Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: CC-BY-SA-4.0
The following tables list the hyperparameters supported by the Amazon SageMaker semantic segmentation algorithm for network architecture, data inputs, and training. You specify Semantic Segmentation for training in the AlgorithmName
of the CreateTrainingJob request.
Network Architecture Hyperparameters
Parameter Name | Description |
---|---|
backbone | The backbone to use for the algorithm’s encoder component. Optional Valid values: resnet-50 , resnet-101 Default value: resnet-50 |
use_pretrained_model | Whether a pretrained model is to be used for the backbone. Optional Valid values: True , False Default value: True |
algorithm | The algorithm to use for semantic segmentation. Optional Valid values: [See the AWS documentation website for more details] Default value: fcn |
Data Hyperparameters
Parameter Name | Description |
---|---|
num_classes | The number of classes to segment. Required Valid values: 2 ≤ positive integer ≤ 254 |
num_training_samples | The number of samples in the training data. The algorithm uses this value to set up the learning rate scheduler. Required Valid values: positive integer |
crop_size | The image size for input images. We rescale the input image to a square image to this crop_size . We do this by rescaling the shorter side to match this parameter while maintaining the aspect ratio, and then take a random crop along the longer side. Optional Valid values: positive integer > 16 Default value: 480 |
Training Hyperparameters
Parameter Name | Description |
---|---|
early_stopping | Whether to use early stopping logic during training. Optional Valid values: True , False Default value: False |
early_stopping_min_epochs | The minimum number of epochs that must be run. Optional Valid values: integer Default value: 5 |
early_stopping_patience | The number of epochs that meet the tolerance for lower performance before the algorithm enforces an early stop. Optional Valid values: integer Default value: 4 |
early_stopping_tolerance | If the relative improvement of the score of the training job, the mIOU, is smaller than this value, early stopping considers the epoch as not improved. This is used only when early_stopping = True . Optional Valid values: 0 ≤ float ≤ 1 Default value: 0.0 |
epochs | The number of epochs with which to train. Optional Valid values: positive integer Default value: 30 |
gamma1 | The decay factor for the moving average of the squared gradient for rmsprop . Used only for rmsprop . Optional Valid values: 0 ≤ float ≤ 1 Default value: 0.9 |
gamma2 | The momentum factor for rmsprop . Optional Valid values: 0 ≤ float ≤ 1 Default value: 0.9 |
learning_rate | The initial learning rate. Optional Valid values: 0 < float ≤ 1 Default value: 0.001 |
lr_scheduler | The shape of the learning rate schedule that controls its decrease over time. Optional Valid values: [See the AWS documentation website for more details] Default value: poly |
mini_batch_size | The batch size for training. Using a large mini_batch_size usually results in faster training, but it might cause you to run out of memory. Memory usage is affected by the values of the mini_batch_size and image_shape parameters, and the backbone architecture. Optional Valid values: positive integer Default value: 4 |
momentum | The momentum for the sgd optimizer. When you use other optimizers, the semantic segmentation algorithm ignores this parameter. Optional Valid values: 0 < float ≤ 1 Default value: 0.9 |
optimizer | The type of optimizer. For more information about an optimizer, choose the appropriate link: [See the AWS documentation website for more details] Optional Valid values: adam , adagrad , nag , rmsprop , sgd Default value: sgd |
validation_mini_batch_size | The batch size for validation. A large mini_batch_size usually results in faster training, but it might cause you to run out of memory. Memory usage is affected by the values of the mini_batch_size and image_shape parameters, and the backbone architecture. [See the AWS documentation website for more details] Optional Valid values: positive integer Default value: 4 |
weight_decay | The weight decay coefficient for the sgd optimizer. When you use other optimizers, the algorithm ignores this parameter. Optional Valid values: 0 < float < 1 Default value: 0.0001 |