import sys import json import boto3 sys.path.insert(0, "../src") import bioims trainingConfigurationClient = bioims.client('training-configuration') # To be filled-in for each new deployment plateMethodArn="arn:aws:batch:us-east-1:580829821648:job-definition/platepreprocessingjobde-f44b2d3675e9fc4:1" imageMethodArn="arn:aws:batch:us-east-1:580829821648:job-definition/imagepreprocessingjobde-c7df1aec5a8b940:1" embedding1 = { "embeddingName" : "bbbc021", "plateMethodArn" : plateMethodArn, "wellMethodArn" : "wellMethodArn-placeholder", "imageMethodArn" : imageMethodArn, "imagePostMethodArn" : "imagePostMethodArn-placeholder", "modelTrainingScriptBucket" : "bioimage-search-input", "modelTrainingScriptKey" : "bbbc021-1-train-script.py", "trainingInstanceType" : "ml.g4dn.4xlarge", "trainingHyperparameters" : { 'epochs': 2, 'backend': 'gloo', 'seed': 1, 'batch_size': 1 }, "inputHeight" : 1024, "inputWidth" : 1280, "inputDepth" : 1, "inputChannels" : 3, "roiHeight" : 128, "roiWidth" : 128, "roiDepth" : 1, "embeddingVectorLength" : 256, "comments" : "" } r = trainingConfigurationClient.createEmbedding(embedding1) print(r)