#!/bin/bash source ~/anaconda3/etc/profile.d/conda.sh conda activate pytorch_p38 # PDBBind dataset python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1 \ --precision 32 \ --stage1_num_layers 3 \ --stage1_node_h_dim 200 32 \ --stage1_edge_h_dim 64 2 \ --stage2_num_layers 3 \ --stage2_node_h_dim 200 32 \ --stage2_edge_h_dim 64 2 \ --dataset_name PDBBind \ --input_type multistage-hetero \ --model_name multistage-hgvp \ --data_dir /home/ec2-user/SageMaker/efs/data/PIGNet/data/pdbbind_v2019_processed/scoring \ --residual \ --num_workers 8 \ --lr 1e-4 \ --bs 2 \ --early_stopping_patience 50 \ --default_root_dir /home/ec2-user/SageMaker/efs/model_logs/brandry/PDBBind_MS-HGVP_hetero_energy \ --residue_featurizer_name MolT5-small-grad \ --is_hetero \ --use_energy_decoder \ --loss_der1_ratio=10.0 \ --loss_der2_ratio=10.0 \ --min_loss_der2=-20.0 \ --default_root_dir /home/ec2-user/SageMaker/efs/model_logs/brandry/PDBBind_MSGVP_hetero_energy \ --use_energy_decoder \ --is_hetero # small PDBBind python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1000 \ --precision 16 \ --dataset_name PDBBind \ --input_type multistage-hetero \ --model_name multistage-gvp \ --residue_featurizer_name MolT5-small \ --data_dir /home/ec2-user/SageMaker/efs/data/PIGNet/data/pdbbind_v2019/scoring ## with energy python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1000 \ --precision 16 \ --dataset_name PDBBind \ --input_type multistage-hetero \ --model_name multistage-gvp \ --residue_featurizer_name MolT5-small \ --data_dir /home/ec2-user/SageMaker/efs/data/PIGNet/data/pdbbind_v2019/scoring \ --use_energy_decoder \ --is_hetero \ --num_workers 8 ## ssGVP with energy python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1000 \ --precision 16 \ --dataset_name PDBBind \ --input_type complex \ --model_name gvp \ --residue_featurizer_name MolT5-small \ --data_dir /home/ec2-user/SageMaker/efs/data/PIGNet/data/pdbbind_v2019/scoring \ --use_energy_decoder \ --is_hetero \ --num_workers 8 \ --persistent_workers True # intact PDBBind python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1000 \ --precision 16 \ --dataset_name PDBBind \ --input_type complex \ --model_name gvp \ --residue_featurizer_name MolT5-small \ --data_dir /home/ec2-user/SageMaker/efs/data/PDBBind/pdbbind_v2019/scoring python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1000 \ --precision 16 \ --dataset_name PDBBind \ --input_type multistage-hetero \ --model_name multistage-gvp \ --residue_featurizer_name MolT5-small \ --data_dir /home/ec2-user/SageMaker/efs/data/PDBBind/pdbbind_v2019/scoring \ --default_root_dir /home/ec2-user/SageMaker/efs/model_logs/zichen/PDBBind_intact_MSGVP_hetero \ --bs 16 \ --num_workers 8 \ --persistent_workers True python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1000 \ --precision 16 \ --dataset_name PDBBind \ --input_type multistage-hetero \ --model_name multistage-gvp \ --residue_featurizer_name MolT5-small \ --data_dir /home/ec2-user/SageMaker/efs/data/PDBBind/pdbbind_v2019/scoring \ --bs 16 \ --num_workers 8 \ --persistent_workers True \ --use_energy_decoder \ --is_hetero python train.py --accelerator gpu \ --devices -1 \ --max_epochs 1000 \ --precision 16 \ --dataset_name PDBBind \ --input_type complex \ --model_name gvp \ --residue_featurizer_name MACCS \ --data_dir /home/ec2-user/SageMaker/efs/data/PDBBind/pdbbind_v2019/scoring \ --use_energy_decoder \ --is_hetero \ --num_workers 0 \ --bs 2