from diffusers import StableDiffusionPipeline import torch import base64 import numpy as np def process_data(data: dict) -> dict: return { "prompt": [data.pop("prompt", data)] * min(data.pop("number", 2), 5), "guidance_scale": data.pop("guidance_scale", 7.5), "num_inference_steps": min(data.pop("num_inference_steps", 50), 50), "height": 512, "width": 512, } def model_fn(model_dir: str): t2i_pipe = StableDiffusionPipeline.from_pretrained( model_dir, ) if torch.cuda.is_available(): t2i_pipe = t2i_pipe.to("cuda") t2i_pipe.enable_attention_slicing() return t2i_pipe def predict_fn(data: dict, hgf_pipe) -> dict: with torch.autocast("cuda"): images = hgf_pipe(**process_data(data))["images"] # return dictionary, which will be json serializable return { "images": [ base64.b64encode(np.array(image).astype(np.uint8)).decode("utf-8") for image in images ] }