/* * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2019 JUUL Labs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "bootutil/bootutil.h" #include "bootutil_priv.h" #include "swap_priv.h" #include "bootutil/bootutil_log.h" #include "mcuboot_config/mcuboot_config.h" BOOT_LOG_MODULE_DECLARE(mcuboot); #ifdef MCUBOOT_SWAP_USING_MOVE #if defined(MCUBOOT_VALIDATE_PRIMARY_SLOT) /* * FIXME: this might have to be updated for threaded sim */ int boot_status_fails = 0; #define BOOT_STATUS_ASSERT(x) \ do { \ if (!(x)) { \ boot_status_fails++; \ } \ } while (0) #else #define BOOT_STATUS_ASSERT(x) ASSERT(x) #endif static uint32_t g_last_idx = UINT32_MAX; int boot_read_image_header(struct boot_loader_state *state, int slot, struct image_header *out_hdr, struct boot_status *bs) { const struct flash_area *fap; uint32_t off; uint32_t sz; int area_id; int rc; #if (BOOT_IMAGE_NUMBER == 1) (void)state; #endif off = 0; if (bs) { sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0); if (bs->op == BOOT_STATUS_OP_MOVE) { if (slot == 0 && bs->idx > g_last_idx) { /* second sector */ off = sz; } } else if (bs->op == BOOT_STATUS_OP_SWAP) { if (bs->idx > 1 && bs->idx <= g_last_idx) { if (slot == 0) { slot = 1; } else { slot = 0; } } else if (bs->idx == 1) { if (slot == 0) { off = sz; } if (slot == 1 && bs->state == 2) { slot = 0; } } } } area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); rc = flash_area_open(area_id, &fap); if (rc != 0) { rc = BOOT_EFLASH; goto done; } rc = flash_area_read(fap, off, out_hdr, sizeof *out_hdr); if (rc != 0) { rc = BOOT_EFLASH; goto done; } /* We only know where the headers are located when bs is valid */ if (bs != NULL && out_hdr->ih_magic != IMAGE_MAGIC) { rc = -1; goto done; } rc = 0; done: flash_area_close(fap); return rc; } int swap_read_status_bytes(const struct flash_area *fap, struct boot_loader_state *state, struct boot_status *bs) { uint32_t off; uint8_t status; int max_entries; int found_idx; uint8_t write_sz; int move_entries; int rc; int last_rc; int erased_sections; int i; max_entries = boot_status_entries(BOOT_CURR_IMG(state), fap); if (max_entries < 0) { return BOOT_EBADARGS; } erased_sections = 0; found_idx = -1; /* skip erased sectors at the end */ last_rc = 1; write_sz = BOOT_WRITE_SZ(state); off = boot_status_off(fap); for (i = max_entries; i > 0; i--) { rc = flash_area_read(fap, off + (i - 1) * write_sz, &status, 1); if (rc < 0) { return BOOT_EFLASH; } if (bootutil_buffer_is_erased(fap, &status, 1)) { if (rc != last_rc) { erased_sections++; } } else { if (found_idx == -1) { found_idx = i; } } last_rc = rc; } if (erased_sections > 1) { /* This means there was an error writing status on the last * swap. Tell user and move on to validation! */ #if !defined(__BOOTSIM__) BOOT_LOG_ERR("Detected inconsistent status!"); #endif #if !defined(MCUBOOT_VALIDATE_PRIMARY_SLOT) /* With validation of the primary slot disabled, there is no way * to be sure the swapped primary slot is OK, so abort! */ assert(0); #endif } move_entries = BOOT_MAX_IMG_SECTORS * BOOT_STATUS_MOVE_STATE_COUNT; if (found_idx == -1) { /* no swap status found; nothing to do */ } else if (found_idx < move_entries) { bs->op = BOOT_STATUS_OP_MOVE; bs->idx = (found_idx / BOOT_STATUS_MOVE_STATE_COUNT) + BOOT_STATUS_IDX_0; bs->state = (found_idx % BOOT_STATUS_MOVE_STATE_COUNT) + BOOT_STATUS_STATE_0;; } else { bs->op = BOOT_STATUS_OP_SWAP; bs->idx = ((found_idx - move_entries) / BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_IDX_0; bs->state = ((found_idx - move_entries) % BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_STATE_0; } return 0; } uint32_t boot_status_internal_off(const struct boot_status *bs, int elem_sz) { uint32_t off; int idx_sz; idx_sz = elem_sz * ((bs->op == BOOT_STATUS_OP_MOVE) ? BOOT_STATUS_MOVE_STATE_COUNT : BOOT_STATUS_SWAP_STATE_COUNT); off = ((bs->op == BOOT_STATUS_OP_MOVE) ? 0 : (BOOT_MAX_IMG_SECTORS * BOOT_STATUS_MOVE_STATE_COUNT * elem_sz)) + (bs->idx - BOOT_STATUS_IDX_0) * idx_sz + (bs->state - BOOT_STATUS_STATE_0) * elem_sz; return off; } int boot_slots_compatible(struct boot_loader_state *state) { size_t num_sectors_pri; size_t num_sectors_sec; size_t sector_sz_pri = 0; size_t sector_sz_sec = 0; size_t i; num_sectors_pri = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT); num_sectors_sec = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT); if ((num_sectors_pri != num_sectors_sec) && (num_sectors_pri != (num_sectors_sec + 1))) { BOOT_LOG_WRN("Cannot upgrade: not a compatible amount of sectors"); return 0; } if (num_sectors_pri > BOOT_MAX_IMG_SECTORS) { BOOT_LOG_WRN("Cannot upgrade: more sectors than allowed"); return 0; } for (i = 0; i < num_sectors_sec; i++) { sector_sz_pri = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i); sector_sz_sec = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, i); if (sector_sz_pri != sector_sz_sec) { BOOT_LOG_WRN("Cannot upgrade: not same sector layout"); return 0; } } if (num_sectors_pri > num_sectors_sec) { if (sector_sz_pri != boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i)) { BOOT_LOG_WRN("Cannot upgrade: not same sector layout"); return 0; } } return 1; } #define BOOT_LOG_SWAP_STATE(area, state) \ BOOT_LOG_INF("%s: magic=%s, swap_type=0x%x, copy_done=0x%x, " \ "image_ok=0x%x", \ (area), \ ((state)->magic == BOOT_MAGIC_GOOD ? "good" : \ (state)->magic == BOOT_MAGIC_UNSET ? "unset" : \ "bad"), \ (state)->swap_type, \ (state)->copy_done, \ (state)->image_ok) int swap_status_source(struct boot_loader_state *state) { struct boot_swap_state state_primary_slot; struct boot_swap_state state_secondary_slot; int rc; uint8_t source; uint8_t image_index; #if (BOOT_IMAGE_NUMBER == 1) (void)state; #endif image_index = BOOT_CURR_IMG(state); rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(image_index), &state_primary_slot); assert(rc == 0); BOOT_LOG_SWAP_STATE("Primary image", &state_primary_slot); rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(image_index), &state_secondary_slot); assert(rc == 0); BOOT_LOG_SWAP_STATE("Secondary image", &state_secondary_slot); if (state_primary_slot.magic == BOOT_MAGIC_GOOD && state_primary_slot.copy_done == BOOT_FLAG_UNSET && state_secondary_slot.magic != BOOT_MAGIC_GOOD) { source = BOOT_STATUS_SOURCE_PRIMARY_SLOT; BOOT_LOG_INF("Boot source: primary slot"); return source; } BOOT_LOG_INF("Boot source: none"); return BOOT_STATUS_SOURCE_NONE; } /* * "Moves" the sector located at idx - 1 to idx. */ static void boot_move_sector_up(int idx, uint32_t sz, struct boot_loader_state *state, struct boot_status *bs, const struct flash_area *fap_pri, const struct flash_area *fap_sec) { uint32_t new_off; uint32_t old_off; int rc; /* * FIXME: assuming sectors of size == sz, a single off variable * would be enough */ /* Calculate offset from start of image area. */ new_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx); old_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx - 1); if (bs->idx == BOOT_STATUS_IDX_0) { if (bs->source != BOOT_STATUS_SOURCE_PRIMARY_SLOT) { rc = swap_erase_trailer_sectors(state, fap_pri); assert(rc == 0); rc = swap_status_init(state, fap_pri, bs); assert(rc == 0); } rc = swap_erase_trailer_sectors(state, fap_sec); assert(rc == 0); } rc = boot_erase_region(fap_pri, new_off, sz); assert(rc == 0); rc = boot_copy_region(state, fap_pri, fap_pri, old_off, new_off, sz); assert(rc == 0); rc = boot_write_status(state, bs); bs->idx++; BOOT_STATUS_ASSERT(rc == 0); } static void boot_swap_sectors(int idx, uint32_t sz, struct boot_loader_state *state, struct boot_status *bs, const struct flash_area *fap_pri, const struct flash_area *fap_sec) { uint32_t pri_off; uint32_t pri_up_off; uint32_t sec_off; int rc; pri_up_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx); pri_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx - 1); sec_off = boot_img_sector_off(state, BOOT_SECONDARY_SLOT, idx - 1); if (bs->state == BOOT_STATUS_STATE_0) { rc = boot_erase_region(fap_pri, pri_off, sz); assert(rc == 0); rc = boot_copy_region(state, fap_sec, fap_pri, sec_off, pri_off, sz); assert(rc == 0); rc = boot_write_status(state, bs); bs->state = BOOT_STATUS_STATE_1; BOOT_STATUS_ASSERT(rc == 0); } if (bs->state == BOOT_STATUS_STATE_1) { rc = boot_erase_region(fap_sec, sec_off, sz); assert(rc == 0); rc = boot_copy_region(state, fap_pri, fap_sec, pri_up_off, sec_off, sz); assert(rc == 0); rc = boot_write_status(state, bs); bs->idx++; bs->state = BOOT_STATUS_STATE_0; BOOT_STATUS_ASSERT(rc == 0); } } /* * When starting a revert the swap status exists in the primary slot, and * the status in the secondary slot is erased. To start the swap, the status * area in the primary slot must be re-initialized; if during the small * window of time between re-initializing it and writing the first metadata * a reset happens, the swap process is broken and cannot be resumed. * * This function handles the issue by making the revert look like a permanent * upgrade (by initializing the secondary slot). */ void fixup_revert(const struct boot_loader_state *state, struct boot_status *bs, const struct flash_area *fap_sec) { struct boot_swap_state swap_state; int rc; #if (BOOT_IMAGE_NUMBER == 1) (void)state; #endif /* No fixup required */ if (bs->swap_type != BOOT_SWAP_TYPE_REVERT || bs->op != BOOT_STATUS_OP_MOVE || bs->idx != BOOT_STATUS_IDX_0) { return; } rc = boot_read_swap_state(fap_sec, &swap_state); assert(rc == 0); BOOT_LOG_SWAP_STATE("Secondary image", &swap_state); if (swap_state.magic == BOOT_MAGIC_UNSET) { rc = swap_erase_trailer_sectors(state, fap_sec); assert(rc == 0); rc = boot_write_image_ok(fap_sec); assert(rc == 0); rc = boot_write_swap_size(fap_sec, bs->swap_size); assert(rc == 0); rc = boot_write_magic(fap_sec); assert(rc == 0); } } void swap_run(struct boot_loader_state *state, struct boot_status *bs, uint32_t copy_size) { uint32_t sz; uint32_t sector_sz; uint32_t idx; uint32_t trailer_sz; uint32_t first_trailer_idx; uint8_t image_index; const struct flash_area *fap_pri; const struct flash_area *fap_sec; int rc; BOOT_LOG_INF("Starting swap using move algorithm."); sz = 0; g_last_idx = 0; sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0); while (1) { sz += sector_sz; /* Skip to next sector because all sectors will be moved up. */ g_last_idx++; if (sz >= copy_size) { break; } } /* * When starting a new swap upgrade, check that there is enough space. */ if (boot_status_is_reset(bs)) { sz = 0; trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state)); first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1; while (1) { sz += sector_sz; if (sz >= trailer_sz) { break; } first_trailer_idx--; } if (g_last_idx >= first_trailer_idx) { BOOT_LOG_WRN("Not enough free space to run swap upgrade"); BOOT_LOG_WRN("required %d bytes but only %d are available", (g_last_idx + 1) * sector_sz , first_trailer_idx * sector_sz); bs->swap_type = BOOT_SWAP_TYPE_NONE; return; } } image_index = BOOT_CURR_IMG(state); rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), &fap_pri); assert (rc == 0); rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index), &fap_sec); assert (rc == 0); fixup_revert(state, bs, fap_sec); if (bs->op == BOOT_STATUS_OP_MOVE) { idx = g_last_idx; while (idx > 0) { if (idx <= (g_last_idx - bs->idx + 1)) { boot_move_sector_up(idx, sector_sz, state, bs, fap_pri, fap_sec); } idx--; } bs->idx = BOOT_STATUS_IDX_0; } bs->op = BOOT_STATUS_OP_SWAP; idx = 1; while (idx <= g_last_idx) { if (idx >= bs->idx) { boot_swap_sectors(idx, sector_sz, state, bs, fap_pri, fap_sec); } idx++; } flash_area_close(fap_pri); flash_area_close(fap_sec); } #endif