Build a 360-degree customer view in AWS using a powerful set of analytics tools
Hugo Rozestraten and Andres Palacios

One of the challenges of digital transformation across companies is the task of consolidating customer data in one place, what we call a 360-degree customer view. This is a powerful concept in CRM (Customer Relationship Management) used on a daily basis on marketing, sales and customer services areas. Gather and aggregate information from heterogenous sources to build such view help us to have a complete vision of who are our customers, what are their preferences, what they have looked for, and how their preferences are correlated to other people preferences and behavior.

This implementation can be used to refine customer personas, their behavior and expectations, get to know touchpoints of interaction, perform a better post-sale service, cross-selling or up-selling, build personalized recommendation, map customer journey, and identify the gaps in channels or processes.

The common pain point is that information about customer is spread across several systems inside your company, from customer interaction with your call center records to events related to customer search behavior, you have several different data that are difficult to correlate if you don’t have a Data Lake strategy.

This blog post demonstrated how to bring data from different data systems as a set of customer dimensions and build a 360-degree customer view as a baseline for all customer analytics initiatives.
Dimensions for a 360-degree customer view

Usually we look at our customers from a perspective, such as Loyalty perspective, looking at metrics like: years of history, frequency of interaction, or a Demographic perspective: stage of life, income, stage of life. We call them dimensions, and we will combine several dimensions about your customer to give you more visibility of several perspectives at the same time.

In this blog we will explore a hypothetic financial services company, as there are common dimensions for this industry and some dimensions that are also valid for any service industry, like marketing and communications, customer history or demographic dimension. 
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In the picture above we have list some of the dimensions, and the challenges we have to aggregate and use all this information is the number of different sources and formats. 

For financial services we usually have a CRM (Customer Relationship Management) as a software as a service, that can be consumed by an API (Application Programming Interface) and provides JSON (JavaScript Object Notation) file format, Mainframe systems and some other systems that can be integrated by CSV (Comma-separated value) files, transactions from relational database generating thousands new records per minute and application logs or website navigation logs. New sources can come over time, like a new system or channel that are provided to customers.
Data Lake strategy

Data lake is the source of truth, as a broad repository where we can put data from different systems and perform the cleaning, enrichment, aggregation, analysis to delivery relevant data to business users, about user behavior, assets, history, preferences and several other features. 

To deliver summarized and at the same time comprehensive data about customer to business users and data scientists we need ingest data from the sources into a storage area and combine them to build a 360-degree customer view.
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In a Data Lake we have some important tiers for the data and going from the bottom up, starting with data and ending up with strategic information for business decision:

· The RAW layer is the first storage area for data coming from several different sources and formats, usually the data in this area are in plain text (CSV) or JSON and in some cases, they are compressed files such as Gzip. 

· STAGE is the storage area for the data we are handling, transforming and cleaning. In this layer we have control of the data format so we can storage the output in columnar formats such as Apache Parquet or Apache ORC compressed with Snappy that will have a better performance to join and aggregate data by columns or Apache Avro container files that has a JSON schema representation for each file.

· Finally, we deliver information to the ANALYTICS layer for the business areas ready for consumption and with good performance. To achieve this, we partition the data and use columnar formats to make it easy and fast to query data, filter it or aggregate it.

· In parallel, the SANBOX area is for the Data Scientists to interact with data from STAGE or even ANALYTICS data to build new data models, discover new correlations and build machine learning models.

So, the second challenge that comes is to have powerful analytics tools that can enrich, filter, clean and aggregate this data, analyze them and generate information. Also, the tools need to fit each of the needs for example Data Engineer transformation, from small to large volumes, a Data Scientist complex algorithm and a Business user query engine. There is no ‘silver bullet’ in the market, the best product for one step or role is not the best for another, and AWS provides a broad variety of these tools.
Data Lake in AWS

Data lake in AWS has a key storage component Amazon S3 that stores, secure and maintain data in a very cost-effective way and provides high throughput with the AWS ingestion and the analytics tools.
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To ingest data into our data lake we can use AWS Snowball to send large amount of files, AWS Direct Connect connection for high speed network data transfer, and services like AWS DataSync, AWS Data Migration Service and AWS Transfer for SFTP for different needs to ingest data in our AWS data lake. Also Amazon Kinesis Data Streams and Amazon Kinesis Data Firehose to ingest streaming data.
In this blog we are using AWS Lake Formation blueprints and  AWS Lambda functions to extract data actively from some sources and APIs, and also Amazon S3 direct put files from legacy systems.

To transform data we can use serverless fully managed AWS Glue jobs, a powerful and flexible Hadoop and Spark ecosystem Amazon EMR, and small jobs and streaming processing with AWS Lambda functions orchestrated by AWS Step Functions, and executed with lake Amazon Athena query engine, that also supports create new tables and insert data, we will explore uses cases for each of them in this blog.

Amazon DynamoDB can be used to deliver data in a very low latency and scalable way, we are going to delivery consumable information about our customer for business users. 


Our 360-degree customer view approach

We suggest a final denormalized customer 360 table on top of the Data Lake that can be update on an hourly, daily or weekly basis depending the delta frequency of new data on the source tables and the business need. This final view will be generated from intermediate tables across several layers depending its degree of processing in all transformation steps using a bottom up approach. This tables can be named using a hierarchical naming convention to facilitate the data lineage, give a sense of hierarchy, allow the addition of new tables on the overall ETL orchestration process.

Sample Data sources

The following picture represents common and heterogenous data sources from financial services customers we have used in this Blog, with synthetic data.
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Find in the table below the attributes for each data source we used:

	Domain
	Data source
	Source Format
	source column name

	Customer info
	CRM
	API - json
	client_id

	
	
	
	age

	
	
	
	date_Of_Birth

	
	
	
	home_ownserhip_status

	
	
	
	occupation

	
	
	
	marital_Status

	
	
	
	head_of_household_flag

	
	
	
	client_created_date

	
	
	
	

	Transactions
	Mainframe sources
	Relational Database
	trans_id

	
	
	
	account_id

	
	
	
	date

	
	
	
	type

	
	
	
	operation

	
	
	
	amount

	
	
	
	balance

	
	
	
	

	Credit Card
	Card origination system
	Text file - from Mainframe
	card_id

	
	
	
	disp_id

	
	
	
	type

	
	
	
	issued_datetime

	
	
	
	

	Account
	Account origination system
	Text file - from Mainframe
	account_id

	
	
	
	branch_ID

	
	
	
	frequency

	
	
	
	creation_date

	
	
	
	

	General banking
	Dispositions Database
	Text file - from Mainframe
	disp_id

	
	
	
	client_id

	
	
	
	account_id

	
	
	
	type

	
	
	
	

	web_analytics
	Google Analytics
	json with nested fields
	client_id

	
	
	
	visitNumber

	
	
	
	visitId

	
	
	
	visitStartTime

	
	
	
	Date

	
	
	
	Totals

	
	
	
	trafficSource

	
	
	
	device

	
	
	
	geoNetwork

	
	
	
	customDimensions

	
	
	
	Hits

	
	
	
	fullVisitorId

	
	
	
	userId

	WebVisitor map
	Map web visitors to client_id
	Text file
	visitorId hash

	
	
	
	client_id



Data processing

The picture represents from bottom to the top the data quality and filtering, aggregation and dimension calculations in order to create a final Customer 360 view which can be updated in a modular way by updating the dimension temporary tables (Level 3 ETL) to recreate the final table on a new partition.
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Architecture overview


From the right left-hand side, we start with the sources, were we simulate a CRM API with two AWS Lambda functions one that act like an API generating the data an another to consume this API calling it and receiving and processing the result. We also have a relational database using Amazon RDS, we are using PostgreSQL as the engine, and finally we have flat files that commonly are generated by mainframe, in our cases we simulated the generation using AWS Lambda. 
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We use AWS Lake Formation blue prints to orchestrate the extraction from the relational database to Amazon S3, using AWS Glue connector and Glue jobs.
Then on the bottom we have the persistent layer on Amazon S3 the base for our Data lake strategy, with Raw, Stage and Analytics buckets.

For processing we are counting with Step Functions orchestrating AWS Lambda using Athena on the top, we also have AWS Glue Jobs, using Spark and Python, and Amazon EMR using Spark and Hive to transform and aggregate data.

To consume the data, we have Amazon Athena query engine console and API, and Amazon DynamoDB console and API.

All the code, sample data and deployment guide for the solution we used here are found in our git repository.
Solution details

We created three buckets, one for each data purpose: raw data S3 bucket, stage data S3 bucket and analytics data S3 bucket.
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All the data besides Google Analytics sample from Kaggle were synthetic created using lambda functions using random range values. You can use Amazon AppFlow to extract your own data from Google Analytics data as described in this other blog post.
For the bank transactions we created a relational database Amazon RDS PostgreSQL.
To simulate the API we created Lambda function that responds as a CRM API, you can also use Amazon AppFlow to extract data from your Salesforce environment.

For the mainframe simulation the lambdas generate flat files on Amazon S3.

We then used Amazon CloudWatch events schedules, to trigger the Lambda functions.

Centralized control with AWS Lake Formation.

We use AWS Lake Formation to give permission to the data locations we created in Amazon S3 for the services roles that will read the data and create databases. We first register the locations as Data lake locations.
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In the following picture we grant Glue-role-c360view IAM role access to the storage locations: raw, stage and analytics.
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Exploring raw data in Amazon S3.

Each data source has its path inside S3 to receive raw data.
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Inside each folder we have data from one data source, for GA data for example its partitioned by date, with the pattern data/GA/ga_session_YYYYMMDD.
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We can use S3 select to confirm the data we are receiving.
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Use AWS Lake Formation blueprint to load data from relational database

The banking transactions are in a RDBMS system and is loaded using an out-of-the-box blueprint from AWS Lake Formation.
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The relational database is crawled to pick tables definition then the data is loaded to an Amazon S3 folder for each table. This whole workflow is built by Lake formation blueprint. And now we have data from the relational database loaded in S3.
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Catalog and use the data from raw bucket.
We used AWS Glue crawlers to infer table schema based on the data we have in Amazon S3.

[image: ]
The crawler creates tables in a database c360view_raw, with different file format, csv, json and relational database tables, that are now in AWS Glue catalog.
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In the table definition we can change table definition such as data type from timestamp to string because it has a different format for some values. 
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Perform transformation with source raw tables and to have it flatten and transformed to parquet files.

To orchestrate a set of transformations we are going to use AWS Step Functions state machines, AWS Lambda Functions and Amazon Athena.
We constructed 3 different state machine flows to perform different transformation.

One step function transform GA tables in a flat denormalized table, a second one to transform other RAW data tables into parquet, partitioned tables, and a last one to process and a third one to parse data from relational database raw data.

In this step functions state machine, we are performing transformation for GA tables. GA schema has nested fields that are being flatten using CROSS JOIN UNNEST functions and qualifying nested struct and array data types.
· This state machine uses one lambda function to execute the transformation using Amazon Athena query execution.
· Another lambda function is used to check the termination of the previous query, and then wait or go to next transformation steps.
[image: ]
While it runs, we can check the steps it’s performing in our case it’s calling a lambda function to execute queries on Athena.
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In the second step function we perform the transformation from CSV format to parquet format for the tables gbank (general banking), account and card, and from Json format to parquet format for the customer (CRM) table. We are doing this because handling parquet format tables is faster for joins and group by functions that we need to perform later. 
Verify the following workflow to see that in this case we are performing 4 transformation in parallel.
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We use Amazon Athena to query the raw and stage tables.
In Athena console we can see the three databases we created and query the tables created on raw and stage areas.
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Notice that as we had CSV without header the name of the columns where crawled as col0 to col3 in the RAW data. 
We can edit this on AWS Glue, but our jobs to processed the data in Step Functions are already aware of it, so when we go to c360view_stage database we find a different scenario.
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Another example we see in stage is the mf_transactions_pqt parquet format table.
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Now we are going to perform more advanced transformations using AWS Glue job with Pyspark.

The first job n1_c360_dispositions performs a join between 3 tables, general banking, account and card, to calculate disposition type and acquisition information.
Notice that in this first Pyspark script converts a query result from Amazon Athena to a Pandas data frame and then the result from Pandas is processed and written to parquet files in Amazon S3 using spark write operation. 

[image: ]
Then the Jobcust360etlmftrans, another Pyspark job, we are doing some aggregations with the transactions from relational database done by account_id in the last 3 months and also the last 6 months. For this we used the AWS Glue dynamic frame.

[image: ]
In this pyspark job we are doing some aggregations with the transactions from relational database done by account_id in the last 3 months and also the last 6 months. For this we used the AWS Glue dynamic frame.
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After these two transformations and running a glue crawler on stage bucket we have now 14 tables in the c360view_stage database.

[image: ]



To create a denormalized table we run spark job on Amazon EMR.

Amazon EMR is a powerful cluster, that you can set with few machines like in this blog to thousands of machines if huge production environment. Consider using spot instances for batch processing and terminate your clusters when you are not using, storing your job results on Amazon S3.

We use an EMR step to submit a Spark SQL application for denormalization, that performs a set of joins with all Customer dimensions we calculated before to build our final 360 degree customer view table in S3. 
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After completion the job has created a denormalized table in S3 and also the table definition in AWS Glue catalog.
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In Athena console we check the new c360denormalized table on c360view_analytics database.
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Finally, we populate the Amazon DynamoDB table with the results to be the source for low latency queries from your applications or APIs.

We use a Hive script to perform the query on source S3 table and load the data into the DynamoDB table.

[image: ]

Where we map the fields from the S3 table to DynamoDB table, and then insert the data selecting from our S3 table.
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Now we can query data from Amazon DynamoDB.

In the Dynamodb console we click on the table DDBc360view that we have populated with a Hive script using our EMR cluster. 
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Notice that the console did a Scan operation, returning all data, but in your application, you may want to be specific and use a client id or/and branch for example. 

So, we take note of some pk (partition key), that is our “client_id” from denormalized table and sk (sort key) that is our “branch_id”, so we can perform some specific query.
In our case, we can use 5002, 5006, 5014, 5021, 5025, 5035… and so on for client id (our pk), and 198, 465, 236, 218, 109, 215, 394, 381, 225 for branch.
Your numbers will be different as the data being generated in your account is random.

Going to the right and down we can check other fields for the records.
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Now instead of Scan, we select Query and put a value of client id in the pk field. In my case 5002, but select one of yours taken in previous step.

When we click on Start search we see that it’s display right away, this is how our production application should look for someone in the DynamoDB table, to pick up in few milliseconds the context for the next interaction we should have with this customer, the status of his last transaction or any other dimension we loaded.
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We check the full payload.
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We did a query by partition key; we can also use the index to direct find for every customer in a branch by choosing a Global secondary index. 

Using Global secondary index, we can change the query key by other field we need to find data very fast.

We select the GSI1 index to query the table.
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And use a branch number as input, such as 394 in our case to get the result in less then 10 milliseconds.
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The use case for this Amazon DynamoDB table is to have fast access to data when you need to interact directly with your customer for example your mobile branch manager application, or your contact center application to check the profile or even other dimensions you decide to increment here, like next best offer. 

There are several examples to expose a DynamoDB table with an API, using Amazon API Gateway, like this blog, but if your application resides inside your AWS account you probably may use calls directly to DynamoDB SDK and API. 

For Data scientists and business users, you can also use Amazon Sagemaker and Amazon Quicksight to explore the data using Athena. Find more details on the links for creating data set from Athena on Quicksight and run SQL queries in Sagemaker.

Summary

In this blog you have learned a point of view of a 360-degree customer strategy. You have seen the data lake strategy using Amazon S3 and Lake Formation. We have explored some dimension for financial services, but as you follow the processes to bring data sources and the processing tools, it’s easy to add new sources and new calculations. 
We have used several AWS services such AWS Lambda functions used to process data using Athena API and Step functions, then AWS Glue for spark and python jobs, and finally the capabilities of Amazon EMR using Spark and Hive to generate the final tables in Data Lake and also on DynamoDB. Check our git for the code we used and for instructions to deploy it in you account.
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New query 1

Use Ctrl + Enter to run query, Ctrl + Space to autocomplete

Results

Newquery2 © @ Newquery3 @ +

col0

1 SELECT * FROM "c360view_raw".

account" limit 10;

Create v | (Run time: 2.06 seconds, Data scanned: 74.6 KB)

col1
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444
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col2

Mi

Mi
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TI

col3
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Database [+

c360view_stage v | <

Filter tables and views...

v Tables (6) Create table

» account_pqt

» card_pqt

» customer_pqt

» ga_sessions_split_avro_stg (Partitioned)

» ga_sessions_unnest_hits_avro_stg (Partitioned) Use Ctrl + Enter to run query, Ctrl + Space to autocomplete

» gbank_pqt H
v Views (0) Create view Results
You have not created any views. To create a view,
run a query and click "Create view from query" ¢ account_id branch_id frequency
1 1 334 Mi
2 2 444 Mi
3 3 65 Mi
4 4 196 Tl

New query 1 Newquery2 @ @ Newquery3 © & New query4 @ +

1 SELECT * FROM "c360view_stage"."account_pqgt" limit 10;

Save as Create v = (Runtime: 3.27 seconds, Data scanned: 24.38 KB)

creation_date
2019-04-06T23:43:48.837712
2018-02-04T23:43:48.837738
2018-05-27T23:43:48.837750

2018-08-29T723:43:48.837760

m

Format query

cr_date
2019-04-06 23:43:48.837
2018-02-04 23:43:48.837
2018-05-27 23:43:48.837

2018-08-29 23:43:48.837

[
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» customer_pqt
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» gbank_pqt

» mf_transactions_pqt

Results
v Views (0) Create view

You have not created any views. To create a view, run a
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New query 1

Use Ctrl + Enter to run query, Ctrl + Space to autocomplete
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QRARO

1 SELECT * FROM "c360view_stage"."mf_transactions_pqgt" limit 10;
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DR702

New query2 © Newquery3 © Newquery4d © © Newquery5 © +

(Run time: 4 seconds, Data scanned: 124.89 KB)
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pathl= 's3://'+BucketName+'/c360/n1_c360_dispositions/"'
df_sparkl = spark.createDataFrame(df_dispositions)
#df_sparkl.repartition(1).write.mode("append").option("path",pathl).saveAsTable("c360view_stage.nl_c360_dispositions");
dfl = DynamicFrame.fromDF(df_sparkl, glueContext, "df1")
dfl = glueContext.write_dynamic_frame.from_options(

frame = df1,

connection_type = "s3",

connection_options = {"path": pathl},

format = "parquet",
transformation_ctx = "df1"

#n2_c360_first_disposition

df_first_dispositions = df_dispositions.groupby(["client_id"]).agg({"acquisition_date":"min","disp_type":"first","disposition_id":"first"})
df_first_dispositions = df_first_dispositions.reset_index(level=["client_id"])

df_first_dispositions['calc_date']l = datetime.today().strftime("%Y-%m-%d")

df_first_dispositions['calc_time']l = datetime.today().strftime("%H:%M:%S")

path2="'s3://"'+BucketName+'/c360/n2_c360_first_disposition/'
print(path2)

df_spark2 = spark.createDataFrame(df_first_dispositions)

df2 = DynamicFrame.fromDF(df_spark2, glueContext, "df2")
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#Filter and grouping by time windows (last 3 a
df_trans_acc_aggr_13m = df_transactions.filter
df_trans_acc_aggr_16m = df_transactions.filter

#Join DF with customer data
df_trans_acc_aggr_13m = df_trans_acc_aggr_13m.
df_trans_acc_aggr_16m = df_trans_acc_aggr_16m.

#Renaming columns
df_trans_acc_aggr_13m = df_trans_acc_aggr_13m.
df_trans_acc_aggr_16m = df_trans_acc_aggr_16m.

#Aggregations 2
df_trans_acc_aggr_13m = df_trans_acc_aggr_13m.
df_trans_acc_aggr_16m = df_trans_acc_aggr_16m.

#Date time partition columns generation
df_trans_acc_aggr_13m = df_trans_acc_aggr_13m.
df_trans_acc_aggr_16m = df_trans_acc_aggr_16m.

#Convert it back to Glue context Dynamic frame
dyf_cust_trans_aggr_13m = DynamicFrame. fromDF(
dyf_cust_trans_aggr_16m = DynamicFrame. fromDF(

nd 6 months) and Customer + Type of transaction Aggregation
(F.col("date") >= F.add_months(F.current_date(), -3)).groupBy("account_id","type").agg(F.avg('amount'), F.count('amo
(F.col("date") >= F.add_months(F.current_date(), -6)).groupBy("account_id","type").agg(F.avg('amount'), F.count('amo

join(df_dispositions, 'account_id' , how="inner")
join(df_dispositions, 'account_id' , how="inner")

withColumnRenamed("avg(amount)","amount_avg").withColumnRenamed (" count(amount)","amount_count")
withColumnRenamed("avg(amount)","amount_avg").withColumnRenamed("count(amount)","amount_count")

withColumnRenamed (" round(avg(amount_avg), 0)","amount_avg_trans").withColumnRenamed("sum(amount_count)","count_trans
withColumnRenamed (" round(avg(amount_avg), 0)","amount_avg_trans").withColumnRenamed("sum(amount_count)","count_trans

withColumn("calc_date", lit(datetime.today().strftime("%sY-%m—%d"))).withColumn("calc_time", lit(datetime.today().str
withColumn("calc_date", lit(datetime.today().strftime("%sY-%m—%d"))).withColumn("calc_time", lit(datetime.today().str

df_trans_acc_aggr_13m, glueContext, "dyf_cust_trans_aggr_13m")
df_trans_acc_aggr_16m, glueContext, "dyf_cust_trans_aggr_l6m")
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X Save view | v~ | Showing: 1-14
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Unknown 3 January 2020 10:50 AM UT...
Unknown 3 January 2020 10:50 AM UT...
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Unknown 3 January 2020 4:49 PM UTC-3
Unknown 3 January 2020 10:50 AM UT...
Unknown 3 January 2020 11:15 AM UT...
parquet 3 January 2020 11:21 AM UT...
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dftrans =
t as (SELECT c.x, \

a.branch_id, a.frequency,a.cr_date, \
gb.disp_id, gb.type, \

as 13mcredit_avg, 13mc.amount_count as 13mcredit_count, 13mc.calc_date]||’

13mc.
13md.
13mc.
13md.
16mc.
16md.
16mc.
16md.

FROM
left
left
left
left
left
left
left
r as

amount_avg

amount_avg
disp_id as
disp_id as
amount_avg

amount_avg
disp_id as
disp_id as
ga.hits as web_hits, \

ga.lastdate as web_visit_date, \
ga.searchl as web_searchl, \
ga.search2 as web_search2, \
ga.mobile as web_mobile \
c360view_stage.gbank_pqt as gb \

outer
outer
outer
outer
outer
outer
outer

join
join
join
join
join
join
join

(SELECT x,
rank() OVER (PARTITION BY client_id \
ORDER BY branch_id, frequency DESC) AS rnk \

sparkSession.sql("with \

as 13mdebit_avg, 13mc.amount_count as 13mdebit_count, 13md.calc_date||' '||13md.calc_time as 13m_debit_calc, \

13m_cre_disp_id, \
13m_deb_disp_id, \

as lémcredit_avg, 16mc.amount_count as l6émcredit_count, 16mc.calc_date]| |’

as l6émdebit_avg, 16mc.amount_count as 16émdebit_count, 16md.calc_date||' '||l6md.calc_time as 16m_debit_calc, \

16m_cre_disp_id, \
16m_deb_disp_id, \

c360view_stage.account_pqt as a on gb.account_id = a.account_id \

c360view_stage.customer_pqt as c on gb.client_id = c.client_id

(select client_id, max(disp_id) as
(select client_id, max(disp_id) as
(select client_id, max(disp_id) as
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1w Name o@ius Slarnime (Viv-9) « Elapsea ume Log mnes 4,

Spark
application

Debugging not

E s-386VLBSZLX6M5 N
configured

Completed 2020-01-07 08:31 (UTC-3) 56 seconds Logging not configured

JAR location : command-runner.jar
Main class : None
Arguments : spark-submit --deploy-mode cluster s3://c360view-us-west-2-933462671126-stage/library/c360_analytics.py --BucketName c360view-us-west-2-933462671126-analytics
Action on failure: Continue
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v Views (0) Create view
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AWS Glue Data Catalog &'

Workgroup : primary

New query 1

© Newquery3 © +
1 SELECT * FROM "c360view_analytics"."c360denormalized" limit 10;

Create v

(Run time: 2.02 seconds, Data scanned: 17.67 KB)

Use Ctrl + Enter to run query, Ctrl + Space to autocomplete

Results

® N o o &~ w N
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Help What's new

Format query

m

b_date
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set dynamodb.throughput.write.percent=90;
—— drop hive table definition if exists
drop table ddbc360view;
—— create hive table definition for the dynamodb TABLE
—— using org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler
—— an mapping columns with "dynamodb.column.mapping" =
CREATE EXTERNAL TABLE ddbc360view
( client_id bigint,

branch_id string,

birth_date string,

age bigint,

home_ownership string,

occupation string,

marital_status string,

head_of_household_flag string,

client_created_date string,

rn bigint,

b_date string,

frequency string,

cr_date string,

disp_id bigint,

type string,

13mcredit_avg double,

13mcredit_count bigint,

13m_credit_calc string,

13mdebit_avg double,
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web_visit_date string,
web_mobile string,
web_searchl string,
web_search2 string
)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler"'
TBLPROPERTIES ("dynamodb.table.name" = "DDBc36@Qview",
"'dynamodb.column.mapping" = "client_id:pk,branch_id:sk,birth_date:birth_date,age:age,home_ownership:home_ownership,occupation:occupation,marital_status:marital_
—- insert data from the c360denormalized table to the hive table
insert into ddbc36@view
select
client_id,
CASE WHEN branch_id  is NULL THEN '_' ELSE cast(branch_id as string) end as branch_id,
CASE WHEN birth_date is NULL THEN '_' ELSE birth_date end as birth_date,
CASE WHEN age is NULL THEN @ ELSE age end as age,
CASE WHEN home_ownership is NULL THEN '_' ELSE home_ownership end as home_ownership,
CASE WHEN occupation is NULL THEN '_' ELSE occupation end as occupation,
CASE WHEN marital_status is NULL THEN '_' ELSE marital_status end as marital_status,
CASE WHEN head_of_household_flag is NULL THEN '_' ELSE head_of_household_flag end as head_of_household_flag,
CASE WHEN client_created_date is NULL THEN '_' ELSE client_created_date end as client_created_date,
CASE WHEN rn is NULL THEN @ ELSE rn end as rn,
CASE WHEN b_date is NULL THEN '_' ELSE b_date end as b_date,
CASE WHEN frequency is NULL THEN '_' ELSE frequency end as frequency,
CASE WHEN cr_date is NULL THEN '_' ELSE cr_date end as cr_date,
CASE WHEN disp_id is NULL THEN @ ELSE disp_id end as disp_id,
CASE WHEN type is NULL THEN '_' ELSE type end as type,
CASE WHEN 13mcredit_avg is NULL THEN @ ELSE 13mcredit_avg end as 13mcredit_avg,
CASE WHEN 13mcredit_count is NULL THEN @ ELSE 13mcredit_count end as 13mcredit_count,
CASE WHEN 13m_credit_calc is NULL THEN '_' ELSE 13m_credit_calc end as 13m_credit_calc,
CASE WHEN 13mdebit_avg is NULL THEN @ ELSE 13mdebit_avg end as 13mdebit_avg,
CASE WHEN 13mdebit_count is NULL THEN @ ELSE 13mdebit_count end as 13mdebit_count,
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DDBc360vi
Delete table VieW  Close [ Lo =™ ()

Overview Items Metrics Alarms Capacity Indexes Global Tables Backups Contributor Insights Triggers More v

Q Filter by table name X
Choose a table ... ¥ Actions Actions -] 0
Name & Scan: [Table] DDBc360view: pk, sk A Viewing 1to 100 items %
@ DDBc360view
~
© Add filter
pk @ - sk ~ | age ~  b_date ~  birth_date ~ | client_created_date ~ | cr_date
5002 198 84 1935-09-13 1935-09-13 2019-05-28T09:27:54.774862 2019-08-22 09:34:36.4¢
5006 465 37 1982-04-01 1982-04-01 2018-04-19T09:27:54.774947 2018-04-20 09:34:36.4¢
5014 236 33 1986-12-29 1986-12-29 2019-02-24T09:27:54.775111 2019-09-25 09:34:36.4¢
5021 218 39 1980-10-15 1980-10-15 2019-05-03T09:27:54.775248 2019-01-10 09:34:36.4¢
5025 109 88 1931-10-04 1931-10-04 2018-03-26T09:27:54.775335 2018-07-05 09:34:36.4¢
5030 215 74 1945-08-06 1945-08-06 2019-06-05T09:27:54.775447 2018-11-16 09:34:36.4¢
5035 394 35 1984-09-18 1984-09-18 2019-09-09T09:27:54.775555 2018-12-23 09:34:36.4¢
5039 381 80 1939-11-01 1939-11-01 2018-11-13T09:27:54.775643 2019-02-23 09:34:36.4¢

5047 225 84 1935-11-04 1935-11-04 2019-01-07T09:27:54.775832 2018-02-09 09:34:36.4¢
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Scan: [Table] DDBc360view: pk, sk A Viewing 1 to 100 items

[Table] DDBc360view: pk, sk N A

© Add filter

frequency ~ | head_of_househ home_ownershij 13m_cre_disp_id [3m_credit_calc ~ | I3m_deb_disp_id I3m_debit_calc ~ | I3mcredit_
MI Y U 52 2020-01-08 12:49:59 52 2020-01-08 12:49:59 45905.7321
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[Table] DDBc360view: pk, sk N A

key

© Add filter

Sort O Ascending ® Descending

Attributes © All ® Projected

Start search

v b_date v birth_date ~ client_created_date

1935-09-13 1935-09-13 2019-05-28T09:27:54.774862
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Edit item

* ¥
Treev | ||+

v Item {36}
age Number : 35
b_date String : 1984-10-03
birth_date string : 1984-10-03
client_created_date String : 2018-03-01T09:27:54.826791
cr_date String : 2019-02-05 09:34:36.494
disp_id Number : 14
frequency String : TI
head_of_household flag String : N

home_ownership String : O

13m_cre_disp_id Number : 14

13m_credit_calc String : 2020-01-08 12:49:59

13m_deb_disp_id Number : 14
13m_debit_calc String : 2020-01-08 12:49:59
13mcredit_avg Number @ 43734.98947368421

13mcredit_count Number : 95

Q0000000000000 0
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Edit item

* ¥
Treev | ||+

16ém_debit_calc String : 2020-01-08 12:49:59
lémcredit_avg Number : 43734.98947368421
lémcredit_count Number : 95

lémdebit_avg Number : 47138.413043478264
lémdebit_count Number : 95
marital_status String : M

occupation String : photographer

Pk Number : 5498

rn Number : 1

sk String : 172

type String : owner

web_hits Number : 0

web_mobile String : _

web_searchl String : _

web_search2 sString : _

Q0000000000000 O0C0

web_visit_date String : _
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Query: [Table] DDBc360view: pk, sk A

v [Table] DDBc360view: pk, sk , N
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Partition |

key

© Add filter
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[Index] GSI1: sk N A

Partition sk String = 394
key

© Add filter

Sort O Ascending ® Descending

Start search

pk v | sk v age v b_date ~ birth_date ~ client_created_date vilC

394 35 1984-09-18 1984-09-18 2019-09-09T09:27:54.775555 2

394 7 1948-03-23 1948-03-23 2018-08-07T09:27:54.777319 2
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