/* * Copyright (c) 2018-2021, Arm Limited. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * */ #include #include #include "bitops.h" #include "critical_section.h" #include "current.h" #include "fih.h" #include "psa/client.h" #include "psa/service.h" #include "thread.h" #include "internal_errors.h" #include "tfm_spm_hal.h" #include "tfm_api.h" #include "tfm_secure_api.h" #include "tfm_memory_utils.h" #include "tfm_hal_defs.h" #include "tfm_hal_interrupt.h" #include "tfm_hal_isolation.h" #include "spm_ipc.h" #include "tfm_peripherals_def.h" #include "tfm_core_utils.h" #include "tfm_nspm.h" #include "tfm_rpc.h" #include "tfm_core_trustzone.h" #include "lists.h" #include "tfm_pools.h" #include "region.h" #include "psa_manifest/pid.h" #include "ffm/backend.h" #include "load/partition_defs.h" #include "load/service_defs.h" #include "load/asset_defs.h" #include "load/spm_load_api.h" #include "tfm_nspm.h" /* Partition and service runtime data list head/runtime data table */ static struct service_head_t services_listhead; struct service_t *stateless_services_ref_tbl[STATIC_HANDLE_NUM_LIMIT]; /* Pools */ TFM_POOL_DECLARE(conn_handle_pool, sizeof(struct tfm_conn_handle_t), TFM_CONN_HANDLE_MAX_NUM); extern uint32_t scheduler_lock; /*********************** Connection handle conversion APIs *******************/ #define CONVERSION_FACTOR_BITOFFSET 3 #define CONVERSION_FACTOR_VALUE (1 << CONVERSION_FACTOR_BITOFFSET) /* Set 32 as the maximum */ #define CONVERSION_FACTOR_VALUE_MAX 0x20 #if CONVERSION_FACTOR_VALUE > CONVERSION_FACTOR_VALUE_MAX #error "CONVERSION FACTOR OUT OF RANGE" #endif static uint32_t loop_index; /* * A handle instance psa_handle_t allocated inside SPM is actually a memory * address among the handle pool. Return this handle to the client directly * exposes information of secure memory address. In this case, converting the * handle into another value does not represent the memory address to avoid * exposing secure memory directly to clients. * * This function converts the handle instance into another value by scaling the * handle in pool offset, the converted value is named as a user handle. * * The formula: * user_handle = (handle_instance - POOL_START) * CONVERSION_FACTOR_VALUE + * CLIENT_HANDLE_VALUE_MIN + loop_index * where: * CONVERSION_FACTOR_VALUE = 1 << CONVERSION_FACTOR_BITOFFSET, and should not * exceed CONVERSION_FACTOR_VALUE_MAX. * * handle_instance in RANGE[POOL_START, POOL_END] * user_handle in RANGE[CLIENT_HANDLE_VALUE_MIN, 0x3FFFFFFF] * loop_index in RANGE[0, CONVERSION_FACTOR_VALUE - 1] * * note: * loop_index is used to promise same handle instance is converted into * different user handles in short time. */ psa_handle_t tfm_spm_to_user_handle(struct tfm_conn_handle_t *handle_instance) { psa_handle_t user_handle; loop_index = (loop_index + 1) % CONVERSION_FACTOR_VALUE; user_handle = (psa_handle_t)((((uintptr_t)handle_instance - (uintptr_t)conn_handle_pool) << CONVERSION_FACTOR_BITOFFSET) + CLIENT_HANDLE_VALUE_MIN + loop_index); return user_handle; } /* * This function converts a user handle into a corresponded handle instance. * The converted value is validated before returning, an invalid handle instance * is returned as NULL. * * The formula: * handle_instance = ((user_handle - CLIENT_HANDLE_VALUE_MIN) / * CONVERSION_FACTOR_VALUE) + POOL_START * where: * CONVERSION_FACTOR_VALUE = 1 << CONVERSION_FACTOR_BITOFFSET, and should not * exceed CONVERSION_FACTOR_VALUE_MAX. * * handle_instance in RANGE[POOL_START, POOL_END] * user_handle in RANGE[CLIENT_HANDLE_VALUE_MIN, 0x3FFFFFFF] * loop_index in RANGE[0, CONVERSION_FACTOR_VALUE - 1] */ struct tfm_conn_handle_t *tfm_spm_to_handle_instance(psa_handle_t user_handle) { struct tfm_conn_handle_t *handle_instance; if (user_handle == PSA_NULL_HANDLE) { return NULL; } handle_instance = (struct tfm_conn_handle_t *)((((uintptr_t)user_handle - CLIENT_HANDLE_VALUE_MIN) >> CONVERSION_FACTOR_BITOFFSET) + (uintptr_t)conn_handle_pool); return handle_instance; } /* Service handle management functions */ struct tfm_conn_handle_t *tfm_spm_create_conn_handle(struct service_t *service, int32_t client_id) { struct tfm_conn_handle_t *p_handle; TFM_CORE_ASSERT(service); /* Get buffer for handle list structure from handle pool */ p_handle = (struct tfm_conn_handle_t *)tfm_pool_alloc(conn_handle_pool); if (!p_handle) { return NULL; } spm_memset(p_handle, 0, sizeof(*p_handle)); p_handle->internal_msg.service = service; p_handle->status = TFM_HANDLE_STATUS_IDLE; p_handle->client_id = client_id; /* Add handle node to list for next psa functions */ BI_LIST_INSERT_BEFORE(&service->handle_list, &p_handle->list); return p_handle; } int32_t tfm_spm_validate_conn_handle( const struct tfm_conn_handle_t *conn_handle, int32_t client_id) { /* Check the handle address is validated */ if (is_valid_chunk_data_in_pool(conn_handle_pool, (uint8_t *)conn_handle) != true) { return SPM_ERROR_GENERIC; } /* Check the handle caller is correct */ if (conn_handle->client_id != client_id) { return SPM_ERROR_GENERIC; } return SPM_SUCCESS; } int32_t tfm_spm_free_conn_handle(struct service_t *service, struct tfm_conn_handle_t *conn_handle) { struct critical_section_t cs_assert = CRITICAL_SECTION_STATIC_INIT; TFM_CORE_ASSERT(service); TFM_CORE_ASSERT(conn_handle != NULL); /* Clear magic as the handler is not used anymore */ conn_handle->internal_msg.magic = 0; CRITICAL_SECTION_ENTER(cs_assert); /* Remove node from handle list */ BI_LIST_REMOVE_NODE(&conn_handle->list); /* Back handle buffer to pool */ tfm_pool_free(conn_handle_pool, conn_handle); CRITICAL_SECTION_LEAVE(cs_assert); return SPM_SUCCESS; } int32_t tfm_spm_set_rhandle(struct service_t *service, struct tfm_conn_handle_t *conn_handle, void *rhandle) { TFM_CORE_ASSERT(service); /* Set reverse handle value only be allowed for a connected handle */ TFM_CORE_ASSERT(conn_handle != NULL); conn_handle->rhandle = rhandle; return SPM_SUCCESS; } /** * \brief Get reverse handle value from connection handle. * * \param[in] service Target service context pointer * \param[in] conn_handle Connection handle created by * tfm_spm_create_conn_handle() * * \retval void * Success * \retval "Does not return" Panic for those: * service pointer are NULL * handle is \ref PSA_NULL_HANDLE * handle node does not be found */ static void *tfm_spm_get_rhandle(struct service_t *service, struct tfm_conn_handle_t *conn_handle) { TFM_CORE_ASSERT(service); /* Get reverse handle value only be allowed for a connected handle */ TFM_CORE_ASSERT(conn_handle != NULL); return conn_handle->rhandle; } /* Partition management functions */ struct tfm_msg_body_t *tfm_spm_get_msg_by_signal(struct partition_t *partition, psa_signal_t signal) { struct bi_list_node_t *node, *head; struct tfm_msg_body_t *tmp_msg, *msg = NULL; struct critical_section_t cs_assert = CRITICAL_SECTION_STATIC_INIT; TFM_CORE_ASSERT(partition); head = &partition->msg_list; if (BI_LIST_IS_EMPTY(head)) { return NULL; } /* * There may be multiple messages for this RoT Service signal, do not clear * partition mask until no remaining message. Search may be optimized. */ CRITICAL_SECTION_ENTER(cs_assert); BI_LIST_FOR_EACH(node, head) { tmp_msg = TO_CONTAINER(node, struct tfm_msg_body_t, msg_node); if (tmp_msg->service->p_ldinf->signal == signal && msg) { CRITICAL_SECTION_LEAVE(cs_assert); return msg; } else if (tmp_msg->service->p_ldinf->signal == signal) { msg = tmp_msg; BI_LIST_REMOVE_NODE(node); } } partition->signals_asserted &= ~signal; CRITICAL_SECTION_LEAVE(cs_assert); return msg; } uint32_t tfm_spm_partition_get_privileged_mode(uint32_t partition_flags) { #if TFM_LVL == 1 return TFM_PARTITION_PRIVILEGED_MODE; #else /* TFM_LVL == 1 */ if (partition_flags & PARTITION_MODEL_PSA_ROT) { return TFM_PARTITION_PRIVILEGED_MODE; } else { return TFM_PARTITION_UNPRIVILEGED_MODE; } #endif /* TFM_LVL == 1 */ } struct service_t *tfm_spm_get_service_by_sid(uint32_t sid) { struct service_t *p_prev, *p_curr; UNI_LIST_FOR_EACH_PREV(p_prev, p_curr, &services_listhead) { if (p_curr->p_ldinf->sid == sid) { UNI_LIST_MOVE_AFTER(&services_listhead, p_prev, p_curr); return p_curr; } } return NULL; } /** * \brief Get the partition context by partition ID. * * \param[in] partition_id Partition identity * * \retval NULL Failed * \retval "Not NULL" Target partition context pointer, * \ref partition_t structures */ struct partition_t *tfm_spm_get_partition_by_id(int32_t partition_id) { struct partition_t *p_part; UNI_LIST_FOR_EACH(p_part, PARTITION_LIST_ADDR) { if (p_part->p_ldinf->pid == partition_id) { return p_part; } } return NULL; } struct partition_t *tfm_spm_get_running_partition(void) { return GET_CURRENT_COMPONENT(); } int32_t tfm_spm_check_client_version(struct service_t *service, uint32_t version) { TFM_CORE_ASSERT(service); switch (SERVICE_GET_VERSION_POLICY(service->p_ldinf->flags)) { case SERVICE_VERSION_POLICY_RELAXED: if (version > service->p_ldinf->version) { return SPM_ERROR_VERSION; } break; case SERVICE_VERSION_POLICY_STRICT: if (version != service->p_ldinf->version) { return SPM_ERROR_VERSION; } break; default: return SPM_ERROR_VERSION; } return SPM_SUCCESS; } int32_t tfm_spm_check_authorization(uint32_t sid, struct service_t *service, bool ns_caller) { struct partition_t *partition = NULL; uint32_t *dep; int32_t i; TFM_CORE_ASSERT(service); if (ns_caller) { if (!SERVICE_IS_NS_ACCESSIBLE(service->p_ldinf->flags)) { return SPM_ERROR_GENERIC; } } else { partition = tfm_spm_get_running_partition(); if (!partition) { tfm_core_panic(); } dep = (uint32_t *)LOAD_INFO_DEPS(partition->p_ldinf); for (i = 0; i < partition->p_ldinf->ndeps; i++) { if (dep[i] == sid) { break; } } if (i == partition->p_ldinf->ndeps) { return SPM_ERROR_GENERIC; } } return SPM_SUCCESS; } /* Message functions */ struct tfm_msg_body_t *tfm_spm_get_msg_from_handle(psa_handle_t msg_handle) { /* * The message handler passed by the caller is considered invalid in the * following cases: * 1. Not a valid message handle. (The address of a message is not the * address of a possible handle from the pool * 2. Handle not belongs to the caller partition (The handle is either * unused, or owned by anither partition) * Check the conditions above */ struct tfm_msg_body_t *p_msg; int32_t partition_id; struct tfm_conn_handle_t *p_conn_handle = tfm_spm_to_handle_instance(msg_handle); if (is_valid_chunk_data_in_pool( conn_handle_pool, (uint8_t *)p_conn_handle) != 1) { return NULL; } p_msg = &p_conn_handle->internal_msg; /* * Check that the magic number is correct. This proves that the message * structure contains an active message. */ if (p_msg->magic != TFM_MSG_MAGIC) { return NULL; } /* Check that the running partition owns the message */ partition_id = tfm_spm_partition_get_running_partition_id(); if (partition_id != p_msg->service->partition->p_ldinf->pid) { return NULL; } return p_msg; } struct tfm_msg_body_t * tfm_spm_get_msg_buffer_from_conn_handle(struct tfm_conn_handle_t *conn_handle) { TFM_CORE_ASSERT(conn_handle != NULL); return &(conn_handle->internal_msg); } void tfm_spm_fill_msg(struct tfm_msg_body_t *msg, struct service_t *service, psa_handle_t handle, int32_t type, int32_t client_id, psa_invec *invec, size_t in_len, psa_outvec *outvec, size_t out_len, psa_outvec *caller_outvec) { uint32_t i; struct tfm_conn_handle_t *conn_handle; TFM_CORE_ASSERT(msg); TFM_CORE_ASSERT(service); TFM_CORE_ASSERT(!(invec == NULL && in_len != 0)); TFM_CORE_ASSERT(!(outvec == NULL && out_len != 0)); TFM_CORE_ASSERT(in_len <= PSA_MAX_IOVEC); TFM_CORE_ASSERT(out_len <= PSA_MAX_IOVEC); TFM_CORE_ASSERT(in_len + out_len <= PSA_MAX_IOVEC); /* Clear message buffer before using it */ spm_memset(&msg->msg, 0, sizeof(psa_msg_t)); THRD_SYNC_INIT(&msg->ack_evnt); msg->magic = TFM_MSG_MAGIC; msg->service = service; msg->p_client = GET_CURRENT_COMPONENT(); msg->caller_outvec = caller_outvec; msg->msg.client_id = client_id; /* Copy contents */ msg->msg.type = type; for (i = 0; i < in_len; i++) { msg->msg.in_size[i] = invec[i].len; msg->invec[i].base = invec[i].base; } for (i = 0; i < out_len; i++) { msg->msg.out_size[i] = outvec[i].len; msg->outvec[i].base = outvec[i].base; /* Out len is used to record the writed number, set 0 here again */ msg->outvec[i].len = 0; } /* Use the user connect handle as the message handle */ msg->msg.handle = handle; conn_handle = tfm_spm_to_handle_instance(handle); /* For connected handle, set rhandle to every message */ if (conn_handle) { msg->msg.rhandle = tfm_spm_get_rhandle(service, conn_handle); } /* Set the private data of NSPE client caller in multi-core topology */ if (TFM_CLIENT_ID_IS_NS(client_id)) { tfm_rpc_set_caller_data(msg, client_id); } } int32_t tfm_spm_partition_get_running_partition_id(void) { struct partition_t *partition; partition = tfm_spm_get_running_partition(); if (partition && partition->p_ldinf) { return partition->p_ldinf->pid; } else { return INVALID_PARTITION_ID; } } int32_t tfm_memory_check(const void *buffer, size_t len, bool ns_caller, enum tfm_memory_access_e access, uint32_t privileged) { enum tfm_hal_status_t err; uint32_t attr = 0; /* If len is zero, this indicates an empty buffer and base is ignored */ if (len == 0) { return SPM_SUCCESS; } if (!buffer) { return SPM_ERROR_BAD_PARAMETERS; } if ((uintptr_t)buffer > (UINTPTR_MAX - len)) { return SPM_ERROR_MEMORY_CHECK; } if (access == TFM_MEMORY_ACCESS_RW) { attr |= (TFM_HAL_ACCESS_READABLE | TFM_HAL_ACCESS_WRITABLE); } else { attr |= TFM_HAL_ACCESS_READABLE; } if (privileged == TFM_PARTITION_UNPRIVILEGED_MODE) { attr |= TFM_HAL_ACCESS_UNPRIVILEGED; } else { attr &= ~TFM_HAL_ACCESS_UNPRIVILEGED; } if (ns_caller) { attr |= TFM_HAL_ACCESS_NS; } err = tfm_hal_memory_has_access((uintptr_t)buffer, len, attr); if (err == TFM_HAL_SUCCESS) { return SPM_SUCCESS; } return SPM_ERROR_MEMORY_CHECK; } bool tfm_spm_is_ns_caller(void) { #if defined(TFM_MULTI_CORE_TOPOLOGY) /* Multi-core NS PSA API request is processed by pendSV. */ return (__get_active_exc_num() == EXC_NUM_PENDSV); #else struct partition_t *partition = tfm_spm_get_running_partition(); if (!partition) { tfm_core_panic(); } return (partition->p_ldinf->pid == TFM_SP_NON_SECURE_ID); #endif } uint32_t tfm_spm_get_caller_privilege_mode(void) { struct partition_t *partition; #if defined(TFM_MULTI_CORE_TOPOLOGY) || defined(FORWARD_PROT_MSG) /* * In multi-core topology, if PSA request is from mailbox, the client * is unprivileged. */ if (__get_active_exc_num() == EXC_NUM_PENDSV) { return TFM_PARTITION_UNPRIVILEGED_MODE; } #endif partition = tfm_spm_get_running_partition(); if (!partition) { tfm_core_panic(); } return tfm_spm_partition_get_privileged_mode(partition->p_ldinf->flags); } int32_t tfm_spm_get_client_id(bool ns_caller) { int32_t client_id; if (ns_caller) { client_id = tfm_nspm_get_current_client_id(); } else { client_id = tfm_spm_partition_get_running_partition_id(); } if (ns_caller != (client_id < 0)) { /* NS client ID must be negative and Secure ID must >= 0 */ tfm_core_panic(); } return client_id; } uint32_t tfm_spm_init(void) { struct partition_t *partition; const struct partition_load_info_t *p_pldi; uint32_t service_setting = 0; #ifdef TFM_FIH_PROFILE_ON fih_int fih_rc = FIH_FAILURE; #endif tfm_pool_init(conn_handle_pool, POOL_BUFFER_SIZE(conn_handle_pool), sizeof(struct tfm_conn_handle_t), TFM_CONN_HANDLE_MAX_NUM); UNI_LISI_INIT_HEAD(PARTITION_LIST_ADDR); UNI_LISI_INIT_HEAD(&services_listhead); /* Init the nonsecure context. */ #ifndef TFM_MULTI_CORE_TOPOLOGY tfm_nspm_ctx_init(); #endif while (1) { partition = load_a_partition_assuredly(PARTITION_LIST_ADDR); if (partition == NO_MORE_PARTITION) { break; } p_pldi = partition->p_ldinf; if (p_pldi->nservices) { service_setting = load_services_assuredly( partition, &services_listhead, stateless_services_ref_tbl, sizeof(stateless_services_ref_tbl)); } if (p_pldi->nirqs) { load_irqs_assuredly(partition); } /* Bind the partition with platform. */ #if TFM_FIH_PROFILE_ON FIH_CALL(tfm_hal_bind_boundaries, fih_rc, partition->p_ldinf, &partition->p_boundaries); if (fih_not_eq(fih_rc, fih_int_encode(TFM_HAL_SUCCESS))) { tfm_core_panic(); } #else /* TFM_FIH_PROFILE_ON */ if (tfm_hal_bind_boundaries(partition->p_ldinf, &partition->p_boundaries) != TFM_HAL_SUCCESS) { tfm_core_panic(); } #endif /* TFM_FIH_PROFILE_ON */ backend_instance.comp_init_assuredly(partition, service_setting); } return backend_instance.system_run(); } /* * Return both current and next context to assembly via AAPCS trick: * - Returning a 64 bit integer by 32-bit R0 and R1. * * This is architecture-specific, hence the scheduler entry and this * 'do_schedule' MAY be different on another architecture. */ union returning_contexts_t { struct { uint32_t curr; uint32_t next; } ctx; uint64_t curr_next_ctxs; }; uint64_t do_schedule(void) { union returning_contexts_t ret_ctx; struct partition_t *p_part_curr, *p_part_next; struct thread_t *pth_next = thrd_next(); ret_ctx.ctx.curr = (uint32_t)CURRENT_THREAD->p_context_ctrl; ret_ctx.ctx.next = (uint32_t)CURRENT_THREAD->p_context_ctrl; p_part_curr = GET_THRD_OWNER(CURRENT_THREAD); p_part_next = GET_THRD_OWNER(pth_next); if (scheduler_lock != SCHEDULER_LOCKED && pth_next != NULL && p_part_curr != p_part_next) { /* Check if there is enough room on stack to save more context */ if ((p_part_curr->ctx_ctrl.sp_limit + sizeof(struct tfm_additional_context_t)) > __get_PSP()) { tfm_core_panic(); } /* * If required, let the platform update boundary based on its * implementation. Change privilege, MPU or other configurations. */ if (p_part_curr->p_boundaries != p_part_next->p_boundaries) { if (tfm_hal_update_boundaries(p_part_next->p_ldinf, p_part_next->p_boundaries) != TFM_HAL_SUCCESS) { tfm_core_panic(); } } ARCH_FLUSH_FP_CONTEXT(); ret_ctx.ctx.next = (uint32_t)pth_next->p_context_ctrl; CURRENT_THREAD = pth_next; } /* * Handle pending mailbox message from NS in multi-core topology. * Empty operation on single Armv8-M platform. */ tfm_rpc_client_call_handler(); return ret_ctx.curr_next_ctxs; } void update_caller_outvec_len(struct tfm_msg_body_t *msg) { uint32_t i; /* * FixeMe: abstract these part into dedicated functions to avoid * accessing thread context in psa layer */ /* * If it is a NS request via RPC, the owner of this message is not set. * Or if it is a SFN message, it does not have owner thread state either. */ if ((!is_tfm_rpc_msg(msg)) && (msg->sfn_magic != TFM_MSG_MAGIC_SFN)) { TFM_CORE_ASSERT(msg->ack_evnt.owner->state == THRD_STATE_BLOCK); } for (i = 0; i < PSA_MAX_IOVEC; i++) { if (msg->msg.out_size[i] == 0) { continue; } TFM_CORE_ASSERT(msg->caller_outvec[i].base == msg->outvec[i].base); msg->caller_outvec[i].len = msg->outvec[i].len; } } void spm_assert_signal(void *p_pt, psa_signal_t signal) { struct critical_section_t cs_assert = CRITICAL_SECTION_STATIC_INIT; struct partition_t *partition = (struct partition_t *)p_pt; if (!partition) { tfm_core_panic(); } CRITICAL_SECTION_ENTER(cs_assert); partition->signals_asserted |= signal; if (partition->signals_waiting & signal) { thrd_wake_up(&partition->waitobj, partition->signals_asserted & partition->signals_waiting); partition->signals_waiting &= ~signal; } CRITICAL_SECTION_LEAVE(cs_assert); } __attribute__((naked)) static psa_flih_result_t tfm_flih_deprivileged_handling(void *p_pt, uintptr_t fn_flih, void *p_context_ctrl) { __ASM volatile("SVC %0 \n" "BX LR \n" : : "I" (TFM_SVC_PREPARE_DEPRIV_FLIH)); } void spm_handle_interrupt(void *p_pt, struct irq_load_info_t *p_ildi) { psa_flih_result_t flih_result; struct partition_t *p_part; if (!p_pt || !p_ildi) { tfm_core_panic(); } p_part = (struct partition_t *)p_pt; if (p_ildi->pid != p_part->p_ldinf->pid) { tfm_core_panic(); } if (p_ildi->flih_func == NULL) { /* SLIH Model Handling */ tfm_hal_irq_disable(p_ildi->source); flih_result = PSA_FLIH_SIGNAL; } else { /* FLIH Model Handling */ if (tfm_spm_partition_get_privileged_mode(p_part->p_ldinf->flags) == TFM_PARTITION_PRIVILEGED_MODE) { flih_result = p_ildi->flih_func(); } else { flih_result = tfm_flih_deprivileged_handling( p_part, (uintptr_t)p_ildi->flih_func, CURRENT_THREAD->p_context_ctrl); } } if (flih_result == PSA_FLIH_SIGNAL) { spm_assert_signal(p_pt, p_ildi->signal); } } struct irq_load_info_t *get_irq_info_for_signal( const struct partition_load_info_t *p_ldinf, psa_signal_t signal) { size_t i; struct irq_load_info_t *irq_info; if (!IS_ONLY_ONE_BIT_IN_UINT32(signal)) { return NULL; } irq_info = (struct irq_load_info_t *)LOAD_INFO_IRQ(p_ldinf); for (i = 0; i < p_ldinf->nirqs; i++) { if (irq_info[i].signal == signal) { return &irq_info[i]; } } return NULL; }