
 1

Amazon Web Services
Athena Workshop

Lab3.Exploring Data Lake with Athena (Advanced)
July 2021

 1

Table of Contents

Introduction... 2

Prerequisites: .. 2

Getting Started .. 2

Logon to console and view public dataset in S3: .. 2

Create Athena Tables: ... 3

Create Athena Tables Using Query Editor: .. 3

Create Athena Tables Using Glue Crawler: ... 6

Verify Tables in Glue Catalog ... 8

Query Data with Amazon Athena .. 9

Create view ... 10

Query Results and History ... 10

Run CTAS to create new partitioned parquet table .. 11

Run CTAS to explore bucketing .. 13

Athena Workgroups .. 14

Lab3.Exploring Data Lake with Athena (Advanced)

 2

Introduction

This additional lab on Amazon Athena covers best practices on partitioning, columnar formats,
and compression that can improve query performance and can get significant cost savings.

Prerequisites:
Each student should receive individual AWS Access URL/credentials.

Getting Started
In this lab, you will complete the following tasks: You would use Athena Console to perform all
these tasks.

1. Logon to console and view public dataset in S3:
2. Create Athena Tables
3. Verify Tables in Glue Catalog
4. Query Data with Amazon Athena
5. Create View
6. Run CTAS to create new partitioned table
7. Run CTAS to explore Bucketing
8. Use Athena Workgroups

Logon to console and view public dataset in S3:

In this lab, we will be using data from - Amazon Customer Reviews. This dataset provides both
TSV (tab separated values) and Parquet versions of over 130 million customer reviews since
1995.

1. To view source dataset in S3, access below URL

https://console.aws.amazon.com/s3/home?region=us-east-1&bucket=amazon-reviews-pds

tsv folder has multiple files compressed using gzip. Also notice that file size varies from 12
MB to 2.6 GB.

 Parquet folder has sub-folders on product category and going down one level, you would
notice that files are compressed using snappy. File size is more uniform.

Format Compression Total Size
Tsv, row storage gzip 32.2 GB
Parquet, columnar storage snappy 47.4 GB

Gzip and Snappy are non-splittable file formats with gzip having higher compression ratio
than snappy. But Snappy is significantly faster in compression and decompression speeds.

https://registry.opendata.aws/amazon-reviews/
https://console.aws.amazon.com/s3/home?region=us-east-1&bucket=amazon-reviews-pds

Lab3.Exploring Data Lake with Athena (Advanced)

 3

Compressing your data can speed up your queries significantly, as long as the files are either
of an optimal size (see the next section), or the files are splittable. The smaller data sizes
reduce network traffic from Amazon S3 to Athena.
Splittable files allow the execution engine in Athena to split the reading of a file by multiple
readers to increase parallelism. If you have a single unsplittable file, then only a single
reader can read the file while all other readers sit idle. Not all compression algorithms are
splittable. The following table lists common compression formats and their attributes.

Algorithm Splittable? Compression
ratio

Compress +
Decompress

speed
Gzip
(DEFLATE) No High Medium

bzip2 Yes Very high Slow
LZO No Low Fast
Snappy No Low Very fast

Queries run more efficiently when reading data can be parallelized and when blocks of data
can be read sequentially. Ensuring that your file formats are splittable helps with parallelism
regardless of how large your files may be.
However, if your files are too small (generally less than 128 MB), the execution engine
might be spending additional time with the overhead of opening Amazon S3 files, listing
directories, getting object metadata, setting up data transfer, reading file headers, reading
compression dictionaries, and so on. On the other hand, if your file is not splittable and the
files are too large, the query processing waits until a single reader has completed reading
the entire file. That can reduce parallelism.

Create Athena Tables:

When you create a database and table in Athena, you describe the schema and location of the
data, making the data in the table ready for querying.
In this exercise, we will create table using Athena Query editor and then explore an alternate
option of automatically creating tables using Glue Crawler.

Once the table is created, it is made available in the centralized Glue Catalog.
Glue catalog is shared by services like Athena, Redshift Spectrum, EMR, Glue ETL and Hive
compatible stores.

Create Athena Tables Using Query Editor:

Lab3.Exploring Data Lake with Athena (Advanced)

 4

1. Before starting Athena, create s3 bucket to store Athena results. Name: athena-
queryresults-<yourname>

2. In AWS services, search & select Athena.

3. When you get to query editor, go to settings and update Query result location with bucket
name created in Step 1.

4. In query editor, enter create database amazonreviewsdb

5. When you run above command, it should create new database.

6. Select your database – amazonreviewsdb from Database drop down on the left

When you run a CREATE TABLE query in Athena, you register your table with the AWS Glue Data
Catalog. Let’s start creating tables.

7. We will create our first table by running following statement that point to TSV files. In
create statement LOCATION clause, you’ll notice that we are using TSV files.

CREATE EXTERNAL TABLE `amazon_reviews_tsv`(
 `marketplace` string,

Lab3.Exploring Data Lake with Athena (Advanced)

 5

 `customer_id` string,
 `review_id` string,
 `product_id` string,
 `product_parent` string,
 `product_title` string,
 `product_category` string,
 `star_rating` int,
 `helpful_votes` int,
 `total_votes` int,
 `vine` string,
 `verified_purchase` string,
 `review_headline` string,
 `review_body` string,
 `review_date` date,
 `year` int
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
ESCAPED BY '\\'
LINES TERMINATED BY '\n'
LOCATION's3://amazon-reviews-pds/tsv/'
TBLPROPERTIES ("skip.header.line.count"="1");

8. Create the second table in the database, this time pointing to parquet files

CREATE EXTERNAL TABLE `amazon_reviews_parquet`(
 `marketplace` string,
 `customer_id` string,
 `review_id` string,
 `product_id` string,
 `product_parent` string,
 `product_title` string,
 `star_rating` int,
 `helpful_votes` int,
 `total_votes` int,
 `vine` string,
 `verified_purchase` string,
 `review_headline` string,
 `review_body` string,
 `review_date` bigint,
 `year` int)
PARTITIONED BY (`product_category` string)
STORED AS PARQUET
LOCATION 's3://amazon-reviews-pds/parquet';

9. In the previous step, although query is successful you could notice a message stating that
partitions need to be loaded to this table. To load the partitions, run below statement

Lab3.Exploring Data Lake with Athena (Advanced)

 6

MSCK REPAIR TABLE amazon_reviews_parquet ;

Athena leverages Hive for partitioning data. You can partition your data by any key. Also, if
you query a partitioned table and specify the partition in the WHERE clause, Athena scans
the data only from that partition thus leading to less cost per query.

Create Athena Tables Using Glue Crawler:

Now, let’s leverage crawler in AWS Glue to retrieve schema information automatically. The
crawlers go through your data, and inspect portions of it to determine the schema. In addition,
the crawler can detect and register partitions.

1. In the AWS services console, search for Glue and select AWS Glue

2. In the left pane, click “crawlers” and then select “Add Crawler”.

3. Enter the name of the crawler as “amazon_reviews_parquet_gluecrawler” and select Next.

4. Select “Data Stores” and select Next.

5. In the Data store page, under Crawl data in select “Specified path in another account”. In
the “Include path”, enter the S3 location as “s3://amazon-reviews-pds/parquet/” and select
Next

Lab3.Exploring Data Lake with Athena (Advanced)

 7

6. Select Next on “Add Another data store” with default option selected as No

7. Now create a new IAM role for the crawler and hit Next

8. Choose a schedule for crawler. For this exercise just select “Run on Demand” and hit next.

9. Select database “amazonreviewsdb”, enter table name prefix “gluecrawler_reviews_” . Click
finish to Add the crawler.

10. Find the new crawler listed with status “Ready”. Select the checkbox next to the crawler

and select “Run Crawler”. The crawler would show initial “starting” status and it would turn
to “stopping” and then turn to “Ready”. This should create table in catalog. Approximate
run time ~ 3 mins.

Lab3.Exploring Data Lake with Athena (Advanced)

 8

Verify Tables in Glue Catalog

1. If you are in AWS Glue, then navigate to tables and you should see table created by crawler
with prefix - gluecrawler_reviews_

2. Also, you should see tables created in earlier step from Athena query editor

3. Select table “amazon_reviews_parquet” created in first step and view the table definitions.
Notice the location where the table data is referred.

 At the right top, click on “view partitions “, to view the various partition values available
for product_category.

Lab3.Exploring Data Lake with Athena (Advanced)

 9

Query Data with Amazon Athena
Let’s start running queries

1. In Athena Query Editor, select the database “amazonreviewsdb”

2. Now let’s run a simple query on tsv table to preview data

SELECT * FROM "amazon_reviews_tsv"
WHERE marketplace = 'US'
limit 10;

Run time: 2.66 seconds, Data scanned: 236.87 KB

3. Now let’s try a query with aggregations on tsv and parquet tables. This is common
pattern in analytical/reporting applications.
First, let’s run this on tsv to capture run time and data scanned

SELECT product_id, product_title, count(*) as num_reviews, avg(star_rating) as avg_stars
FROM amazon_reviews_tsv where product_category='Toys'
GROUP BY 1, 2
ORDER BY 3 DESC
limit 100;

(Run time: 1 minute 26 seconds, Data scanned: 32.23 GB)

4. Run the same query now against Parquet partitioned table

SELECT product_id, product_title, count(*) as num_reviews, avg(star_rating) as avg_stars
FROM amazon_reviews_parquet where product_category='Toys'
GROUP BY 1, 2
ORDER BY 3 DESC
limit 100;

(Run time: 4.53 seconds, Data scanned: 215.04 MB)

Significant improvement in performance and data scanned can be attributed to parquet
columnar storage format and effective partitions on predicates. When Athena executes

Lab3.Exploring Data Lake with Athena (Advanced)

 10

a query on a partitioned table, it first checks to see if any partitioned columns were used
in the WHERE clause of the query. If partitioned columns were used, Athena requests
the AWS Glue Data Catalog to return the partition specification matching the specified
partition columns. The partition specification includes the LOCATION property that tells
Athena which Amazon S3 prefix to use when reading data. In this case, only data stored
in this prefix is scanned.

Create view

1. A view in Amazon Athena is a logical, not a physical table. The query that defines a view
runs each time the view is referenced in a query. Create views when you want to hide
underlying complexity and minimize maintenance problems if underlying table/column
names change.

2. Open a new Athena Query editor tab and run the below query to retrieve
TopReviewedStarRated products

Create view TopReviewedStarRatedProducts_v as
SELECT product_category, product_id, product_title, count(*) TotalReviews FROM
amazon_reviews_parquet
WHERE star_rating=5
group by product_category, product_id, product_title
order by TotalReviews desc

3. You can now run query on this view to extract anytime the Top N reviewed products

among those high rated over the years.

select * from topreviewedstarratedproducts_v limit 10

Run time: 6.06 seconds, Data scanned: 6.39 GB

Query Results and History
1. For every query run, Athena automatically saves query results in S3 at query result

location. Files are saved to the query result location in Amazon S3 based on the name of
the query, the query ID, and the date that the query ran. Files for each query are named
using the QueryID, which is a unique identifier that Athena assigns to each query when
it runs.

2. To identify QueryID – Choose history from Query Editor and then click on state –
“Failed” or “Succeeded”

3. Navigate to S3 location athena-queryresults-<yourname> and identify the query results
saved in S3 for last query execution.

Lab3.Exploring Data Lake with Athena (Advanced)

 11

4. You can also optionally download the results from Query editor via the download link

Run CTAS to create new partitioned parquet table

In earlier step, we started by accessing parquet formatted dataset directly in Athena. But there
will be instances where files are staged in CSV/TSV/TXT and we need to run a step of converting
them to parquet/orc format.

Objective of this section is to show you an approach to accomplish this conversion.

We would use CTAS (Create Table As Select) command to create a new table that first queries
TSV data and writes the results in Parquet format in S3. Also partitions the dataset by
“marketplace” and “year”

1. Run below query in Athena. This query takes ~5 mins to complete.

Lab3.Exploring Data Lake with Athena (Advanced)

 12

CREATE TABLE amazon_reviews_by_marketplace
WITH (
 format='PARQUET',
 partitioned_by = ARRAY['marketplace', 'year']
) AS
SELECT customer_id, review_id, product_id, product_parent, product_title, product_category, star_rating,
helpful_votes, total_votes, verified_purchase, review_headline, review_body, review_date, marketplace,

 year(review_date) as year
FROM amazon_reviews_tsv
WHERE "$path" LIKE '%tsv.gz'

Note: CTAS command writes results to S3 under S3://athena-queryresults-<yourname>/ location. You
can specify your own S3 location by specifying

external_location = 's3://… ', in the CTAS command.

Partitioning strategy depends on the query access patterns. In this case, we want to analyze
the data by marketplace and year. The following queries will show how proper partitioning
can help reduce data scan and improve performance for this access pattern.

2. Once table is created, go to glue catalog and view the newly created table. Select the new
table “amazon_reviews_by_marketplace”.

3. Find the S3 location where the table has created new partitioned data.

4. Click the S3 location to view the new partitioned structure. The first level partition displays
“marketplace” and selecting one of the folders display its inner partition by “year” and the
contents within.

5. Now go back to Athena Query Editor and try the following queries over the newly created
table.

SELECT product_id, COUNT(*) FROM amazon_reviews_by_marketplace
WHERE marketplace='US' AND year = 2013
GROUP BY 1 ORDER BY 2 DESC LIMIT 10

Lab3.Exploring Data Lake with Athena (Advanced)

 13

[parquet + partitioned by marketplace] - > (Run time: 5.27 seconds, Data

scanned: 145.66 MB)

Vs

SELECT product_id, COUNT(*) FROM amazon_reviews_parquet
WHERE marketplace='US' AND year = 2013
GROUP BY 1 ORDER BY 2 DESC LIMIT 10

[parquet] - > (Run time: 5.88 seconds, Data scanned: 882 MB). Though

performance is comparable, data scan is high

vs

SELECT product_id, COUNT(*) FROM amazon_reviews_tsv
WHERE marketplace='US' AND extract(year from review_date) = 2013
GROUP BY 1 ORDER BY 2 DESC LIMIT 10

[tsv] -> (Run time: 1 minute 43 seconds, Data scanned: 32.23 GB).

Performance poor and data scan is higher.

In above examples, we saw partitioning saves you query costs and query time.
But how would you optimize if you have high cardinality fields? (large number of distinct
values). For such need, we can explore bucketing. With this data can be split for storage into
many buckets that will have roughly the same amount of data. Please note that Athena
leverages Hive bucketing, which is different from S3 buckets.

Run CTAS to explore bucketing

1. Let’s assume a case where we have need to query by Review_id more often to pull its
specific information. Since Review_id has high cardinality, bucketing is better strategy to
split the data. But before optimizing, let’s run the below query on original TSV data to
fetch product ID by review Id.

SELECT "$path", product_id FROM amazon_reviews_tsv
WHERE review_id='RWKE7RNMWTQYT'

Query Takes Run time: 1 minute 30 seconds, Data scanned: 32.21 GB

Note: “$path” returns the path in S3 where the data for the review_id is located.

2. Now run the same query on amazon_reviews_by_marketplace query which is already

partitioned by marketplace and year and is parquet.

SELECT "$path", product_id FROM amazon_reviews_by_marketplace

Lab3.Exploring Data Lake with Athena (Advanced)

 14

WHERE review_id='RWKE7RNMWTQYT'

This query takes Run time: 5.51 seconds, Data scanned: 1.46 GB

parquet being columnar format is able to retrieve results much faster.

3. Now let’s use CTAS to create bucketed table on “Review_ID” as our query is just by
review_id. We can’t use normal partition as it would result in creating too many
partitions and fail on max limit.

CREATE TABLE amazon_reviews_unsorted
WITH (
 format='Parquet',
 bucketed_by = ARRAY['review_id'],
 bucket_count = 30
) AS
SELECT review_id, product_id, customer_id, product_parent, star_rating, helpful_votes,
total_votes, verified_purchase, marketplace, product_category, review_date
FROM amazon_reviews_by_marketplace

4. Now try the query on the bucket partitioned table and check it run time stats.

SELECT "$path", product_id FROM amazon_reviews_unsorted
WHERE review_id='RWKE7RNMWTQYT'

Run time: 3.43 seconds, Data scanned: 51.92 MB

As we have bucketed data on reviewId, Athena only queries the specific buckets by first
checking the parquet meta data thereby reducing time and scan size.

Athena Workgroups
Use workgroups to separate users, teams, applications, or workloads, to set limits on amount of
data each query or the entire workgroup can process, and to track costs. Because workgroups
act as resources, you can use resource-level identity-based policies to control access to a
specific workgroup

Creating workgroup and setting controls

1. In this lab, we will create a new workgroup and define data usage controls.

2. Go to Athena query editor and click on workgroup: primary

Lab3.Exploring Data Lake with Athena (Advanced)

 15

3. Select “create workgroup” and provide workgroup name - “athena_analyst_restricted”.

Add Query result location. Other options can be left default. Go ahead and select
“create workgroup”.

Lab3.Exploring Data Lake with Athena (Advanced)

 16

4. Once group is created. Select the group and view details. Select tab “data usage
controls”. Enter 300 in Data limits for Megabytes MB and update.

5. Go back to query editor and select workgroup and switch to this new group. You will

notice, it doesn’t carry over the query history as workgroups separate out query
execution and query history.

6. Execute following query. Query should run successfully and scan 215 MB. Notice we
have filter on partition column and this is parquet formatted table

SELECT product_id, product_title, count(*) as num_reviews, avg(star_rating) as avg_stars
FROM amazon_reviews_parquet where product_category='Toys'
GROUP BY 1, 2
ORDER BY 3 DESC

(Run time: 8.05 seconds, Data scanned: 215.04 MB)

7. Execute following query without filter on partition column. You should get error

message “Bytes Scanned limit was exceeded”

SELECT product_id, product_title, count(*) as num_reviews, avg(star_rating) as avg_stars
FROM amazon_reviews_parquet
GROUP BY 1, 2
ORDER BY 3 DESC

Lab3.Exploring Data Lake with Athena (Advanced)

 17

Above steps shows control limits on per-query execution within a workgroup. You can also
define workgroup-wide data usage control limit.

	Introduction
	Prerequisites:
	Getting Started

	Logon to console and view public dataset in S3:
	Create Athena Tables:
	Create Athena Tables Using Query Editor:
	Create Athena Tables Using Glue Crawler:
	Verify Tables in Glue Catalog

	Query Data with Amazon Athena
	Create view
	Query Results and History
	Run CTAS to create new partitioned parquet table
	Run CTAS to explore bucketing
	Athena Workgroups

