Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: CC-BY-SA-4.0

Semantic Segmentation Hyperparameters

The following tables list the hyperparameters supported by the Amazon SageMaker semantic segmentation algorithm for network architecture, data inputs, and training. You specify Semantic Segmentation for training in the AlgorithmName of the CreateTrainingJob request.

Network Architecture Hyperparameters

Parameter Name Description
backbone The backbone to use for the algorithm’s encoder component. Optional Valid values: resnet-50, resnet-101 Default value: resnet-50
use_pretrained_model Whether a pretrained model is to be used for the backbone. Optional Valid values: True, False Default value: True
algorithm The algorithm to use for semantic segmentation. Optional Valid values: [See the AWS documentation website for more details] Default value: fcn

Data Hyperparameters

Parameter Name Description
num_classes The number of classes to segment. Required Valid values: 2 ≤ positive integer ≤ 254
num_training_samples The number of samples in the training data. The algorithm uses this value to set up the learning rate scheduler. Required Valid values: positive integer
crop_size The image size for input images. We rescale the input image to a square image to this crop_size. We do this by rescaling the shorter side to match this parameter while maintaining the aspect ratio, and then take a random crop along the longer side. Optional Valid values: positive integer > 16 Default value: 480

Training Hyperparameters

Parameter Name Description
early_stopping Whether to use early stopping logic during training. Optional Valid values: True, False Default value: False
early_stopping_min_epochs The minimum number of epochs that must be run. Optional Valid values: integer Default value: 5
early_stopping_patience The number of epochs that meet the tolerance for lower performance before the algorithm enforces an early stop. Optional Valid values: integer Default value: 4
early_stopping_tolerance If the relative improvement of the score of the training job, the mIOU, is smaller than this value, early stopping considers the epoch as not improved. This is used only when early_stopping = True. Optional Valid values: 0 ≤ float ≤ 1 Default value: 0.0
epochs The number of epochs with which to train. Optional Valid values: positive integer Default value: 30
gamma1 The decay factor for the moving average of the squared gradient for rmsprop. Used only for rmsprop. Optional Valid values: 0 ≤ float ≤ 1 Default value: 0.9
gamma2 The momentum factor for rmsprop. Optional Valid values: 0 ≤ float ≤ 1 Default value: 0.9
learning_rate The initial learning rate. Optional Valid values: 0 < float ≤ 1 Default value: 0.001
lr_scheduler The shape of the learning rate schedule that controls its decrease over time. Optional Valid values: [See the AWS documentation website for more details] Default value: poly
mini_batch_size The batch size for training. Using a large mini_batch_size usually results in faster training, but it might cause you to run out of memory. Memory usage is affected by the values of the mini_batch_size and image_shape parameters, and the backbone architecture. Optional Valid values: positive integer Default value: 4
momentum The momentum for the sgd optimizer. When you use other optimizers, the semantic segmentation algorithm ignores this parameter. Optional Valid values: 0 < float ≤ 1 Default value: 0.9
optimizer The type of optimizer. For more information about an optimizer, choose the appropriate link: [See the AWS documentation website for more details] Optional Valid values: adam, adagrad, nag, rmsprop, sgd Default value: sgd
validation_mini_batch_size The batch size for validation. A large mini_batch_size usually results in faster training, but it might cause you to run out of memory. Memory usage is affected by the values of the mini_batch_size and image_shape parameters, and the backbone architecture. [See the AWS documentation website for more details] Optional Valid values: positive integer Default value: 4
weight_decay The weight decay coefficient for the sgd optimizer. When you use other optimizers, the algorithm ignores this parameter. Optional Valid values: 0 < float < 1 Default value: 0.0001