from babyAGI import Optional, BabyAGI from langchain import OpenAI from langchain.vectorstores import FAISS from langchain.docstore import InMemoryDocstore from langchain.embeddings import OpenAIEmbeddings import faiss, os openai_api_key = os.environ.get('openai_api_token') # Define your embedding model embeddings_model = OpenAIEmbeddings(openai_api_key=openai_api_key) # Initialize the vectorstore as empty embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) OBJECTIVE = "What happened to the Signature Bank and the First Republic Bank, two recent regional bank crisis in late April 2023? Will the FED take the same action as it did on SVB's failure?" llm = OpenAI(temperature=0, openai_api_key=openai_api_key) # Logging of LLMChains verbose = False # If None, will keep on going forever max_iterations: Optional[int] = 1 baby_agi = BabyAGI.from_llm( llm=llm, vectorstore=vectorstore, verbose=verbose, max_iterations=max_iterations ) response = baby_agi({"objective": OBJECTIVE}) print(response)