{ "cells": [ { "cell_type": "markdown", "id": "ae75e694", "metadata": {}, "source": [ "# Prerequisites for the workshop" ] }, { "cell_type": "markdown", "id": "f7317d1c", "metadata": {}, "source": [ "## Conda environment for the workshop (preconfigured)" ] }, { "cell_type": "code", "execution_count": 1, "id": "03475b5b", "metadata": {}, "outputs": [], "source": [ "# Creating a conda environment (tutorial-env) with the libraries installed\n", "!./setup-env.sh tutorial_env" ] }, { "cell_type": "code", "execution_count": null, "id": "423b622f", "metadata": {}, "outputs": [], "source": [ "# Data download for the workshop\n", "# Select subset of the data that will be used for the workshop and give link to the s3 bucket for all the data \n" ] }, { "cell_type": "code", "execution_count": null, "id": "04b6c76e", "metadata": {}, "outputs": [], "source": [ "# All the data can be dowloaded using the following script \n", "!./download-from-s3.sh" ] } ], "metadata": { "kernelspec": { "display_name": "conda_amazonei_mxnet_p36", "language": "python", "name": "conda_amazonei_mxnet_p36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.13" } }, "nbformat": 4, "nbformat_minor": 5 }