# ___________________________________________________________________________ # # Pyomo: Python Optimization Modeling Objects # Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC # Under the terms of Contract DE-NA0003525 with National Technology and # Engineering Solutions of Sandia, LLC, the U.S. Government retains certain # rights in this software. # This software is distributed under the 3-clause BSD License. # ___________________________________________________________________________ import time import pyomo.opt from pyomo.core import TransformationFactory, Var, Set from pyomo.common.collections import Bunch @pyomo.opt.SolverFactory.register('bilevel_blp_global', doc='Global solver for continuous bilevel linear problems') class BILEVEL_Solver2(pyomo.opt.OptSolver): def __init__(self, **kwds): kwds['type'] = 'bilevel_blp_global' pyomo.opt.OptSolver.__init__(self,**kwds) self._metasolver = True def _presolve(self, *args, **kwds): self._instance = args[0] pyomo.opt.OptSolver._presolve(self, *args, **kwds) def _apply_solver(self): start_time = time.time() # # Cache the instance # xfrm = TransformationFactory('bilevel.linear_mpec') xfrm.apply_to(self._instance) xfrm = TransformationFactory('mpec.simple_disjunction') xfrm.apply_to(self._instance) xfrm = TransformationFactory('gdp.bigm') xfrm.apply_to(self._instance, bigM=self.options.get('bigM',100000)) # # Solve with a specified solver # solver = self.options.solver if not self.options.solver: solver = 'glpk' # use the with block here so that deactivation of the # solver plugin always occurs thereby avoiding memory # leaks caused by plugins! with pyomo.opt.SolverFactory(solver) as opt: # self.results = [] # # **NOTE: It would be better to override _presolve on the # base class of this solver as you might be # missing a number of keywords that were passed # into the solve method (e.g., none of the # io_options are getting relayed to the subsolver # here). # self.results.append(opt.solve(self._instance, tee=self._tee, timelimit=self._timelimit)) # stop_time = time.time() self.wall_time = stop_time - start_time # # Deactivate the block that contains the optimality conditions, # and reactivate SubModel # submodel = self._instance._transformation_data['bilevel.linear_mpec'].submodel_cuid. find_component(self._instance) for (name, data) in submodel.component_map(active=False).items(): if not isinstance(data,Var) and not isinstance(data,Set): data.activate() # TODO: delete this subblock self._instance._transformation_data[ 'bilevel.linear_mpec'].block_cuid.find_component_on( self._instance).deactivate() # # Return the sub-solver return condition value and log # return Bunch(rc=getattr(opt,'_rc', None), log=getattr(opt,'_log',None)) def _postsolve(self): # # Create a results object # results = pyomo.opt.SolverResults() # # SOLVER # solv = results.solver solv.name = self.options.subsolver #solv.status = self._glpk_get_solver_status() #solv.memory_used = "%d bytes, (%d KiB)" % (peak_mem, peak_mem/1024) solv.wallclock_time = self.wall_time cpu_ = [] for res in self.results: if not getattr(res.solver, 'cpu_time', None) is None: cpu_.append( res.solver.cpu_time ) if len(cpu_) > 0: solv.cpu_time = sum(cpu_) # # TODO: detect infeasibilities, etc # solv.termination_condition = pyomo.opt.TerminationCondition.optimal # # PROBLEM # prob = results.problem prob.name = self._instance.name prob.number_of_constraints = self._instance.statistics.number_of_constraints prob.number_of_variables = self._instance.statistics.number_of_variables prob.number_of_binary_variables = self._instance.statistics.number_of_binary_variables prob.number_of_integer_variables = self._instance.statistics.number_of_integer_variables prob.number_of_continuous_variables = self._instance.statistics.number_of_continuous_variables prob.number_of_objectives = self._instance.statistics.number_of_objectives # # SOLUTION(S) # self._instance.solutions.store_to(results) # # Uncache the instance # self._instance = None return results