The EKS command-line arguments are a strict subset of the SageMaker arguments. SageMaker adds the following options: --source_dir=. --entry_point=albert/run_pretraining.py --sm_job_name=bert-pretrain-phase1 --instance_type=ml.p3dn.24xlarge --instance_count=8 # EKS python -m albert.run_pretraining \ --train_dir=albert_pretraining/tfrecords/train/max_seq_len_512_max_predictions_per_seq_20_masked_lm_prob_15 \ --val_dir=albert_pretraining/tfrecords/validation/max_seq_len_512_max_predictions_per_seq_20_masked_lm_prob_15 \ --log_dir=logs/albert \ --checkpoint_dir=checkpoints/albert \ --load_from=scratch \ --model_type=albert \ --model_size=base \ --per_gpu_batch_size=32 \ --gradient_accumulation_steps=2 \ --warmup_steps=3125 \ --total_steps=125000 \ --learning_rate=0.00176 \ --optimizer=lamb \ --log_frequency=10 \ --name=myfirstjob