model_name: xdxd_spacenet4 model_path: train: false infer: true pretrained: true nn_framework: torch batch_size: 12 data_specs: width: 512 height: 512 dtype: image_type: zscore rescale: false rescale_minima: auto rescale_maxima: auto channels: 4 label_type: mask is_categorical: false mask_channels: 1 val_holdout_frac: 0.2 data_workers: training_data_csv: '/path/to/training_df.csv' validation_data_csv: inference_data_csv: '/path/to/test_df.csv' training_augmentation: augmentations: DropChannel: idx: 3 axis: 2 HorizontalFlip: p: 0.5 RandomRotate90: p: 0.5 RandomCrop: height: 512 width: 512 p: 1.0 Normalize: mean: - 0.006479 - 0.009328 - 0.01123 std: - 0.004986 - 0.004964 - 0.004950 max_pixel_value: 65535.0 p: 1.0 p: 1.0 shuffle: true validation_augmentation: augmentations: DropChannel: idx: 3 axis: 2 CenterCrop: height: 512 width: 512 p: 1.0 Normalize: mean: - 0.006479 - 0.009328 - 0.01123 std: - 0.004986 - 0.004964 - 0.004950 max_pixel_value: 65535.0 p: 1.0 p: 1.0 inference_augmentation: augmentations: DropChannel: idx: 3 axis: 2 p: 1.0 Normalize: mean: - 0.006479 - 0.009328 - 0.01123 std: - 0.004986 - 0.004964 - 0.004950 max_pixel_value: 65535.0 p: 1.0 p: 1.0 training: epochs: 60 steps_per_epoch: optimizer: Adam lr: 1e-4 opt_args: loss: bcewithlogits: jaccard: loss_weights: bcewithlogits: 10 jaccard: 2.5 metrics: training: validation: checkpoint_frequency: 10 callbacks: model_checkpoint: filepath: 'xdxd_best.pth' monitor: val_loss model_dest_path: 'xdxd.pth' verbose: true inference: window_step_size_x: window_step_size_y: output_dir: 'inference_out/'