifo_full = int2_ctrl.int2_fifo_full; val->fifo_bdr = int2_ctrl.int2_cnt_bdr; val->timestamp = md2_cfg.int2_timestamp; val->six_d = md2_cfg.int2_6d; val->double_tap = md2_cfg.int2_double_tap; val->free_fall = md2_cfg.int2_ff; val->wake_up = md2_cfg.int2_wu; val->single_tap = md2_cfg.int2_single_tap; val->sleep_change = md2_cfg.int2_sleep_change; val->step_detector = emb_func_int2. int2_step_detector; val->tilt = emb_func_int2.int2_tilt; val->fsm_lc = emb_func_int2.int2_fsm_lc; val->fsm1 = fsm_int2_a.int2_fsm1; val->fsm2 = fsm_int2_a.int2_fsm2; val->fsm3 = fsm_int2_a.int2_fsm3; val->fsm4 = fsm_int2_a.int2_fsm4; val->fsm5 = fsm_int2_a.int2_fsm5; val->fsm6 = fsm_int2_a.int2_fsm6; val->fsm7 = fsm_int2_a.int2_fsm7; val->fsm8 = fsm_int2_a.int2_fsm8; val->fsm9 = fsm_int2_b.int2_fsm9; val->fsm10 = fsm_int2_b.int2_fsm10; val->fsm11 = fsm_int2_b.int2_fsm11; val->fsm12 = fsm_int2_b.int2_fsm12; val->fsm13 = fsm_int2_b.int2_fsm13; val->fsm14 = fsm_int2_b.int2_fsm14; val->fsm15 = fsm_int2_b.int2_fsm15; val->fsm16 = fsm_int2_b.int2_fsm16; } return ret; } /** * @brief Get the status of all the interrupt sources.[get] * * @param ctx communication interface handler.(ptr) * @param val the status of all the interrupt sources.(ptr) * */ int32_t lsm6dso_all_sources_get(stmdev_ctx_t *ctx, lsm6dso_all_sources_t *val) { lsm6dso_emb_func_status_mainpage_t emb_func_status_mainpage; lsm6dso_status_master_mainpage_t status_master_mainpage; lsm6dso_fsm_status_a_mainpage_t fsm_status_a_mainpage; lsm6dso_fsm_status_b_mainpage_t fsm_status_b_mainpage; lsm6dso_fifo_status1_t fifo_status1; lsm6dso_fifo_status2_t fifo_status2; lsm6dso_all_int_src_t all_int_src; lsm6dso_wake_up_src_t wake_up_src; lsm6dso_status_reg_t status_reg; lsm6dso_tap_src_t tap_src; lsm6dso_d6d_src_t d6d_src; uint8_t reg[5]; int32_t ret; ret = lsm6dso_read_reg(ctx, LSM6DSO_ALL_INT_SRC, reg, 5); if (ret == 0) { bytecpy((uint8_t *)&all_int_src, ®[0]); bytecpy((uint8_t *)&wake_up_src, ®[1]); bytecpy((uint8_t *)&tap_src, ®[2]); bytecpy((uint8_t *)&d6d_src, ®[3]); bytecpy((uint8_t *)&status_reg, ®[4]); val->timestamp = all_int_src.timestamp_endcount; val->wake_up_z = wake_up_src.z_wu; val->wake_up_y = wake_up_src.y_wu; val->wake_up_x = wake_up_src.x_wu; val->wake_up = wake_up_src.wu_ia; val->sleep_state = wake_up_src.sleep_state; val->free_fall = wake_up_src.ff_ia; val->sleep_change = wake_up_src.sleep_change_ia; val->tap_x = tap_src.x_tap; val->tap_y = tap_src.y_tap; val->tap_z = tap_src.z_tap; val->tap_sign = tap_src.tap_sign; val->double_tap = tap_src.double_tap; val->single_tap = tap_src.single_tap; val->six_d_xl = d6d_src.xl; val->six_d_xh = d6d_src.xh; val->six_d_yl = d6d_src.yl; val->six_d_yh = d6d_src.yh; val->six_d_zl = d6d_src.zl; val->six_d_zh = d6d_src.zh; val->six_d = d6d_src.d6d_ia; val->den_flag = d6d_src.den_drdy; val->drdy_xl = status_reg.xlda; val->drdy_g = status_reg.gda; val->drdy_temp = status_reg.tda; } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_STATUS_MAINPAGE, reg, 3); } if (ret == 0) { bytecpy((uint8_t *)&emb_func_status_mainpage, ®[0]); bytecpy((uint8_t *)&fsm_status_a_mainpage, ®[1]); bytecpy((uint8_t *)&fsm_status_b_mainpage, ®[2]); val->step_detector = emb_func_status_mainpage.is_step_det; val->tilt = emb_func_status_mainpage.is_tilt; val->sig_mot = emb_func_status_mainpage.is_sigmot; val->fsm_lc = emb_func_status_mainpage.is_fsm_lc; val->fsm1 = fsm_status_a_mainpage.is_fsm1; val->fsm2 = fsm_status_a_mainpage.is_fsm2; val->fsm3 = fsm_status_a_mainpage.is_fsm3; val->fsm4 = fsm_status_a_mainpage.is_fsm4; val->fsm5 = fsm_status_a_mainpage.is_fsm5; val->fsm6 = fsm_status_a_mainpage.is_fsm6; val->fsm7 = fsm_status_a_mainpage.is_fsm7; val->fsm8 = fsm_status_a_mainpage.is_fsm8; val->fsm9 = fsm_status_b_mainpage.is_fsm9; val->fsm10 = fsm_status_b_mainpage.is_fsm10; val->fsm11 = fsm_status_b_mainpage.is_fsm11; val->fsm12 = fsm_status_b_mainpage.is_fsm12; val->fsm13 = fsm_status_b_mainpage.is_fsm13; val->fsm14 = fsm_status_b_mainpage.is_fsm14; val->fsm15 = fsm_status_b_mainpage.is_fsm15; val->fsm16 = fsm_status_b_mainpage.is_fsm16; } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_STATUS_MASTER_MAINPAGE, reg, 3); } if (ret == 0) { bytecpy((uint8_t *)&status_master_mainpage, ®[0]); bytecpy((uint8_t *)&fifo_status1, ®[1]); bytecpy((uint8_t *)&fifo_status2, ®[2]); val->sh_endop = status_master_mainpage.sens_hub_endop; val->sh_slave0_nack = status_master_mainpage.slave0_nack; val->sh_slave1_nack = status_master_mainpage.slave1_nack; val->sh_slave2_nack = status_master_mainpage.slave2_nack; val->sh_slave3_nack = status_master_mainpage.slave3_nack; val->sh_wr_once = status_master_mainpage.wr_once_done; val->fifo_diff = (256U * fifo_status2.diff_fifo) + fifo_status1.diff_fifo; val->fifo_ovr_latched = fifo_status2.over_run_latched; val->fifo_bdr = fifo_status2.counter_bdr_ia; val->fifo_full = fifo_status2.fifo_full_ia; val->fifo_ovr = fifo_status2.fifo_ovr_ia; val->fifo_th = fifo_status2.fifo_wtm_ia; } return ret; } /** * @brief Sensor conversion parameters selection.[set] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val set the sensor conversion parameters by checking * the constraints of the device.(ptr) * */ int32_t lsm6dso_mode_set(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_md_t *val) { lsm6dso_func_cfg_access_t func_cfg_access; lsm6dso_ctrl1_ois_t ctrl1_ois; lsm6dso_ctrl2_ois_t ctrl2_ois; lsm6dso_ctrl3_ois_t ctrl3_ois; lsm6dso_ctrl1_xl_t ctrl1_xl; lsm6dso_ctrl8_xl_t ctrl8_xl; lsm6dso_ctrl2_g_t ctrl2_g; lsm6dso_ctrl3_c_t ctrl3_c; lsm6dso_ctrl4_c_t ctrl4_c; lsm6dso_ctrl5_c_t ctrl5_c; lsm6dso_ctrl6_c_t ctrl6_c; lsm6dso_ctrl7_g_t ctrl7_g; uint8_t xl_hm_mode; uint8_t g_hm_mode; uint8_t xl_ulp_en; uint8_t odr_gy; uint8_t odr_xl; uint8_t reg[8]; int32_t ret; ret = 0; /* FIXME: Remove warnings with STM32CubeIDE */ ctrl3_c.not_used_01 = 0; ctrl4_c.not_used_01 = 0; /* reading input configuration */ xl_hm_mode = ( (uint8_t)val->ui.xl.odr & 0x10U ) >> 4; xl_ulp_en = ( (uint8_t)val->ui.xl.odr & 0x20U ) >> 5; odr_xl = (uint8_t)val->ui.xl.odr & 0x0FU; /* if enable xl ultra low power mode disable gy and OIS chain */ if (xl_ulp_en == PROPERTY_ENABLE) { val->ois.xl.odr = LSM6DSO_XL_OIS_OFF; val->ois.gy.odr = LSM6DSO_GY_OIS_OFF; val->ui.gy.odr = LSM6DSO_GY_UI_OFF; } /* if OIS xl is enabled also gyro OIS is enabled */ if (val->ois.xl.odr == LSM6DSO_XL_OIS_6667Hz_HP) { val->ois.gy.odr = LSM6DSO_GY_OIS_6667Hz_HP; } g_hm_mode = ( (uint8_t)val->ui.gy.odr & 0x10U ) >> 4; odr_gy = (uint8_t)val->ui.gy.odr & 0x0FU; /* reading registers to be configured */ if ( ctx != NULL ) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, reg, 8); bytecpy(( uint8_t *)&ctrl1_xl, ®[0]); bytecpy(( uint8_t *)&ctrl2_g, ®[1]); bytecpy(( uint8_t *)&ctrl3_c, ®[2]); bytecpy(( uint8_t *)&ctrl4_c, ®[3]); bytecpy(( uint8_t *)&ctrl5_c, ®[4]); bytecpy(( uint8_t *)&ctrl6_c, ®[5]); bytecpy(( uint8_t *)&ctrl7_g, ®[6]); bytecpy(( uint8_t *)&ctrl8_xl, ®[7]); if ( ret == 0 ) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)&func_cfg_access, 1); } /* if toggle xl ultra low power mode, turn off xl before reconfigure */ if (ctrl5_c.xl_ulp_en != xl_ulp_en) { ctrl1_xl.odr_xl = (uint8_t) 0x00U; ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)&ctrl1_xl, 1); } } /* reading OIS registers to be configured */ if ( aux_ctx != NULL ) { if (ret == 0) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS, reg, 3); } bytecpy(( uint8_t *)&ctrl1_ois, ®[0]); bytecpy(( uint8_t *)&ctrl2_ois, ®[1]); bytecpy(( uint8_t *)&ctrl3_ois, ®[2]); } else { if ( ctx != NULL ) { if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, reg, 3); } bytecpy(( uint8_t *)&ctrl1_ois, ®[0]); bytecpy(( uint8_t *)&ctrl2_ois, ®[1]); bytecpy(( uint8_t *)&ctrl3_ois, ®[2]); } } /* Check the Finite State Machine data rate constraints */ if (val->fsm.sens != LSM6DSO_FSM_DISABLE) { switch (val->fsm.odr) { case LSM6DSO_FSM_12Hz5: if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl == 0x00U) ) { odr_xl = 0x01U; } if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy == 0x00U) ) { xl_ulp_en = PROPERTY_DISABLE; odr_gy = 0x01U; } break; case LSM6DSO_FSM_26Hz: if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl < 0x02U) ) { odr_xl = 0x02U; } if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy < 0x02U) ) { xl_ulp_en = PROPERTY_DISABLE; odr_gy = 0x02U; } break; case LSM6DSO_FSM_52Hz: if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl < 0x03U) ) { odr_xl = 0x03U; } if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy < 0x03U) ) { xl_ulp_en = PROPERTY_DISABLE; odr_gy = 0x03U; } break; case LSM6DSO_FSM_104Hz: if ( (val->fsm.sens != LSM6DSO_FSM_GY) && (odr_xl < 0x04U) ) { odr_xl = 0x04U; } if ( (val->fsm.sens != LSM6DSO_FSM_XL) && (odr_gy < 0x04U) ) { xl_ulp_en = PROPERTY_DISABLE; odr_gy = 0x04U; } break; default: odr_xl = 0x00U; odr_gy = 0x00U; break; } } /* Updating the accelerometer data rate configuration */ switch ( ( ctrl5_c.xl_ulp_en << 5 ) | ( ctrl6_c.xl_hm_mode << 4 ) | ctrl1_xl.odr_xl ) { case LSM6DSO_XL_UI_OFF: val->ui.xl.odr = LSM6DSO_XL_UI_OFF; break; case LSM6DSO_XL_UI_12Hz5_HP: val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_HP; break; case LSM6DSO_XL_UI_26Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_HP; break; case LSM6DSO_XL_UI_52Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_HP; break; case LSM6DSO_XL_UI_104Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_HP; break; case LSM6DSO_XL_UI_208Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_HP; break; case LSM6DSO_XL_UI_416Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_416Hz_HP; break; case LSM6DSO_XL_UI_833Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_833Hz_HP; break; case LSM6DSO_XL_UI_1667Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_1667Hz_HP; break; case LSM6DSO_XL_UI_3333Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_3333Hz_HP; break; case LSM6DSO_XL_UI_6667Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_6667Hz_HP; break; case LSM6DSO_XL_UI_1Hz6_LP: val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_LP; break; case LSM6DSO_XL_UI_12Hz5_LP: val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_LP; break; case LSM6DSO_XL_UI_26Hz_LP: val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_LP; break; case LSM6DSO_XL_UI_52Hz_LP: val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_LP; break; case LSM6DSO_XL_UI_104Hz_NM: val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_NM; break; case LSM6DSO_XL_UI_208Hz_NM: val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_NM; break; case LSM6DSO_XL_UI_1Hz6_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_ULP; break; case LSM6DSO_XL_UI_12Hz5_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_ULP; break; case LSM6DSO_XL_UI_26Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_ULP; break; case LSM6DSO_XL_UI_52Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_ULP; break; case LSM6DSO_XL_UI_104Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_ULP; break; case LSM6DSO_XL_UI_208Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_ULP; break; default: val->ui.xl.odr = LSM6DSO_XL_UI_OFF; break; } /* Updating the accelerometer data rate configuration */ switch ( (ctrl7_g.g_hm_mode << 4) | ctrl2_g.odr_g) { case LSM6DSO_GY_UI_OFF: val->ui.gy.odr = LSM6DSO_GY_UI_OFF; break; case LSM6DSO_GY_UI_12Hz5_LP: val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_LP; break; case LSM6DSO_GY_UI_12Hz5_HP: val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_HP; break; case LSM6DSO_GY_UI_26Hz_LP: val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_LP; break; case LSM6DSO_GY_UI_26Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_HP; break; case LSM6DSO_GY_UI_52Hz_LP: val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_LP; break; case LSM6DSO_GY_UI_52Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_HP; break; case LSM6DSO_GY_UI_104Hz_NM: val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_NM; break; case LSM6DSO_GY_UI_104Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_HP; break; case LSM6DSO_GY_UI_208Hz_NM: val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_NM; break; case LSM6DSO_GY_UI_208Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_HP; break; case LSM6DSO_GY_UI_416Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_416Hz_HP; break; case LSM6DSO_GY_UI_833Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_833Hz_HP; break; case LSM6DSO_GY_UI_1667Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_1667Hz_HP; break; case LSM6DSO_GY_UI_3333Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_3333Hz_HP; break; case LSM6DSO_GY_UI_6667Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_6667Hz_HP; break; default: val->ui.gy.odr = LSM6DSO_GY_UI_OFF; break; } /* Check accelerometer full scale constraints */ /* Full scale of 16g must be the same for UI and OIS */ if ( (val->ui.xl.fs == LSM6DSO_XL_UI_16g) || (val->ois.xl.fs == LSM6DSO_XL_OIS_16g) ) { val->ui.xl.fs = LSM6DSO_XL_UI_16g; val->ois.xl.fs = LSM6DSO_XL_OIS_16g; } /* prapare new configuration */ /* Full scale of 16g must be the same for UI and OIS */ if (val->ui.xl.fs == LSM6DSO_XL_UI_16g) { ctrl8_xl.xl_fs_mode = PROPERTY_DISABLE; } else { ctrl8_xl.xl_fs_mode = PROPERTY_ENABLE; } /* OIS new configuration */ ctrl7_g.ois_on_en = val->ois.ctrl_md & 0x01U; switch (val->ois.ctrl_md) { case LSM6DSO_OIS_ONLY_AUX: ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs; ctrl1_ois.ois_en_spi2 = (uint8_t)val->ois.gy.odr | (uint8_t)val->ois.xl.odr; ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr; ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs; break; case LSM6DSO_OIS_MIXED: ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs; ctrl7_g.ois_on = (uint8_t)val->ois.gy.odr | (uint8_t)val->ois.xl.odr; ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr; ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs; break; default: ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs; ctrl1_ois.ois_en_spi2 = (uint8_t)val->ois.gy.odr | (uint8_t)val->ois.xl.odr; ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr; ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs; break; } /* UI new configuration */ ctrl1_xl.odr_xl = odr_xl; ctrl1_xl.fs_xl = (uint8_t)val->ui.xl.fs; ctrl5_c.xl_ulp_en = xl_ulp_en; ctrl6_c.xl_hm_mode = xl_hm_mode; ctrl7_g.g_hm_mode = g_hm_mode; ctrl2_g.odr_g = odr_gy; ctrl2_g.fs_g = (uint8_t) val->ui.gy.fs; /* writing checked configuration */ if ( ctx != NULL ) { bytecpy(®[0], ( uint8_t *)&ctrl1_xl); bytecpy(®[1], ( uint8_t *)&ctrl2_g); bytecpy(®[2], ( uint8_t *)&ctrl3_c); bytecpy(®[3], ( uint8_t *)&ctrl4_c); bytecpy(®[4], ( uint8_t *)&ctrl5_c); bytecpy(®[5], ( uint8_t *)&ctrl6_c); bytecpy(®[6], ( uint8_t *)&ctrl7_g); bytecpy(®[7], ( uint8_t *)&ctrl8_xl); if ( ret == 0 ) { ret = lsm6dso_write_reg(ctx, LSM6DSO_CTRL1_XL, (uint8_t *)®, 8); } if ( ret == 0 ) { ret = lsm6dso_write_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)&func_cfg_access, 1); } } /* writing OIS checked configuration */ if ( aux_ctx != NULL ) { bytecpy(®[0], ( uint8_t *)&ctrl1_ois); bytecpy(®[1], ( uint8_t *)&ctrl2_ois); bytecpy(®[2], ( uint8_t *)&ctrl3_ois); if (ret == 0) { ret = lsm6dso_write_reg(aux_ctx, LSM6DSO_CTRL1_OIS, reg, 3); } } return ret; } /** * @brief Sensor conversion parameters selection.[get] * * @param ctx communication interface handler. Use NULL to ignore * this interface.(ptr) * @param aux_ctx auxiliary communication interface handler. Use NULL * to ignore this interface.(ptr) * @param val get the sensor conversion parameters.(ptr) * */ int32_t lsm6dso_mode_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_md_t *val) { lsm6dso_emb_func_odr_cfg_b_t emb_func_odr_cfg_b; lsm6dso_func_cfg_access_t func_cfg_access; lsm6dso_emb_func_en_b_t emb_func_en_b; lsm6dso_fsm_enable_a_t fsm_enable_a; lsm6dso_fsm_enable_b_t fsm_enable_b; lsm6dso_ctrl1_ois_t ctrl1_ois; lsm6dso_ctrl2_ois_t ctrl2_ois; lsm6dso_ctrl3_ois_t ctrl3_ois; lsm6dso_ctrl1_xl_t ctrl1_xl; lsm6dso_ctrl2_g_t ctrl2_g; lsm6dso_ctrl3_c_t ctrl3_c; lsm6dso_ctrl4_c_t ctrl4_c; lsm6dso_ctrl5_c_t ctrl5_c; lsm6dso_ctrl6_c_t ctrl6_c; lsm6dso_ctrl7_g_t ctrl7_g; uint8_t reg[8]; int32_t ret; ret = 0; /* reading the registers of the device */ if ( ctx != NULL ) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_XL, reg, 7); bytecpy(( uint8_t *)&ctrl1_xl, ®[0]); bytecpy(( uint8_t *)&ctrl2_g, ®[1]); bytecpy(( uint8_t *)&ctrl3_c, ®[2]); bytecpy(( uint8_t *)&ctrl4_c, ®[3]); bytecpy(( uint8_t *)&ctrl5_c, ®[4]); bytecpy(( uint8_t *)&ctrl6_c, ®[5]); bytecpy(( uint8_t *)&ctrl7_g, ®[6]); if ( ret == 0 ) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FUNC_CFG_ACCESS, (uint8_t *)&func_cfg_access, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_ODR_CFG_B, reg, 1); bytecpy(( uint8_t *)&emb_func_odr_cfg_b, ®[0]); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B, (uint8_t *)&emb_func_en_b, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_FSM_ENABLE_A, reg, 2); bytecpy(( uint8_t *)&fsm_enable_a, ®[0]); bytecpy(( uint8_t *)&fsm_enable_b, ®[1]); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } } if ( aux_ctx != NULL ) { if (ret == 0) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_CTRL1_OIS, reg, 3); } bytecpy(( uint8_t *)&ctrl1_ois, ®[0]); bytecpy(( uint8_t *)&ctrl2_ois, ®[1]); bytecpy(( uint8_t *)&ctrl3_ois, ®[2]); } else { if ( ctx != NULL ) { if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_CTRL1_OIS, reg, 3); } bytecpy(( uint8_t *)&ctrl1_ois, ®[0]); bytecpy(( uint8_t *)&ctrl2_ois, ®[1]); bytecpy(( uint8_t *)&ctrl3_ois, ®[2]); } } /* fill the input structure */ /* get accelerometer configuration */ switch ( (ctrl5_c.xl_ulp_en << 5) | (ctrl6_c.xl_hm_mode << 4) | ctrl1_xl.odr_xl ) { case LSM6DSO_XL_UI_OFF: val->ui.xl.odr = LSM6DSO_XL_UI_OFF; break; case LSM6DSO_XL_UI_12Hz5_HP: val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_HP; break; case LSM6DSO_XL_UI_26Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_HP; break; case LSM6DSO_XL_UI_52Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_HP; break; case LSM6DSO_XL_UI_104Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_HP; break; case LSM6DSO_XL_UI_208Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_HP; break; case LSM6DSO_XL_UI_416Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_416Hz_HP; break; case LSM6DSO_XL_UI_833Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_833Hz_HP; break; case LSM6DSO_XL_UI_1667Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_1667Hz_HP; break; case LSM6DSO_XL_UI_3333Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_3333Hz_HP; break; case LSM6DSO_XL_UI_6667Hz_HP: val->ui.xl.odr = LSM6DSO_XL_UI_6667Hz_HP; break; case LSM6DSO_XL_UI_1Hz6_LP: val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_LP; break; case LSM6DSO_XL_UI_12Hz5_LP: val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_LP; break; case LSM6DSO_XL_UI_26Hz_LP: val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_LP; break; case LSM6DSO_XL_UI_52Hz_LP: val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_LP; break; case LSM6DSO_XL_UI_104Hz_NM: val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_NM; break; case LSM6DSO_XL_UI_208Hz_NM: val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_NM; break; case LSM6DSO_XL_UI_1Hz6_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_1Hz6_ULP; break; case LSM6DSO_XL_UI_12Hz5_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_12Hz5_ULP; break; case LSM6DSO_XL_UI_26Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_26Hz_ULP; break; case LSM6DSO_XL_UI_52Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_52Hz_ULP; break; case LSM6DSO_XL_UI_104Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_104Hz_ULP; break; case LSM6DSO_XL_UI_208Hz_ULP: val->ui.xl.odr = LSM6DSO_XL_UI_208Hz_ULP; break; default: val->ui.xl.odr = LSM6DSO_XL_UI_OFF; break; } switch ( ctrl1_xl.fs_xl ) { case LSM6DSO_XL_UI_2g: val->ui.xl.fs = LSM6DSO_XL_UI_2g; break; case LSM6DSO_XL_UI_4g: val->ui.xl.fs = LSM6DSO_XL_UI_4g; break; case LSM6DSO_XL_UI_8g: val->ui.xl.fs = LSM6DSO_XL_UI_8g; break; case LSM6DSO_XL_UI_16g: val->ui.xl.fs = LSM6DSO_XL_UI_16g; break; default: val->ui.xl.fs = LSM6DSO_XL_UI_2g; break; } /* get gyroscope configuration */ switch ( (ctrl7_g.g_hm_mode << 4) | ctrl2_g.odr_g) { case LSM6DSO_GY_UI_OFF: val->ui.gy.odr = LSM6DSO_GY_UI_OFF; break; case LSM6DSO_GY_UI_12Hz5_LP: val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_LP; break; case LSM6DSO_GY_UI_12Hz5_HP: val->ui.gy.odr = LSM6DSO_GY_UI_12Hz5_HP; break; case LSM6DSO_GY_UI_26Hz_LP: val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_LP; break; case LSM6DSO_GY_UI_26Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_26Hz_HP; break; case LSM6DSO_GY_UI_52Hz_LP: val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_LP; break; case LSM6DSO_GY_UI_52Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_52Hz_HP; break; case LSM6DSO_GY_UI_104Hz_NM: val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_NM; break; case LSM6DSO_GY_UI_104Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_104Hz_HP; break; case LSM6DSO_GY_UI_208Hz_NM: val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_NM; break; case LSM6DSO_GY_UI_208Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_208Hz_HP; break; case LSM6DSO_GY_UI_416Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_416Hz_HP; break; case LSM6DSO_GY_UI_833Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_833Hz_HP; break; case LSM6DSO_GY_UI_1667Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_1667Hz_HP; break; case LSM6DSO_GY_UI_3333Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_3333Hz_HP; break; case LSM6DSO_GY_UI_6667Hz_HP: val->ui.gy.odr = LSM6DSO_GY_UI_6667Hz_HP; break; default: val->ui.gy.odr = LSM6DSO_GY_UI_OFF; break; } switch (ctrl2_g.fs_g) { case LSM6DSO_GY_UI_125dps: val->ui.gy.fs = LSM6DSO_GY_UI_125dps; break; case LSM6DSO_GY_UI_250dps: val->ui.gy.fs = LSM6DSO_GY_UI_250dps; break; case LSM6DSO_GY_UI_500dps: val->ui.gy.fs = LSM6DSO_GY_UI_500dps; break; case LSM6DSO_GY_UI_1000dps: val->ui.gy.fs = LSM6DSO_GY_UI_1000dps; break; case LSM6DSO_GY_UI_2000dps: val->ui.gy.fs = LSM6DSO_GY_UI_2000dps; break; default: val->ui.gy.fs = LSM6DSO_GY_UI_125dps; break; } /* get finite state machine configuration */ if ( (fsm_enable_a.fsm1_en | fsm_enable_a.fsm2_en | fsm_enable_a.fsm3_en | fsm_enable_a.fsm4_en | fsm_enable_a.fsm5_en | fsm_enable_a.fsm6_en | fsm_enable_a.fsm7_en | fsm_enable_a.fsm8_en | fsm_enable_b.fsm9_en | fsm_enable_b.fsm10_en | fsm_enable_b.fsm11_en | fsm_enable_b.fsm12_en | fsm_enable_b.fsm13_en | fsm_enable_b.fsm14_en | fsm_enable_b.fsm15_en | fsm_enable_b.fsm16_en) == PROPERTY_ENABLE ) { switch (emb_func_odr_cfg_b.fsm_odr) { case LSM6DSO_FSM_12Hz5: val->fsm.odr = LSM6DSO_FSM_12Hz5; break; case LSM6DSO_FSM_26Hz: val->fsm.odr = LSM6DSO_FSM_26Hz; break; case LSM6DSO_FSM_52Hz: val->fsm.odr = LSM6DSO_FSM_52Hz; break; case LSM6DSO_FSM_104Hz: val->fsm.odr = LSM6DSO_FSM_104Hz; break; default: val->fsm.odr = LSM6DSO_FSM_12Hz5; break; } val->fsm.sens = LSM6DSO_FSM_XL_GY; if (val->ui.gy.odr == LSM6DSO_GY_UI_OFF) { val->fsm.sens = LSM6DSO_FSM_XL; } if (val->ui.xl.odr == LSM6DSO_XL_UI_OFF) { val->fsm.sens = LSM6DSO_FSM_GY; } } else { val->fsm.sens = LSM6DSO_FSM_DISABLE; } /* get ois configuration */ /* OIS configuration mode */ switch ( ctrl7_g.ois_on_en ) { case LSM6DSO_OIS_ONLY_AUX: switch ( ctrl3_ois.fs_xl_ois ) { case LSM6DSO_XL_OIS_2g: val->ois.xl.fs = LSM6DSO_XL_OIS_2g; break; case LSM6DSO_XL_OIS_4g: val->ois.xl.fs = LSM6DSO_XL_OIS_4g; break; case LSM6DSO_XL_OIS_8g: val->ois.xl.fs = LSM6DSO_XL_OIS_8g; break; case LSM6DSO_XL_OIS_16g: val->ois.xl.fs = LSM6DSO_XL_OIS_16g; break; default: val->ois.xl.fs = LSM6DSO_XL_OIS_2g; break; } switch ( ctrl1_ois.mode4_en ) { case LSM6DSO_XL_OIS_OFF: val->ois.xl.odr = LSM6DSO_XL_OIS_OFF; break; case LSM6DSO_XL_OIS_6667Hz_HP: val->ois.xl.odr = LSM6DSO_XL_OIS_6667Hz_HP; break; default: val->ois.xl.odr = LSM6DSO_XL_OIS_OFF; break; } switch ( ctrl1_ois.fs_g_ois ) { case LSM6DSO_GY_OIS_250dps: val->ois.gy.fs = LSM6DSO_GY_OIS_250dps; break; case LSM6DSO_GY_OIS_500dps: val->ois.gy.fs = LSM6DSO_GY_OIS_500dps; break; case LSM6DSO_GY_OIS_1000dps: val->ois.gy.fs = LSM6DSO_GY_OIS_1000dps; break; case LSM6DSO_GY_OIS_2000dps: val->ois.gy.fs = LSM6DSO_GY_OIS_2000dps; break; default: val->ois.gy.fs = LSM6DSO_GY_OIS_250dps; break; } switch ( ctrl1_ois.ois_en_spi2 ) { case LSM6DSO_GY_OIS_OFF: val->ois.gy.odr = LSM6DSO_GY_OIS_OFF; break; case LSM6DSO_GY_OIS_6667Hz_HP: val->ois.gy.odr = LSM6DSO_GY_OIS_6667Hz_HP; break; default: val->ois.gy.odr = LSM6DSO_GY_OIS_OFF; break; } val->ois.ctrl_md = LSM6DSO_OIS_ONLY_AUX; break; case LSM6DSO_OIS_MIXED: switch ( ctrl3_ois.fs_xl_ois ) { case LSM6DSO_XL_OIS_2g: val->ois.xl.fs = LSM6DSO_XL_OIS_2g; break; case LSM6DSO_XL_OIS_4g: val->ois.xl.fs = LSM6DSO_XL_OIS_4g; break; case LSM6DSO_XL_OIS_8g: val->ois.xl.fs = LSM6DSO_XL_OIS_8g; break; case LSM6DSO_XL_OIS_16g: val->ois.xl.fs = LSM6DSO_XL_OIS_16g; break; default: val->ois.xl.fs = LSM6DSO_XL_OIS_2g; break; } switch ( ctrl1_ois.mode4_en ) { case LSM6DSO_XL_OIS_OFF: val->ois.xl.odr = LSM6DSO_XL_OIS_OFF; break; case LSM6DSO_XL_OIS_6667Hz_HP: val->ois.xl.odr = LSM6DSO_XL_OIS_6667Hz_HP; break; default: val->ois.xl.odr = LSM6DSO_XL_OIS_OFF; break; } switch ( ctrl1_ois.fs_g_ois ) { case LSM6DSO_GY_OIS_250dps: val->ois.gy.fs = LSM6DSO_GY_OIS_250dps; break; case LSM6DSO_GY_OIS_500dps: val->ois.gy.fs = LSM6DSO_GY_OIS_500dps; break; case LSM6DSO_GY_OIS_1000dps: val->ois.gy.fs = LSM6DSO_GY_OIS_1000dps; break; case LSM6DSO_GY_OIS_2000dps: val->ois.gy.fs = LSM6DSO_GY_OIS_2000dps; break; default: val->ois.gy.fs = LSM6DSO_GY_OIS_250dps; break; } switch ( ctrl1_ois.ois_en_spi2 ) { case LSM6DSO_GY_OIS_OFF: val->ois.gy.odr = LSM6DSO_GY_OIS_OFF; break; case LSM6DSO_GY_OIS_6667Hz_HP: val->ois.gy.odr = LSM6DSO_GY_OIS_6667Hz_HP; break; default: val->ois.gy.odr = LSM6DSO_GY_OIS_OFF; break; } val->ois.ctrl_md = LSM6DSO_OIS_MIXED; break; default: ctrl1_ois.fs_g_ois = (uint8_t)val->ois.gy.fs; ctrl1_ois.ois_en_spi2 = (uint8_t)val->ois.gy.odr | (uint8_t)val->ois.xl.odr; ctrl1_ois.mode4_en = (uint8_t) val->ois.xl.odr; ctrl3_ois.fs_xl_ois = (uint8_t)val->ois.xl.fs; val->ois.ctrl_md = LSM6DSO_OIS_ONLY_AUX; break; } return ret; } /** * @brief Read data in engineering unit.[get] * * @param ctx communication interface handler.(ptr) * @param md the sensor conversion parameters.(ptr) * */ int32_t lsm6dso_data_get(stmdev_ctx_t *ctx, stmdev_ctx_t *aux_ctx, lsm6dso_md_t *md, lsm6dso_data_t *data) { uint8_t buff[14]; int32_t ret; uint8_t i; uint8_t j; ret = 0; /* read data */ if ( ctx != NULL ) { ret = lsm6dso_read_reg(ctx, LSM6DSO_OUT_TEMP_L, buff, 14); } j = 0; /* temperature conversion */ data->ui.heat.raw = (int16_t)buff[j + 1U]; data->ui.heat.raw = ( ((int16_t)data->ui.heat.raw * (int16_t)256) + (int16_t)buff[j] ); j += 2U; data->ui.heat.deg_c = lsm6dso_from_lsb_to_celsius(( int16_t)data->ui.heat.raw); /* angular rate conversion */ for (i = 0U; i < 3U; i++) { data->ui.gy.raw[i] = (int16_t)buff[j + 1U]; data->ui.gy.raw[i] = (data->ui.gy.raw[i] * 256) + (int16_t) buff[j]; j += 2U; switch ( md->ui.gy.fs ) { case LSM6DSO_GY_UI_250dps: data->ui.gy.mdps[i] = lsm6dso_from_fs250_to_mdps(data->ui.gy.raw[i]); break; case LSM6DSO_GY_UI_125dps: data->ui.gy.mdps[i] = lsm6dso_from_fs125_to_mdps(data->ui.gy.raw[i]); break; case LSM6DSO_GY_UI_500dps: data->ui.gy.mdps[i] = lsm6dso_from_fs500_to_mdps(data->ui.gy.raw[i]); break; case LSM6DSO_GY_UI_1000dps: data->ui.gy.mdps[i] = lsm6dso_from_fs1000_to_mdps(data->ui.gy.raw[i]); break; case LSM6DSO_GY_UI_2000dps: data->ui.gy.mdps[i] = lsm6dso_from_fs2000_to_mdps(data->ui.gy.raw[i]); break; default: data->ui.gy.mdps[i] = 0.0f; break; } } /* acceleration conversion */ for (i = 0U; i < 3U; i++) { data->ui.xl.raw[i] = (int16_t)buff[j + 1U]; data->ui.xl.raw[i] = (data->ui.xl.raw[i] * 256) + (int16_t) buff[j]; j += 2U; switch ( md->ui.xl.fs ) { case LSM6DSO_XL_UI_2g: data->ui.xl.mg[i] = lsm6dso_from_fs2_to_mg(data->ui.xl.raw[i]); break; case LSM6DSO_XL_UI_4g: data->ui.xl.mg[i] = lsm6dso_from_fs4_to_mg(data->ui.xl.raw[i]); break; case LSM6DSO_XL_UI_8g: data->ui.xl.mg[i] = lsm6dso_from_fs8_to_mg(data->ui.xl.raw[i]); break; case LSM6DSO_XL_UI_16g: data->ui.xl.mg[i] = lsm6dso_from_fs16_to_mg(data->ui.xl.raw[i]); break; default: data->ui.xl.mg[i] = 0.0f; break; } } /* read data from ois chain */ if (aux_ctx != NULL) { if (ret == 0) { ret = lsm6dso_read_reg(aux_ctx, LSM6DSO_OUTX_L_G, buff, 12); } } j = 0; /* ois angular rate conversion */ for (i = 0U; i < 3U; i++) { data->ois.gy.raw[i] = (int16_t) buff[j + 1U]; data->ois.gy.raw[i] = (data->ois.gy.raw[i] * 256) + (int16_t) buff[j]; j += 2U; switch ( md->ois.gy.fs ) { case LSM6DSO_GY_UI_250dps: data->ois.gy.mdps[i] = lsm6dso_from_fs250_to_mdps( data->ois.gy.raw[i]); break; case LSM6DSO_GY_UI_125dps: data->ois.gy.mdps[i] = lsm6dso_from_fs125_to_mdps( data->ois.gy.raw[i]); break; case LSM6DSO_GY_UI_500dps: data->ois.gy.mdps[i] = lsm6dso_from_fs500_to_mdps( data->ois.gy.raw[i]); break; case LSM6DSO_GY_UI_1000dps: data->ois.gy.mdps[i] = lsm6dso_from_fs1000_to_mdps( data->ois.gy.raw[i]); break; case LSM6DSO_GY_UI_2000dps: data->ois.gy.mdps[i] = lsm6dso_from_fs2000_to_mdps( data->ois.gy.raw[i]); break; default: data->ois.gy.mdps[i] = 0.0f; break; } } /* ois acceleration conversion */ for (i = 0U; i < 3U; i++) { data->ois.xl.raw[i] = (int16_t) buff[j + 1U]; data->ois.xl.raw[i] = (data->ois.xl.raw[i] * 256) + (int16_t) buff[j]; j += 2U; switch ( md->ois.xl.fs ) { case LSM6DSO_XL_UI_2g: data->ois.xl.mg[i] = lsm6dso_from_fs2_to_mg(data->ois.xl.raw[i]); break; case LSM6DSO_XL_UI_4g: data->ois.xl.mg[i] = lsm6dso_from_fs4_to_mg(data->ois.xl.raw[i]); break; case LSM6DSO_XL_UI_8g: data->ois.xl.mg[i] = lsm6dso_from_fs8_to_mg(data->ois.xl.raw[i]); break; case LSM6DSO_XL_UI_16g: data->ois.xl.mg[i] = lsm6dso_from_fs16_to_mg(data->ois.xl.raw[i]); break; default: data->ois.xl.mg[i] = 0.0f; break; } } return ret; } /** * @brief Embedded functions.[set] * * @param ctx read / write interface definitions * @param val change the values of registers * EMB_FUNC_EN_A e EMB_FUNC_EN_B. * */ int32_t lsm6dso_embedded_sens_set(stmdev_ctx_t *ctx, lsm6dso_emb_sens_t *val) { lsm6dso_emb_func_en_a_t emb_func_en_a; lsm6dso_emb_func_en_b_t emb_func_en_b; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_A, (uint8_t *)&emb_func_en_a, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B, (uint8_t *)&emb_func_en_b, 1); emb_func_en_b.fsm_en = val->fsm; emb_func_en_a.tilt_en = val->tilt; emb_func_en_a.pedo_en = val->step; emb_func_en_b.pedo_adv_en = val->step_adv; emb_func_en_a.sign_motion_en = val->sig_mot; emb_func_en_b.fifo_compr_en = val->fifo_compr; } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_A, (uint8_t *)&emb_func_en_a, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_B, (uint8_t *)&emb_func_en_b, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief Embedded functions.[get] * * @param ctx read / write interface definitions * @param val get the values of registers * EMB_FUNC_EN_A e EMB_FUNC_EN_B. * */ int32_t lsm6dso_embedded_sens_get(stmdev_ctx_t *ctx, lsm6dso_emb_sens_t *emb_sens) { lsm6dso_emb_func_en_a_t emb_func_en_a; lsm6dso_emb_func_en_b_t emb_func_en_b; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_A, (uint8_t *)&emb_func_en_a, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B, (uint8_t *)&emb_func_en_b, 1); emb_sens->fsm = emb_func_en_b.fsm_en; emb_sens->tilt = emb_func_en_a.tilt_en; emb_sens->step = emb_func_en_a.pedo_en; emb_sens->step_adv = emb_func_en_b.pedo_adv_en; emb_sens->sig_mot = emb_func_en_a.sign_motion_en; emb_sens->fifo_compr = emb_func_en_b.fifo_compr_en; } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @brief turn off all embedded functions.[get] * * @param ctx read / write interface definitions * @param val get the values of registers * EMB_FUNC_EN_A e EMB_FUNC_EN_B. * */ int32_t lsm6dso_embedded_sens_off(stmdev_ctx_t *ctx) { lsm6dso_emb_func_en_a_t emb_func_en_a; lsm6dso_emb_func_en_b_t emb_func_en_b; int32_t ret; ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_EMBEDDED_FUNC_BANK); if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_A, (uint8_t *)&emb_func_en_a, 1); } if (ret == 0) { ret = lsm6dso_read_reg(ctx, LSM6DSO_EMB_FUNC_EN_B, (uint8_t *)&emb_func_en_b, 1); emb_func_en_b.fsm_en = PROPERTY_DISABLE; emb_func_en_a.tilt_en = PROPERTY_DISABLE; emb_func_en_a.pedo_en = PROPERTY_DISABLE; emb_func_en_b.pedo_adv_en = PROPERTY_DISABLE; emb_func_en_a.sign_motion_en = PROPERTY_DISABLE; emb_func_en_b.fifo_compr_en = PROPERTY_DISABLE; } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_A, (uint8_t *)&emb_func_en_a, 1); } if (ret == 0) { ret = lsm6dso_write_reg(ctx, LSM6DSO_EMB_FUNC_EN_B, (uint8_t *)&emb_func_en_b, 1); } if (ret == 0) { ret = lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK); } return ret; } /** * @} * */ /** * @} * */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/