// The MIT License (MIT) // // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file). // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // Some of this code is taken from the ref10 version of Ed25519 in SUPERCOP // 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as // public domain but parts have been replaced with code generated by Fiat // (https://github.com/mit-plv/fiat-crypto), which is MIT licensed. // // The field functions are shared by Ed25519 and X25519 where possible. #include #include #include #include #if defined(MCUBOOT_USE_MBED_TLS) #include #include #include #if MBEDTLS_VERSION_NUMBER >= 0x03000000 #include #endif #else #include #include #include #endif #include "curve25519.h" // Various pre-computed constants. #include "curve25519_tables.h" #define SHA512_DIGEST_LENGTH 64 // Low-level intrinsic operations static uint64_t load_3(const uint8_t *in) { uint64_t result; result = (uint64_t)in[0]; result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; return result; } static uint64_t load_4(const uint8_t *in) { uint64_t result; result = (uint64_t)in[0]; result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; result |= ((uint64_t)in[3]) << 24; return result; } // Field operations. typedef uint32_t fe_limb_t; #define FE_NUM_LIMBS 10 // assert_fe asserts that |f| satisfies bounds: // // [[0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333]] // // See comments in curve25519_32.h for which functions use these bounds for // inputs or outputs. #define assert_fe(f) \ do { \ for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ assert(f[_assert_fe_i] <= \ ((_assert_fe_i & 1) ? 0x2333333u : 0x4666666u)); \ } \ } while (0) // assert_fe_loose asserts that |f| satisfies bounds: // // [[0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999]] // // See comments in curve25519_32.h for which functions use these bounds for // inputs or outputs. #define assert_fe_loose(f) \ do { \ for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ assert(f[_assert_fe_i] <= \ ((_assert_fe_i & 1) ? 0x6999999u : 0xd333332u)); \ } \ } while (0) //FIXME: use Zephyr macro _Static_assert(sizeof(fe) == sizeof(fe_limb_t) * FE_NUM_LIMBS, "fe_limb_t[FE_NUM_LIMBS] is inconsistent with fe"); static void fe_frombytes_strict(fe *h, const uint8_t s[32]) { // |fiat_25519_from_bytes| requires the top-most bit be clear. assert((s[31] & 0x80) == 0); fiat_25519_from_bytes(h->v, s); assert_fe(h->v); } static void fe_frombytes(fe *h, const uint8_t s[32]) { uint8_t s_copy[32]; memcpy(s_copy, s, 32); s_copy[31] &= 0x7f; fe_frombytes_strict(h, s_copy); } static void fe_tobytes(uint8_t s[32], const fe *f) { assert_fe(f->v); fiat_25519_to_bytes(s, f->v); } // h = 0 static void fe_0(fe *h) { #if defined(MCUBOOT_USE_MBED_TLS) mbedtls_platform_zeroize(h, sizeof(fe)); #else _set(h, 0, sizeof(fe)); #endif } // h = 1 static void fe_1(fe *h) { #if defined(MCUBOOT_USE_MBED_TLS) mbedtls_platform_zeroize(h, sizeof(fe)); #else _set(h, 0, sizeof(fe)); #endif h->v[0] = 1; } // h = f + g // Can overlap h with f or g. static void fe_add(fe_loose *h, const fe *f, const fe *g) { assert_fe(f->v); assert_fe(g->v); fiat_25519_add(h->v, f->v, g->v); assert_fe_loose(h->v); } // h = f - g // Can overlap h with f or g. static void fe_sub(fe_loose *h, const fe *f, const fe *g) { assert_fe(f->v); assert_fe(g->v); fiat_25519_sub(h->v, f->v, g->v); assert_fe_loose(h->v); } static void fe_carry(fe *h, const fe_loose* f) { assert_fe_loose(f->v); fiat_25519_carry(h->v, f->v); assert_fe(h->v); } static void fe_mul_impl(fe_limb_t out[FE_NUM_LIMBS], const fe_limb_t in1[FE_NUM_LIMBS], const fe_limb_t in2[FE_NUM_LIMBS]) { assert_fe_loose(in1); assert_fe_loose(in2); fiat_25519_carry_mul(out, in1, in2); assert_fe(out); } static void fe_mul_ltt(fe_loose *h, const fe *f, const fe *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_ttt(fe *h, const fe *f, const fe *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_ttl(fe *h, const fe *f, const fe_loose *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_sq_tl(fe *h, const fe_loose *f) { assert_fe_loose(f->v); fiat_25519_carry_square(h->v, f->v); assert_fe(h->v); } static void fe_sq_tt(fe *h, const fe *f) { assert_fe_loose(f->v); fiat_25519_carry_square(h->v, f->v); assert_fe(h->v); } // h = -f static void fe_neg(fe_loose *h, const fe *f) { assert_fe(f->v); fiat_25519_opp(h->v, f->v); assert_fe_loose(h->v); } // h = f static void fe_copy(fe *h, const fe *f) { memmove(h, f, sizeof(fe)); } static void fe_copy_lt(fe_loose *h, const fe *f) { //FIXME: use Zephyr macro _Static_assert(sizeof(fe_loose) == sizeof(fe), "fe and fe_loose mismatch"); memmove(h, f, sizeof(fe)); } static void fe_loose_invert(fe *out, const fe_loose *z) { fe t0; fe t1; fe t2; fe t3; int i; fe_sq_tl(&t0, z); fe_sq_tt(&t1, &t0); for (i = 1; i < 2; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_tlt(&t1, z, &t1); fe_mul_ttt(&t0, &t0, &t1); fe_sq_tt(&t2, &t0); fe_mul_ttt(&t1, &t1, &t2); fe_sq_tt(&t2, &t1); for (i = 1; i < 5; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t2, &t1); for (i = 1; i < 10; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t2, &t2, &t1); fe_sq_tt(&t3, &t2); for (i = 1; i < 20; ++i) { fe_sq_tt(&t3, &t3); } fe_mul_ttt(&t2, &t3, &t2); fe_sq_tt(&t2, &t2); for (i = 1; i < 10; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t2, &t1); for (i = 1; i < 50; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t2, &t2, &t1); fe_sq_tt(&t3, &t2); for (i = 1; i < 100; ++i) { fe_sq_tt(&t3, &t3); } fe_mul_ttt(&t2, &t3, &t2); fe_sq_tt(&t2, &t2); for (i = 1; i < 50; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t1, &t1); for (i = 1; i < 5; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(out, &t1, &t0); } static void fe_invert(fe *out, const fe *z) { fe_loose l; fe_copy_lt(&l, z); fe_loose_invert(out, &l); } static int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { const uint8_t *a = in_a; const uint8_t *b = in_b; uint8_t x = 0; for (size_t i = 0; i < len; i++) { x |= a[i] ^ b[i]; } return x; } // return 0 if f == 0 // return 1 if f != 0 static int fe_isnonzero(const fe_loose *f) { fe tight; fe_carry(&tight, f); uint8_t s[32]; fe_tobytes(s, &tight); static const uint8_t zero[32] = {0}; return CRYPTO_memcmp(s, zero, sizeof(zero)) != 0; } // return 1 if f is in {1,3,5,...,q-2} // return 0 if f is in {0,2,4,...,q-1} static int fe_isnegative(const fe *f) { uint8_t s[32]; fe_tobytes(s, f); return s[0] & 1; } static void fe_sq2_tt(fe *h, const fe *f) { // h = f^2 fe_sq_tt(h, f); // h = h + h fe_loose tmp; fe_add(&tmp, h, h); fe_carry(h, &tmp); } static void fe_pow22523(fe *out, const fe *z) { fe t0; fe t1; fe t2; int i; fe_sq_tt(&t0, z); fe_sq_tt(&t1, &t0); for (i = 1; i < 2; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t1, z, &t1); fe_mul_ttt(&t0, &t0, &t1); fe_sq_tt(&t0, &t0); fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t1, &t0); for (i = 1; i < 5; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t1, &t0); for (i = 1; i < 10; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t1, &t1, &t0); fe_sq_tt(&t2, &t1); for (i = 1; i < 20; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t1, &t1); for (i = 1; i < 10; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t1, &t0); for (i = 1; i < 50; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t1, &t1, &t0); fe_sq_tt(&t2, &t1); for (i = 1; i < 100; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t1, &t1); for (i = 1; i < 50; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t0, &t0); for (i = 1; i < 2; ++i) { fe_sq_tt(&t0, &t0); } fe_mul_ttt(out, &t0, z); } // Group operations. void x25519_ge_tobytes(uint8_t s[32], const ge_p2 *h) { fe recip; fe x; fe y; fe_invert(&recip, &h->Z); fe_mul_ttt(&x, &h->X, &recip); fe_mul_ttt(&y, &h->Y, &recip); fe_tobytes(s, &y); s[31] ^= fe_isnegative(&x) << 7; } int x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t s[32]) { fe u; fe_loose v; fe v3; fe vxx; fe_loose check; fe_frombytes(&h->Y, s); fe_1(&h->Z); fe_sq_tt(&v3, &h->Y); fe_mul_ttt(&vxx, &v3, &d); fe_sub(&v, &v3, &h->Z); // u = y^2-1 fe_carry(&u, &v); fe_add(&v, &vxx, &h->Z); // v = dy^2+1 fe_sq_tl(&v3, &v); fe_mul_ttl(&v3, &v3, &v); // v3 = v^3 fe_sq_tt(&h->X, &v3); fe_mul_ttl(&h->X, &h->X, &v); fe_mul_ttt(&h->X, &h->X, &u); // x = uv^7 fe_pow22523(&h->X, &h->X); // x = (uv^7)^((q-5)/8) fe_mul_ttt(&h->X, &h->X, &v3); fe_mul_ttt(&h->X, &h->X, &u); // x = uv^3(uv^7)^((q-5)/8) fe_sq_tt(&vxx, &h->X); fe_mul_ttl(&vxx, &vxx, &v); fe_sub(&check, &vxx, &u); if (fe_isnonzero(&check)) { fe_add(&check, &vxx, &u); if (fe_isnonzero(&check)) { return 0; } fe_mul_ttt(&h->X, &h->X, &sqrtm1); } if (fe_isnegative(&h->X) != (s[31] >> 7)) { fe_loose t; fe_neg(&t, &h->X); fe_carry(&h->X, &t); } fe_mul_ttt(&h->T, &h->X, &h->Y); return 1; } static void ge_p2_0(ge_p2 *h) { fe_0(&h->X); fe_1(&h->Y); fe_1(&h->Z); } // r = p static void ge_p3_to_p2(ge_p2 *r, const ge_p3 *p) { fe_copy(&r->X, &p->X); fe_copy(&r->Y, &p->Y); fe_copy(&r->Z, &p->Z); } // r = p void x25519_ge_p3_to_cached(ge_cached *r, const ge_p3 *p) { fe_add(&r->YplusX, &p->Y, &p->X); fe_sub(&r->YminusX, &p->Y, &p->X); fe_copy_lt(&r->Z, &p->Z); fe_mul_ltt(&r->T2d, &p->T, &d2); } // r = p void x25519_ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p) { fe_mul_tll(&r->X, &p->X, &p->T); fe_mul_tll(&r->Y, &p->Y, &p->Z); fe_mul_tll(&r->Z, &p->Z, &p->T); } // r = p void x25519_ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p) { fe_mul_tll(&r->X, &p->X, &p->T); fe_mul_tll(&r->Y, &p->Y, &p->Z); fe_mul_tll(&r->Z, &p->Z, &p->T); fe_mul_tll(&r->T, &p->X, &p->Y); } // r = 2 * p static void ge_p2_dbl(ge_p1p1 *r, const ge_p2 *p) { fe trX, trZ, trT; fe t0; fe_sq_tt(&trX, &p->X); fe_sq_tt(&trZ, &p->Y); fe_sq2_tt(&trT, &p->Z); fe_add(&r->Y, &p->X, &p->Y); fe_sq_tl(&t0, &r->Y); fe_add(&r->Y, &trZ, &trX); fe_sub(&r->Z, &trZ, &trX); fe_carry(&trZ, &r->Y); fe_sub(&r->X, &t0, &trZ); fe_carry(&trZ, &r->Z); fe_sub(&r->T, &trT, &trZ); } // r = 2 * p static void ge_p3_dbl(ge_p1p1 *r, const ge_p3 *p) { ge_p2 q; ge_p3_to_p2(&q, p); ge_p2_dbl(r, &q); } // r = p + q static void ge_madd(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { fe trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->yplusx); fe_mul_tll(&trY, &r->Y, &q->yminusx); fe_mul_tlt(&trT, &q->xy2d, &p->T); fe_add(&r->T, &p->Z, &p->Z); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_add(&r->Z, &trZ, &trT); fe_sub(&r->T, &trZ, &trT); } // r = p - q static void ge_msub(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { fe trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->yminusx); fe_mul_tll(&trY, &r->Y, &q->yplusx); fe_mul_tlt(&trT, &q->xy2d, &p->T); fe_add(&r->T, &p->Z, &p->Z); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_sub(&r->Z, &trZ, &trT); fe_add(&r->T, &trZ, &trT); } // r = p + q void x25519_ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { fe trX, trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->YplusX); fe_mul_tll(&trY, &r->Y, &q->YminusX); fe_mul_tlt(&trT, &q->T2d, &p->T); fe_mul_ttl(&trX, &p->Z, &q->Z); fe_add(&r->T, &trX, &trX); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_add(&r->Z, &trZ, &trT); fe_sub(&r->T, &trZ, &trT); } // r = p - q void x25519_ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { fe trX, trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->YminusX); fe_mul_tll(&trY, &r->Y, &q->YplusX); fe_mul_tlt(&trT, &q->T2d, &p->T); fe_mul_ttl(&trX, &p->Z, &q->Z); fe_add(&r->T, &trX, &trX); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_sub(&r->Z, &trZ, &trT); fe_add(&r->T, &trZ, &trT); } static void slide(signed char *r, const uint8_t *a) { int i; int b; int k; for (i = 0; i < 256; ++i) { r[i] = 1 & (a[i >> 3] >> (i & 7)); } for (i = 0; i < 256; ++i) { if (r[i]) { for (b = 1; b <= 6 && i + b < 256; ++b) { if (r[i + b]) { if (r[i] + (r[i + b] << b) <= 15) { r[i] += r[i + b] << b; r[i + b] = 0; } else if (r[i] - (r[i + b] << b) >= -15) { r[i] -= r[i + b] << b; for (k = i + b; k < 256; ++k) { if (!r[k]) { r[k] = 1; break; } r[k] = 0; } } else { break; } } } } } } // r = a * A + b * B // where a = a[0]+256*a[1]+...+256^31 a[31]. // and b = b[0]+256*b[1]+...+256^31 b[31]. // B is the Ed25519 base point (x,4/5) with x positive. static void ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a, const ge_p3 *A, const uint8_t *b) { signed char aslide[256]; signed char bslide[256]; ge_cached Ai[8]; // A,3A,5A,7A,9A,11A,13A,15A ge_p1p1 t; ge_p3 u; ge_p3 A2; int i; slide(aslide, a); slide(bslide, b); x25519_ge_p3_to_cached(&Ai[0], A); ge_p3_dbl(&t, A); x25519_ge_p1p1_to_p3(&A2, &t); x25519_ge_add(&t, &A2, &Ai[0]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[1], &u); x25519_ge_add(&t, &A2, &Ai[1]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[2], &u); x25519_ge_add(&t, &A2, &Ai[2]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[3], &u); x25519_ge_add(&t, &A2, &Ai[3]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[4], &u); x25519_ge_add(&t, &A2, &Ai[4]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[5], &u); x25519_ge_add(&t, &A2, &Ai[5]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[6], &u); x25519_ge_add(&t, &A2, &Ai[6]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[7], &u); ge_p2_0(r); for (i = 255; i >= 0; --i) { if (aslide[i] || bslide[i]) { break; } } for (; i >= 0; --i) { ge_p2_dbl(&t, r); if (aslide[i] > 0) { x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_add(&t, &u, &Ai[aslide[i] / 2]); } else if (aslide[i] < 0) { x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_sub(&t, &u, &Ai[(-aslide[i]) / 2]); } if (bslide[i] > 0) { x25519_ge_p1p1_to_p3(&u, &t); ge_madd(&t, &u, &Bi[bslide[i] / 2]); } else if (bslide[i] < 0) { x25519_ge_p1p1_to_p3(&u, &t); ge_msub(&t, &u, &Bi[(-bslide[i]) / 2]); } x25519_ge_p1p1_to_p2(r, &t); } } // int64_lshift21 returns |a << 21| but is defined when shifting bits into the // sign bit. This works around a language flaw in C. static inline int64_t int64_lshift21(int64_t a) { return (int64_t)((uint64_t)a << 21); } // The set of scalars is \Z/l // where l = 2^252 + 27742317777372353535851937790883648493. // Input: // s[0]+256*s[1]+...+256^63*s[63] = s // // Output: // s[0]+256*s[1]+...+256^31*s[31] = s mod l // where l = 2^252 + 27742317777372353535851937790883648493. // Overwrites s in place. void x25519_sc_reduce(uint8_t s[64]) { int64_t s0 = 2097151 & load_3(s); int64_t s1 = 2097151 & (load_4(s + 2) >> 5); int64_t s2 = 2097151 & (load_3(s + 5) >> 2); int64_t s3 = 2097151 & (load_4(s + 7) >> 7); int64_t s4 = 2097151 & (load_4(s + 10) >> 4); int64_t s5 = 2097151 & (load_3(s + 13) >> 1); int64_t s6 = 2097151 & (load_4(s + 15) >> 6); int64_t s7 = 2097151 & (load_3(s + 18) >> 3); int64_t s8 = 2097151 & load_3(s + 21); int64_t s9 = 2097151 & (load_4(s + 23) >> 5); int64_t s10 = 2097151 & (load_3(s + 26) >> 2); int64_t s11 = 2097151 & (load_4(s + 28) >> 7); int64_t s12 = 2097151 & (load_4(s + 31) >> 4); int64_t s13 = 2097151 & (load_3(s + 34) >> 1); int64_t s14 = 2097151 & (load_4(s + 36) >> 6); int64_t s15 = 2097151 & (load_3(s + 39) >> 3); int64_t s16 = 2097151 & load_3(s + 42); int64_t s17 = 2097151 & (load_4(s + 44) >> 5); int64_t s18 = 2097151 & (load_3(s + 47) >> 2); int64_t s19 = 2097151 & (load_4(s + 49) >> 7); int64_t s20 = 2097151 & (load_4(s + 52) >> 4); int64_t s21 = 2097151 & (load_3(s + 55) >> 1); int64_t s22 = 2097151 & (load_4(s + 57) >> 6); int64_t s23 = (load_4(s + 60) >> 3); int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; int64_t carry10; int64_t carry11; int64_t carry12; int64_t carry13; int64_t carry14; int64_t carry15; int64_t carry16; s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; s18 = 0; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= int64_lshift21(carry12); carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= int64_lshift21(carry14); carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= int64_lshift21(carry16); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= int64_lshift21(carry13); carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= int64_lshift21(carry15); s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry1 = s1 >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry2 = s2 >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry3 = s3 >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry4 = s4 >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry5 = s5 >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry6 = s6 >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry7 = s7 >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry8 = s8 >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry9 = s9 >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry10 = s10 >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry11 = s11 >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry1 = s1 >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry2 = s2 >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry3 = s3 >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry4 = s4 >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry5 = s5 >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry6 = s6 >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry7 = s7 >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry8 = s8 >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry9 = s9 >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry10 = s10 >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); s[0] = s0 >> 0; s[1] = s0 >> 8; s[2] = (s0 >> 16) | (s1 << 5); s[3] = s1 >> 3; s[4] = s1 >> 11; s[5] = (s1 >> 19) | (s2 << 2); s[6] = s2 >> 6; s[7] = (s2 >> 14) | (s3 << 7); s[8] = s3 >> 1; s[9] = s3 >> 9; s[10] = (s3 >> 17) | (s4 << 4); s[11] = s4 >> 4; s[12] = s4 >> 12; s[13] = (s4 >> 20) | (s5 << 1); s[14] = s5 >> 7; s[15] = (s5 >> 15) | (s6 << 6); s[16] = s6 >> 2; s[17] = s6 >> 10; s[18] = (s6 >> 18) | (s7 << 3); s[19] = s7 >> 5; s[20] = s7 >> 13; s[21] = s8 >> 0; s[22] = s8 >> 8; s[23] = (s8 >> 16) | (s9 << 5); s[24] = s9 >> 3; s[25] = s9 >> 11; s[26] = (s9 >> 19) | (s10 << 2); s[27] = s10 >> 6; s[28] = (s10 >> 14) | (s11 << 7); s[29] = s11 >> 1; s[30] = s11 >> 9; s[31] = s11 >> 17; } int ED25519_verify(const uint8_t *message, size_t message_len, const uint8_t signature[64], const uint8_t public_key[32]) { ge_p3 A; if ((signature[63] & 224) != 0 || !x25519_ge_frombytes_vartime(&A, public_key)) { return 0; } fe_loose t; fe_neg(&t, &A.X); fe_carry(&A.X, &t); fe_neg(&t, &A.T); fe_carry(&A.T, &t); uint8_t pkcopy[32]; memcpy(pkcopy, public_key, 32); uint8_t rcopy[32]; memcpy(rcopy, signature, 32); union { uint64_t u64[4]; uint8_t u8[32]; } scopy; memcpy(&scopy.u8[0], signature + 32, 32); // https://tools.ietf.org/html/rfc8032#section-5.1.7 requires that s be in // the range [0, order) in order to prevent signature malleability. // kOrder is the order of Curve25519 in little-endian form. static const uint64_t kOrder[4] = { UINT64_C(0x5812631a5cf5d3ed), UINT64_C(0x14def9dea2f79cd6), 0, UINT64_C(0x1000000000000000), }; for (size_t i = 3;; i--) { if (scopy.u64[i] > kOrder[i]) { return 0; } else if (scopy.u64[i] < kOrder[i]) { break; } else if (i == 0) { return 0; } } #if defined(MCUBOOT_USE_MBED_TLS) mbedtls_sha512_context ctx; int ret; mbedtls_sha512_init(&ctx); ret = mbedtls_sha512_starts_ret(&ctx, 0); assert(ret == 0); ret = mbedtls_sha512_update_ret(&ctx, signature, 32); assert(ret == 0); ret = mbedtls_sha512_update_ret(&ctx, public_key, 32); assert(ret == 0); ret = mbedtls_sha512_update_ret(&ctx, message, message_len); assert(ret == 0); uint8_t h[SHA512_DIGEST_LENGTH]; ret = mbedtls_sha512_finish_ret(&ctx, h); assert(ret == 0); mbedtls_sha512_free(&ctx); #else struct tc_sha512_state_struct s; int rc; rc = tc_sha512_init(&s); assert(rc == TC_CRYPTO_SUCCESS); rc = tc_sha512_update(&s, signature, 32); assert(rc == TC_CRYPTO_SUCCESS); rc = tc_sha512_update(&s, public_key, 32); assert(rc == TC_CRYPTO_SUCCESS); rc = tc_sha512_update(&s, message, message_len); assert(rc == TC_CRYPTO_SUCCESS); uint8_t h[TC_SHA512_DIGEST_SIZE]; rc = tc_sha512_final(h, &s); assert(rc == TC_CRYPTO_SUCCESS); #endif x25519_sc_reduce(h); ge_p2 R; ge_double_scalarmult_vartime(&R, h, &A, scopy.u8); uint8_t rcheck[32]; x25519_ge_tobytes(rcheck, &R); return CRYPTO_memcmp(rcheck, rcopy, sizeof(rcheck)) == 0; } static void fe_cswap(fe *f, fe *g, fe_limb_t b) { b = 0-b; for (unsigned i = 0; i < FE_NUM_LIMBS; i++) { fe_limb_t x = f->v[i] ^ g->v[i]; x &= b; f->v[i] ^= x; g->v[i] ^= x; } } static void fiat_25519_carry_scmul_121666(uint32_t out1[10], const uint32_t arg1[10]) { uint64_t x1 = ((uint64_t)UINT32_C(0x1db42) * (arg1[9])); uint64_t x2 = ((uint64_t)UINT32_C(0x1db42) * (arg1[8])); uint64_t x3 = ((uint64_t)UINT32_C(0x1db42) * (arg1[7])); uint64_t x4 = ((uint64_t)UINT32_C(0x1db42) * (arg1[6])); uint64_t x5 = ((uint64_t)UINT32_C(0x1db42) * (arg1[5])); uint64_t x6 = ((uint64_t)UINT32_C(0x1db42) * (arg1[4])); uint64_t x7 = ((uint64_t)UINT32_C(0x1db42) * (arg1[3])); uint64_t x8 = ((uint64_t)UINT32_C(0x1db42) * (arg1[2])); uint64_t x9 = ((uint64_t)UINT32_C(0x1db42) * (arg1[1])); uint64_t x10 = ((uint64_t)UINT32_C(0x1db42) * (arg1[0])); uint32_t x11 = (uint32_t)(x10 >> 26); uint32_t x12 = (uint32_t)(x10 & UINT32_C(0x3ffffff)); uint64_t x13 = (x11 + x9); uint32_t x14 = (uint32_t)(x13 >> 25); uint32_t x15 = (uint32_t)(x13 & UINT32_C(0x1ffffff)); uint64_t x16 = (x14 + x8); uint32_t x17 = (uint32_t)(x16 >> 26); uint32_t x18 = (uint32_t)(x16 & UINT32_C(0x3ffffff)); uint64_t x19 = (x17 + x7); uint32_t x20 = (uint32_t)(x19 >> 25); uint32_t x21 = (uint32_t)(x19 & UINT32_C(0x1ffffff)); uint64_t x22 = (x20 + x6); uint32_t x23 = (uint32_t)(x22 >> 26); uint32_t x24 = (uint32_t)(x22 & UINT32_C(0x3ffffff)); uint64_t x25 = (x23 + x5); uint32_t x26 = (uint32_t)(x25 >> 25); uint32_t x27 = (uint32_t)(x25 & UINT32_C(0x1ffffff)); uint64_t x28 = (x26 + x4); uint32_t x29 = (uint32_t)(x28 >> 26); uint32_t x30 = (uint32_t)(x28 & UINT32_C(0x3ffffff)); uint64_t x31 = (x29 + x3); uint32_t x32 = (uint32_t)(x31 >> 25); uint32_t x33 = (uint32_t)(x31 & UINT32_C(0x1ffffff)); uint64_t x34 = (x32 + x2); uint32_t x35 = (uint32_t)(x34 >> 26); uint32_t x36 = (uint32_t)(x34 & UINT32_C(0x3ffffff)); uint64_t x37 = (x35 + x1); uint32_t x38 = (uint32_t)(x37 >> 25); uint32_t x39 = (uint32_t)(x37 & UINT32_C(0x1ffffff)); uint32_t x40 = (x38 * (uint32_t)UINT8_C(0x13)); uint32_t x41 = (x12 + x40); uint32_t x42 = (x41 >> 26); uint32_t x43 = (x41 & UINT32_C(0x3ffffff)); uint32_t x44 = (x42 + x15); uint32_t x45 = (x44 >> 25); uint32_t x46 = (x44 & UINT32_C(0x1ffffff)); uint32_t x47 = (x45 + x18); out1[0] = x43; out1[1] = x46; out1[2] = x47; out1[3] = x21; out1[4] = x24; out1[5] = x27; out1[6] = x30; out1[7] = x33; out1[8] = x36; out1[9] = x39; } static void fe_mul121666(fe *h, const fe_loose *f) { assert_fe_loose(f->v); fiat_25519_carry_scmul_121666(h->v, f->v); assert_fe(h->v); } static void x25519_scalar_mult_generic(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { fe x1, x2, z2, x3, z3, tmp0, tmp1; fe_loose x2l, z2l, x3l, tmp0l, tmp1l; uint8_t e[32]; memcpy(e, scalar, 32); e[0] &= 248; e[31] &= 127; e[31] |= 64; // The following implementation was transcribed to Coq and proven to // correspond to unary scalar multiplication in affine coordinates given that // x1 != 0 is the x coordinate of some point on the curve. It was also checked // in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2 // = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the // underlying field, so it applies to Curve25519 itself and the quadratic // twist of Curve25519. It was not proven in Coq that prime-field arithmetic // correctly simulates extension-field arithmetic on prime-field values. // The decoding of the byte array representation of e was not considered. // Specification of Montgomery curves in affine coordinates: // // Proof that these form a group that is isomorphic to a Weierstrass curve: // // Coq transcription and correctness proof of the loop (where scalarbits=255): // // // preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0 fe_frombytes(&x1, point); fe_1(&x2); fe_0(&z2); fe_copy(&x3, &x1); fe_1(&z3); unsigned swap = 0; int pos; for (pos = 254; pos >= 0; --pos) { // loop invariant as of right before the test, for the case where x1 != 0: // pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero // let r := e >> (pos+1) in the following equalities of projective points: // to_xz (r*P) === if swap then (x3, z3) else (x2, z2) // to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) // x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P) unsigned b = 1 & (e[pos / 8] >> (pos & 7)); swap ^= b; fe_cswap(&x2, &x3, swap); fe_cswap(&z2, &z3, swap); swap = b; // Coq transcription of ladderstep formula (called from transcribed loop): // // // x1 != 0 // x1 = 0 fe_sub(&tmp0l, &x3, &z3); fe_sub(&tmp1l, &x2, &z2); fe_add(&x2l, &x2, &z2); fe_add(&z2l, &x3, &z3); fe_mul_tll(&z3, &tmp0l, &x2l); fe_mul_tll(&z2, &z2l, &tmp1l); fe_sq_tl(&tmp0, &tmp1l); fe_sq_tl(&tmp1, &x2l); fe_add(&x3l, &z3, &z2); fe_sub(&z2l, &z3, &z2); fe_mul_ttt(&x2, &tmp1, &tmp0); fe_sub(&tmp1l, &tmp1, &tmp0); fe_sq_tl(&z2, &z2l); fe_mul121666(&z3, &tmp1l); fe_sq_tl(&x3, &x3l); fe_add(&tmp0l, &tmp0, &z3); fe_mul_ttt(&z3, &x1, &z2); fe_mul_tll(&z2, &tmp1l, &tmp0l); } // here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2) fe_cswap(&x2, &x3, swap); fe_cswap(&z2, &z3, swap); fe_invert(&z2, &z2); fe_mul_ttt(&x2, &x2, &z2); fe_tobytes(out, &x2); } int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32], const uint8_t peer_public_value[32]) { static const uint8_t kZeros[32] = {0}; x25519_scalar_mult_generic(out_shared_key, private_key, peer_public_value); // The all-zero output results when the input is a point of small order. return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0; }