Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: CC-BY-SA-4.0

Object2Vec Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm. You can also specify algorithm-specific hyperparameters as string-to-string maps. The following table lists the hyperparameters for the Object2Vec training algorithm.

Parameter Name Description
enc0_max_seq_len The maximum sequence length for the enc0 encoder. Required Valid values: 1 ≤ integer ≤ 5000
enc0_vocab_size The vocabulary size of enc0 tokens. Required Valid values: 2 ≤ integer ≤ 3000000
bucket_width The allowed difference between data sequence length when bucketing is enabled. To enable bucketing, specify a non-zero value for this parameter. Optional Valid values: 0 ≤ integer ≤ 100 Default value: 0 (no bucketing)
comparator_list A list used to customize the way in which two embeddings are compared. The Object2Vec comparator operator layer takes the encodings from both encoders as inputs and outputs a single vector. This vector is a concatenation of subvectors. The string values passed to the comparator_list and the order in which they are passed determine how these subvectors are assembled. For example, if comparator_list="hadamard, concat", then the comparator operator constructs the vector by concatenating the Hadamard product of two encodings and the concatenation of two encodings. If, on the other hand, comparator_list="hadamard", then the comparator operator constructs the vector as the hadamard product of only two encodings. Optional Valid values: A string that contains any combination of the names of the three binary operators: hadamard, concat, or abs_diff. The Object2Vec algorithm currently requires that the two vector encodings have the same dimension. These operators produce the subvectors as follows: [See the AWS documentation website for more details] Default value: "hadamard, concat, abs_diff"
dropout The dropout probability for network layers. Dropout is a form of regularization used in neural networks that reduces overfitting by trimming codependent neurons. Optional Valid values: 0.0 ≤ float ≤ 1.0 Default value: 0.0
early_stopping_patience The number of consecutive epochs without improvement allowed before early stopping is applied. Improvement is defined by with the early_stopping_tolerance hyperparameter. Optional Valid values: 1 ≤ integer ≤ 5 Default value: 3
early_stopping_tolerance The reduction in the loss function that an algorithm must achieve between consecutive epochs to avoid early stopping after the number of consecutive epochs specified in the early_stopping_patience hyperparameter concludes. Optional Valid values: 0.000001 ≤ float ≤ 0.1 Default value: 0.01
enc_dim The dimension of the output of the embedding layer. Optional Valid values: 4 ≤ integer ≤ 10000 Default value: 4096
enc0_network The network model for the enc0 encoder. Optional Valid values: hcnn, bilstm, or pooled_embedding [See the AWS documentation website for more details] Default value: hcnn
enc0_cnn_filter_width The filter width of the convolutional neural network (CNN) enc0 encoder. Conditional Valid values: 1 ≤ integer ≤ 9 Default value: 3
enc0_freeze_pretrained_embedding Whether to freeze enc0 pretrained embedding weights. Conditional Valid values: True or False Default value: True
enc0_layers The number of layers in the enc0 encoder. Conditional Valid values: auto or 1 ≤ integer ≤ 4 [See the AWS documentation website for more details] Default value: auto
enc0_pretrained_embedding_file The filename of the pretrained enc0 token embedding file in the auxiliary data channel. Conditional Valid values: String with alphanumeric characters, underscore, or period. [A-Za-z0-9\.\_] Default value: "" (empty string)
enc0_token_embedding_dim The output dimension of the enc0 token embedding layer. Conditional Valid values: 2 ≤ integer ≤ 1000 Default value: 300
enc0_vocab_file The vocabulary file for mapping pretrained enc0 token embedding vectors to numerical vocabulary IDs. Conditional Valid values: String with alphanumeric characters, underscore, or period. [A-Za-z0-9\.\_] Default value: "" (empty string)
enc1_network The network model for the enc1 encoder. If you want the enc1 encoder to use the same network model as enc0, including the hyperparameter values, set the value to enc0. Even when the enc0 and enc1 encoder networks have symmetric architectures, you can’t shared parameter values for these networks. Optional Valid values: enc0, hcnn, bilstm, or pooled_embedding [See the AWS documentation website for more details] Default value: enc0
enc1_cnn_filter_width The filter width of the CNN enc1 encoder. Conditional Valid values: 1 ≤ integer ≤ 9 Default value: 3
enc1_freeze_pretrained_embedding Whether to freeze enc1 pretrained embedding weights. Conditional Valid values: True or False Default value: True
enc1_layers The number of layers in the enc1 encoder. Conditional Valid values: auto or 1 ≤ integer ≤ 4 [See the AWS documentation website for more details] Default value: auto
enc1_max_seq_len The maximum sequence length for the enc1 encoder. Conditional Valid values: 1 ≤ integer ≤ 5000
enc1_pretrained_embedding_file The name of the enc1 pretrained token embedding file in the auxiliary data channel. Conditional Valid values: String with alphanumeric characters, underscore, or period. [A-Za-z0-9\.\_] Default value: "" (empty string)
enc1_token_embedding_dim The output dimension of the enc1 token embedding layer. Conditional Valid values: 2 ≤ integer ≤ 1000 Default value: 300
enc1_vocab_file The vocabulary file for mapping pretrained enc1 token embeddings to vocabulary IDs. Conditional Valid values: String with alphanumeric characters, underscore, or period. [A-Za-z0-9\.\_] Default value: "" (empty string)
enc1_vocab_size The vocabulary size of enc0 tokens. Conditional Valid values: 2 ≤ integer ≤ 3000000
epochs The number of epochs to run for training. Optional Valid values: 1 ≤ integer ≤ 100 Default value: 30
learning_rate The learning rate for training. Optional Valid values: 1.0E-6 ≤ float ≤ 1.0 Default value: 0.0004
mini_batch_size The batch size that the dataset is split into for an optimizer during training. Optional Valid values: 1 ≤ integer ≤ 10000 Default value: 32
mlp_activation The type of activation function for the multilayer perceptron (MLP) layer. Optional Valid values: tanh, relu, or linear [See the AWS documentation website for more details] Default value: linear
mlp_dim The dimension of the output from MLP layers. Optional Valid values: 2 ≤ integer ≤ 10000 Default value: 512
mlp_layers The number of MLP layers in the network. Optional Valid values: 0 ≤ integer ≤ 10 Default value: 2
negative_sampling_rate The ratio of negative samples, generated to assist in training the algorithm, to positive samples that are provided by users. Negative samples represent data that is unlikely to occur in reality and are labelled negatively for training. They facilitate training a model to discriminate between the positive samples observed and the negative samples that are not. To specify the ratio of negative samples to positive samples used for training, set the value to a positive integer. For example, if you train the algorithm on input data in which all of the samples are positive and set negative_sampling_rate to 2, the Object2Vec algorithm internally generates two negative samples per positive sample. If you don’t want to generate or use negative samples during training, set the value to 0. Optional Valid values: 0 ≤ integer Default value: 0 (off)
num_classes The number of classes for classification training. Amazon SageMaker ignores this hyperparameter for regression problems. Optional Valid values: 2 ≤ integer ≤ 30 Default value: 2
optimizer The optimizer type. Optional Valid values: adadelta, adagrad, adam, sgd, or rmsprop. [See the AWS documentation website for more details] Default value: adam
output_layer The type of output layer where you specify that the task is regression or classification. Optional Valid values: softmax or mean_squared_error [See the AWS documentation website for more details] Default value: softmax
tied_token_embedding_weight Whether to use a shared embedding layer for both encoders. If the inputs to both encoders use the same token-level units, use a shared token embedding layer. For example, for a collection of documents, if one encoder encodes sentences and another encodes whole documents, you can use a shared token embedding layer. That’s because both sentences and documents are composed of word tokens from the same vocabulary. Optional Valid values: True or False Default value: False
token_embedding_storage_type The mode of gradient update used during training: when the dense mode is used, the optimizer calculates the full gradient matrix for the token embedding layer even if most rows of the gradient are zero-valued. When sparse mode is used, the optimizer only stores rows of the gradient that are actually being used in the mini-batch. If you want the algorithm to perform lazy gradient updates, which calculate the gradients only in the non-zero rows and which speed up training, specify row_sparse. Setting the value to row_sparse constrains the values available for other hyperparameters, as follows: [See the AWS documentation website for more details] Optional Valid values: dense or row_sparse Default value: dense
weight_decay The weight decay parameter used for optimization. Optional Valid values: 0 ≤ float ≤ 10000 Default value: 0 (no decay)