Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: CC-BY-SA-4.0
All Amazon SageMaker built-in algorithms adhere to the common input inference format described in Common Data Formats - Inference. This topic contains a list of the available output formats for the Amazon SageMaker k-nearest-neighbor algorithm.
content-type: text/csv
1.2,1.3,9.6,20.3
This accepts a label_size
or encoding parameter. It assumes a label_size
of 0 and a utf-8 encoding.
content-type: application/json
{
"instances": [
{"data": {"features": {"values": [-3, -1, -4, 2]}}},
{"features": [3.0, 0.1, 0.04, 0.002]}]
}
content-type: application/jsonlines
{"features": [1.5, 16.0, 14.0, 23.0]}
{"data": {"features": {"values": [1.5, 16.0, 14.0, 23.0]}}
content-type: application/x-recordio-protobuf
[
Record = {
features = {
'values': {
values: [-3, -1, -4, 2] # float32
}
},
label = {}
},
Record = {
features = {
'values': {
values: [3.0, 0.1, 0.04, 0.002] # float32
}
},
label = {}
},
]
accept: application/json
{
"predictions": [
{"predicted_label": 0.0},
{"predicted_label": 2.0}
]
}
accept: application/jsonlines
{"predicted_label": 0.0}
{"predicted_label": 2.0}
In verbose mode, the API provides the search results with the distances vector sorted from smallest to largest, with corresponding elements in the labels vector. In this example, k is set to 3.
accept: application/json; verbose=true
{
"predictions": [
{
"predicted_label": 0.0,
"distances": [3.11792408, 3.89746071, 6.32548437],
"labels": [0.0, 1.0, 0.0]
},
{
"predicted_label": 2.0,
"distances": [1.08470316, 3.04917915, 5.25393973],
"labels": [2.0, 2.0, 0.0]
}
]
}
content-type: application/x-recordio-protobuf
[
Record = {
features = {},
label = {
'predicted_label': {
values: [0.0] # float32
}
}
},
Record = {
features = {},
label = {
'predicted_label': {
values: [2.0] # float32
}
}
}
]
In verbose mode, the API provides the search results with the distances vector sorted from smallest to largest, with corresponding elements in the labels vector. In this example, k is set to 3.
accept: application/x-recordio-protobuf; verbose=true
[
Record = {
features = {},
label = {
'predicted_label': {
values: [0.0] # float32
},
'distances': {
values: [3.11792408, 3.89746071, 6.32548437] # float32
},
'labels': {
values: [0.0, 1.0, 0.0] # float32
}
}
},
Record = {
features = {},
label = {
'predicted_label': {
values: [0.0] # float32
},
'distances': {
values: [1.08470316, 3.04917915, 5.25393973] # float32
},
'labels': {
values: [2.0, 2.0, 0.0] # float32
}
}
}
]
For regressor tasks:
[06/08/2018 20:15:33 INFO 140026520049408] #test_score (algo-1) : ('mse', 0.013333333333333334)
For classifier tasks:
[06/08/2018 20:15:46 INFO 140285487171328] #test_score (algo-1) : ('accuracy', 0.98666666666666669)