from babyagi import Optional, BabyAGI from langchain import OpenAI from langchain.vectorstores import FAISS from langchain.docstore import InMemoryDocstore from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import HuggingFaceEmbeddings import faiss, os openai_api_key = os.environ.get('openai_api_token') # Define your embedding model embeddings_model = OpenAIEmbeddings(openai_api_key=openai_api_key) # Initialize the vectorstore as empty embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) OBJECTIVE = "What happened to the First Republic Bank, another regional crisis in late April 2023? Will the FED take the same action as it did on SVB's failure?" llm = OpenAI(temperature=0, openai_api_key=openai_api_key) first_task = "Develop a task list" # Logging of LLMChains verbose = False # If None, will keep on going forever max_iterations: Optional[int] = 1 baby_agi = BabyAGI.from_llm_and_objectives( llm=llm, vectorstore=vectorstore, objective=OBJECTIVE, first_task=first_task, verbose=verbose ) baby_agi.run(max_iterations=max_iterations)