package com.databricks.spark.sql.perf.mllib.clustering import org.apache.spark.ml import org.apache.spark.ml.{PipelineStage} import org.apache.spark.sql._ import com.databricks.spark.sql.perf.mllib.OptionImplicits._ import com.databricks.spark.sql.perf.mllib.data.DataGenerator import com.databricks.spark.sql.perf.mllib.{BenchmarkAlgorithm, MLBenchContext, TestFromTraining} object KMeans extends BenchmarkAlgorithm with TestFromTraining { override def trainingDataSet(ctx: MLBenchContext): DataFrame = { import ctx.params._ DataGenerator.generateGaussianMixtureData(ctx.sqlContext, k, numExamples, ctx.seed(), numPartitions, numFeatures) } override def getPipelineStage(ctx: MLBenchContext): PipelineStage = { import ctx.params._ new ml.clustering.KMeans() .setK(k) .setSeed(randomSeed.toLong) .setMaxIter(maxIter) .setTol(tol) } // TODO(?) add a scoring method here. }