import sklearn from joblib import load import numpy as np import os #Return loaded model def load_model(modelpath): print(modelpath) clf = load(os.path.join(modelpath,'model.joblib')) print("loaded") return clf # return prediction based on loaded model (from the step above) and an input payload def predict(model, payload): print(type(payload)) try: print(np.frombuffer(payload)) print(np.frombuffer(payload).reshape((1,64))) print( model.predict(np.frombuffer(payload).reshape((1,64))) ) out = model.predict(np.frombuffer(payload).reshape((1,64))) except Exception as e: out = [type(payload),str(e)] #useful for debugging! return out